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ABSTRACT

This paper is primarily concerned with the acoustics of
traveling bubble cavitation around foils or headforms. We be-
gin with observations of individual bubbles and the acoustic
signals they emit, our purpose being to identify areas of re-
search which would enhance our understanding of the history
of individual bubbles. Then we present some numerical inte-
grations of the Rayleigh/Plesset equation for the same flows.
The comparison is encouraging in terms of future synthesis of
the noise by analytical means. Finally, bubble interaction ef-
fects which were omitted earlier are discussed and some recent
analytical results including these effects are presented.

1. INTRODUCTION

Rather than attempting a comprehensive review of the
state of knowledge of cavitation noise, this paper will focus on
several issues where our understanding of the basic physical
phenomena is, at best, quite limited. Our remarks will be con-
fined 1o the noise generated by bubble cavitation and we will
not attempt to deal with the added complications associated
with fully or partially developed cavitation. The current state
of knowledge of the noise generated by bubbly cavitation is
thoroughly reviewed by Blake [1986] and well represented by
the proceedings of the two previous symposiums in this series,
so it may be more useful to focus on several key issues in order
to identify areas which would benefit from further atiention.

The most fundamental approach to cavitation noise be-
gins with the nuclei population of the incoming siream. By
constructing the dynamics and acoustics for each individual
size of nucleus, one should in theory be able to combine this
information with the nuclei number distribution to produce all
the required information on cavitation noise levels and spectra.
This, of course, assumes that bubbles do not interact acousti-
cally or hydrodynamically. Such interactions will be considered
in a laler section. For present purposes, however, bubble in-
teractions will be neglected.
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Parenthetically we remark that, despite the fact that cavi-
tation phenomena are now recognized to be initimately related
to the population of “cavitation” nuclei in the incoming lig-
uid stream, it is still too often the case that this distribution
goes unmeasured. We must insist on this documentation for
all cavitation experiments. Typical nuclei number distribution
functions, N{f,) where I is the nuclei radius in meters, are
shown in figure 1; N(H,) is defined such that the number of
nuclei with sizes between Ry and Rg + dRg is N(Rp)dR,. We
shall return a little later to discussion of the effects of the nuclei
number distribution.

The present remarks will be confined to the cavitation
noise produced by bubble cavitation in flows around bodies
such as headforms or hydrofoils. Thus we shall be concerned
with the behavior of cavitation bubbles in the presence of vari-
ous flow phenormena such as pressure gradients, boundary lay-
ers, separation and turbulence. A great decal of research has
been done on the dynamics and acoustics of cavitation bub-
bles in quiescent liguid (Knapp, Daily and Hammitt [1970]).
It is known, for example, from both experiments and analysis
that when a bubble in a quiescent liquid collapses close to a
solid boundary a microjet forms on the bubble surface furthest
from the solid boundary and reaches very high velocities (Ples-
set and Chapman {1970]). The current state of knowledge of
this phenomena has recently been comprehensively reviewed
by Blake and Gibson {1987]. Those authors reflect a current
body of opinion in which these microjets are believed to be re-
sponsible for both the material damage and the noise created
by cavitation.

Even for bubbles in a quiescent liquid, this view may need
to be modified in the light of the recent observations by Kimoto
|1987]. 1le simultaneously took high speed motion pictures and
made local pressure measurements on the surface beneath a
collapsing cavitation bubble in a quiescent liquid and observed
the instantaneous loading on the surface, not only as a result of
the microjet, but also as a result of the shock wave generated
when the remnant cloud of bubbles collapses. 11 is significant
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Figure 1. Typical nuclei number distribution functions. From
Gates and Acosta [1978].

that the shock wave loading was usually a factor of two or three
times larger than that due to the microjet. From the point of
view of the acoustics, this means that the dominant acoustic
pressure pulse may be generated by the remnant cloud collapse
rather than by the microjet.

But one of the main issues which we would like to em-
phasize is that none of these observations have been made for
cavitation around a headform or hydrofoil. Indeed, from the
very earliest observations of Knapp and Hollander [1948] and
Parkin [1952] down to the more recent observations (for ex-
ample those of Blake, Wolpert and Geib [1977| or Kodama,
Tamiya, Take and Kato [1979]), experimentalists have consis-
tently commented on the distorted shapes which cavitation
bubbles can take in flows around bodies. Indeed, all four of the
above papers specifically mention the “hemispherical” shape
which the traveling bubbles appear to assume. Why the bub-
bles take this shape and what effect these shapes have on the
collapse process, resulting noise generation, and damage poten-
tial is largely unknown. The point here is that, although the
macroscopic effects of boundary layers, separation and turbu-
lence on cavitation have been known for some time (eg, Arakeri
and Acosta [1973]), the effects of these flow phenomena on the

dynamics of individual bubbles and therefore on the collapse
mechanics and noise production for individual bubbles has only
begun to be explored.

Several studies of the acoustic signals from single trav-
eling cavitation bubbles have been carried out. In an early
paper Harrison [1952] identified the first collapse as the time
of noise generation. More recently Hamilton, Thompson and
Billet [1982] (see also Hamilton [1981]) and Marboe, Billet and
Thompson [1986] have initiated the kind of research which can
lead eventually to a deeper understanding of the mechanics of
cavitation noise. We have recently conducted some tests which
complement the last two studies, and a description of some
of the results will provide an illustration of the events and a
framework in which to comment on future research directions.

2. OBSERVATIONS OF SINGLE BUBBLE DYNAMICS
AND ACOUSTICS

A 559 cm. diameter ITTC headform (Hoyt {1966]) was
fabricated from lucite. The hollow interior of this headform
was filled with water and a ITC-1042 hydrophone placed in
the water-filled interior (see figure 2). Because of the good
acoustic impedance match between lucite and water, this ar-
rangement allows the noise generated by the cavitation bubbles
to reach the hydrophone relatively undistorted; reflected acous-
tic signals from other parts of the water tunnel only make their
appearance after the important initial signal has been recorded.

This headform was installed in the low tiirbulence water
tunnel (LTWT) at Caltech. In addition to the hydrophore,
the headform was equipped with a novel device developed from
instrumentation which had been used to measure volime frac-
tions in multiphase flows. This device ¢onsisted of an axial se-
quence of 16 patch electrodes, 0.127 ¢m. long, 0.572 cmi. wide

and with a separation of 0.127 cm. These were located so as to

cover the major extent of the cavitation region on the headform
(see figure 2). (The electrodes were conveniently fabricated us-

ELECTRODES ° ~HYDROPHONE
oS00

o °

Q —— 1|
(

o

FLOW

p-
N

SINGLE
[Mi‘é%fwcg BUBBLE DETECTION

DETECTION

SIZE, VELOCITY

ACOUSTIC PRESSURE
SIGNAL OF
COLLAPSING BUBBLE

A

_— HYDROPHONE

Figure 2. Schematic illustrating the instrumentation of the
ITTC headform.



PROFILE VIEW PLAN VIEW

Figure 3. Photographs of cavitation bubbles during different stages of their life
(Aow is from right to left). Simultaneous plan and profile views are shown for
a tunnel velocity of 8.4 m/s and a cavitation number, o 0.47. Total bubble
lifetime is about 3ms and the six pairs of photographs represent roughly equal time
increments within this lifetime. Scale is given by the electrode spacing which is
0.254 cm, center to center.
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ing an electrically conducting epoxy which could be machined
and polished together with the lucite.) A pattern of alternating
electric potentials is applied to these electrodes and the elec-
tric current from each electrode is monitored. When a bubble
rasses over one of these electrodes the resistivity of the local
conducting medium is changed, causing a change in the current
from that electrode. This change is related to the position and
volume of the bubble. Consequently, the electrode array al-
lows passive detection and momtormg of individual cavitation
bubbles.

The output of the electrode array was used, among other
things, to trigger a camera flash unit. By using two cameras,
simultaneous profile and plan photographs were taken of indi-
vidual bubbles at a prescribed moment during their trajectory.
Thus a whole series of bubbles could be inspected, all at the
same point in their evolution. Furthermore, by simultaneously
recording the acoustic signal from the hydrophone, one could
correlate the noise with the geometry of these bubbles.

Examples of these photographs taken for a given tunmel
speed (8.4 m/s) and cavitation number (¢ = 0.47) are shown
in figure 3. Onmne of the first major observations is how sim-
ilar and repeatable all the photographic observations are for
a given trajectory position. The bubbles vary little in size
or shape. They are far from being spherical and assume the
slightly squashed “hemispherical” form sketched in figure 4,
a shape which has been described by a number of other au-
thors as mentioned previously. The volume/time history of
the bubbles appears to follow the Rayleigh/Plesset equation in
the manner originally demonstrated by Knapp and Hollander
[1948] and Plesset [1949]. The uninitiated may wonder why all
of the bubbles have close to-the same size when the nuclei, as
previously demonstrated, come in a wide range of sizes. We
will address this phenomenon in the next section.

As the buhbbles proceed through their growth phase, sev-
eral features, sketched in figure 4, are consistently observed.
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Figure 4. Schematic illustrating the various features of a cavi-
tation bubble during different stages of its life.
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As the bubbles approach their maximum size they become
somewhat elongated in the direction normal to their motion
while their thickness normal to the surface remains relatively
constant. The ITTC headform possesses a laminar separation
point just downstream of the tangent point of the surface con-
tour. This separation appears to affect the bubble in several
ways. First, the relatively flat undersurface of the bubble is
seen to move away from the solid surface as it follows the sep-
aration streamline. Secondly, the undersurface appears to be
effected by the disturbances caused by transition and turbulent
reattachment since it becomes markedly ro_ughened. Thirdly,

at the two lateral extremities of the bubble, the passage of the
bubble appears to cause highly localized attached cavitation
producing the trailers sketched in figure 4 which look some-
what like tip vortices. These trailers may persist briefly after
the main bubble has collapsed. The process of collapse also
appears to have some common features such as the “snout”
depicted in figure 4. It is clear that the bubble cloud which
emerges from the first collapse is elongated in the direction per-
pendicular to the flow and also has a characteristic orientation
in the profile view. ’

The process of a cavitation bubble’s evolution will most
likely vary from headform to headform and will depend on the
state of the boundary layer, separation, and transition. It will
also depend on the Weber number as well as the and Reynolds
number. Furthermore, it seems clear that the acoustics (and
damage potential) will depend upon the detailed mechanics of
bubble collapse. Consequently, a deeper understanding of cav-
itation noise must depend on better knowledge of the detailed
mechanics of bubble growth and collapse.

As virtually all previous investigators have discovered, we
found that the noise is initiated during the moment of violent
first collapse. Figure 5 presents two typical examples of the
acoustic signal generated by a single bubble collapse. These
signals are not filtered except for ultralow frequencies (D.c.).
The hydrophone has a relatively flat response out to 80 kHz.
In this sense our observations differ from those of Hamilton et
al [1982] who high-pass filtered their signals at 10 kHz. The
signals in figure 5 were obtained by a digital data aquisition
system sampling the hydrophone output at 1 MHz. The gen-
eral features of these signals are very consistent. An initial
pressure rise accelerates to one or two positive peaks. These
are presumably associated with the very large and positive vol-
ume accelerations which occur when the bubble volume passes
through its minimum. The double peaks shown in the second
example were somnewhat more common than the single peaks
of the first example and may be caused by the original bubble
splitting in two before reaching its minimum volume. The re-
maining signal, while noisy, is quite repeatable and consists of
a broad reduced pressure period followed by a gradual increase
toward a broad maximum.

From these records and the photographs, data was ob-
tained on the maximum bubble volume prior to the first col-
lapse, the peak acoustic pressure and the impulse of the pres-
sure peaks in the signals defined as

point where pressure
passes through zero

I= pdt

fong before ( )
bubble collapse

or the area under the initial peak or peaks in the acoustic
output. An example of the correlation between the maximum
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Figure 5. Typical acoustic pressure pulses generated by a single
cavitation bubble collapse. Tunnel velocity = 9.1m/s, ¢ =
0.44.

volume and the acoustic impulse, I, is shown in figure 6.

This and other similar data have a number of interesting
features. The data all appear to lie below an envelope which is
close to a straight line passing through the origin. It seems that
there is a maximum acoustic impulse which a collapsing bubble
may generate from a certain maximum volume if it collapses
in some particular but unknown way. It can, however, produce
less than this maximum impulse if it collapses in other ways.
The line plotted in figure 6 is a theoretical prediction discussed
in the next section.

In closing, we comment that it would appear that there
is still much to be learned from studies of individual cavita-
tion bubbles in real viscous flows and that an improved under-
standing of these events is an esssential step in improving our
understanding of cavitation noise.

3. SOME COMPARISONS WITH RAYLEIGH/PLESSET
SOLUTIONS

In order to place the experimental results such as those
of figure 6 in some analytic perspective, calculations were per-
formed to evaluate how free stream nuclei of various sizes would
respond to the pressure/time history they experience during’
flow around the ITTC headform. The known surface pres-
sure distribution for that headform (eg. (Hoyt [1966]) was:
employed to construct the pressure/time history assuming no
slip between the bubbles and the liquid and a certain offset
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Figure 6. Experimental data showing the relationship between
the acoustic impulse, I {Pa-s), at the maximum bubble volume
(m3) for tunnel velocity of 9.1 m/s and o = 0.44. Also shown
by the solid line is an analytic result described in section 3.

from the stagnation streamline. Details will be provided in a
later publication. The calculation was performed with various
assumed equilibrium nuclei in the upstream flow, various free
stream velocities, U, cavitation numbers and offsets from the
stagnation streamline. The viscosity, density, p, and surface
tension, S, of water at 20°C were employed in evaluating these
effects in the Rayleigh/Plesset solution. For present purposes
we will focus on the relationship between maximum volume
and the magnitude of the acoustic pressure, ps, which these
calculations yield, that pressure being calculated as

&V
de?

(2)

0
palr,ty = Iy

when V(¢) is the volume of the bubble and r is the distance
from the center of the bubble.

Figure 7 provides an example of the dependence of the
maximum bubble radius on the original nuclei size for four
different cavitation numbers. This figure illustrates several
important phenomena which are too seldom mentioned even
though they have been very clearly documented and discussed
by Flynn [1964] in his excellent review. The first notable fea-
ture is that nuclei below a certain size (which depends upon
the cavitation number) hardly grow at all and would therefore
not contribute visible cavitation bubbles. This feature is quite
accurately predicted by applying the static stability criterion
of Johnson and Hsieh [1966] at each point along the bubble
trajectory. The bubble is statically unstable if

B8 _s 1
Ry~ 3 pRygU? (~o — Cpumin)

(3)

where Cparrn is the minimum pressure coefficient (-0.62 for
the ITTC headform) and Ry, is the local bubble size. The
computations (and figure 7) show that so long as the bub-
ble remains stable, then Ry, is somewhere in the range Ro <
Ry < 2Ry for the common circumstances of interest here.
Consequently, the critical nucleus size R¢ is given by
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RepU? N 88 (4)
S 3(—0’ — CPMIN)

where 3 is approximately one-half. The results of this simple
expression are presented in figure 8 along with data on the crit-
ical nuclei size obtained from the Rayleigh/Plesset solutions.
The qualitative agreement is excellent and suggests a value of
B slightly greater than 0.5. Note that the higher the veloc-
ity, U, the smaller the critical radius, R, and therefore the
larger the number of nuclei involved in cavitation. As discussed
later, this may have important consequences in the scaling of
cavitation noise.

The other feature of figure 7 which is important to note is
that virtually all nuclei greater than the critical size grow to ap-
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Figure 8. Points represent the critical nuclei radius/headform
radius from Rayleigh/Plesset solutions for two different Weber
numbers as indicated. The lines are the corresponding values
using equation (4) with 8 = 0.5.
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figure 7.

proximately the same maximum size. The asymptotic growth
rate of a cavitating nuclei is a function only of the pressure
and not of the initial nuclei size. Since the time available for
growth is also independent of the nuclei size, it follows that the
maximum size obtained will be quite uniform for all cavitating
nuclei. This explains why the bubbles observed in most travel-
ing bubble cavitation flows are all of similar size even though
they originate from nuclei of quite different size.

This phenomenon can be illustrated in a different way by
constructing from figure 7 and a nuclei number distribution
function, No(Ro), the number distribution function for the
observed cavitation bubbles at their point of maximum growth.
Such a distribution is presented in figure 9 using

No(Ro) = N*/Rg (8)

where Ry is in m, N is in m~%, N* = 0.00001 and n = 3 or
4 would be typical of the distributions in the center of figure
1. Using this relationship the number distributions for the
bubble maximum size are presented in figure 9. Note the well
defined peaks which constitute the number distribution in the
spectrum of visible cavitation bubbles.

We now turn to the noise produced by individual bubbles.
First note that the subcritical nuclei which essentially behave
quasistatically yield volume histories, V (t), which, according to
the relation {2), would not produce any measurable noise. Only
supercritical nuclei, which exhibit the kind of castrophic col-
lapse characteristic of cavitation, will contribute to the noise.
This is a feature of the cavitation noise problem which is not
widely recognized. Furthermore, the critical size, and conse-
quently the supercritical nuclei population, will depend, not
only on the cavitation number, but also on the Weber number,
pU2Ry/S. ’

The magnitude of the noise predicted by the Rayleigh/
Plesset calculations will be examined while recognizing, of



course, that these calculations may be of limited applicabil-
ity during the collapse phase when the bubble typically de-
parts from a spherical shape. For reasons to be discussed in a
later paper, we choose to compare the experimental measure-
ments with the acoustic impulse from the first collapse in the
Rayleigh/Plesset calculation where this is defined as the inte-
gral over the entire positive peak in the acoustic pressure. The
non-dimensional impulse, I*, is defined as

I" =4rnI/pRyU (6)

where we choose to evaluate the noise at a radius, r, from the
bubble equal to the headform radius, Ry, since this is the lo-
cation of the hydrophone in the experiment discussed in the
last section. This impulse I'* is plotted in figure 10 against the
maximum volume of the bubbles non-dimensionalized by R.
A number of investigations (for example, Fitzpatrick and Stras-
berg [1956] and Hamilton, Thompson and Billet [1982]) have
suggested that the magnitude of the acoustic signal should be
related to the maximum size of the bubble, and this is born out
in figure 10 where the data for a range of cavitation numbers
and two Weber numbers are contained within a fairly narrow
envelope. The median line is converted to dimensional values
and is plotted in figure 6 where it is compared with the ex-
perimental data. It is quite striking that the envelope of the
maximum impulses from the experiments is within a factor of
two of the impulse predicted by the Rayleigh/Plesset equation.
This suggests that, despite the departure from spherical shape
during collapse, the Rayleigh/Plesset solutions come close to
predicting the magnitude of the noise generated by individual
bubbles and, consequently, that the noise magnitude is related
to volume and not to shape.

As widely discussed by many authors, the duration of the
impulse (as opposed to its magnitude) is much better under-
stood. Here the duration, T*, is defined as the time between
the points for which d2V/dt? = 0 prior to and after the first
collapse. This time, T* is simply related to the total collapse
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time used by many authors (e.g., Blake et al [1977], Arakeri
and Shanmuganathan [1985]). Like the collapse time, it will
be given approximately by
* __ RM 2 %
T =k—=(2) (7)
where k is some constant of order unity. It follows that the
dimensionless impulse duration T*U/Rg should be close to
being a function only of Rps /Ry and this is confirmed by the
Rayleigh /Plesset solutions, the results for which are shown in
figure 11. Note that the results lie within a narrow envelope
and that the slope of the narrow envelope is close to unity.
The frequency spectra for cavitation noise will be closely re-
lated to the period, T*, and the many higher harmonics which
result from the highly nonlinear nature of the signal within
this period. In conclusion, since both the magnitude and fre-
quency content of individual bubble noise seem to be fairly well
predicted, it would seem that one might be optimistic about
predictions for the magnitude and spectral content of a flow
containing many bubbles.

Scaling of cavitation noise with velocity and cavitation
number is a subject of continuing concern in interpreting water
tunnel model tests. The scaling with velocity, U, is particularly
poorly understood. Correlation of experimental data on the
acoustic pressure with U™ yields values of n =~ 2; for example
the n = 2.2 data of Lush [1975] for a cavitating venturi and
values between n = 1.5 and 2 from the experiments of Blake et
al [1977] and Hamilton et al [1982]. Like the analytical models
discussed in those references, the present theory would, at first
glance, yield an n = 2 dependence because the impulse and the
frequency of collapses both vary linearly with U if the nuclei
number distribution and the critical nuclei radius remain the
same for all velocities. However, as the results of Hamilton et
al [1982] graphically illustrate, these conditions are rarely met.
They found that the number of collapses per second increased
with velocity at a rate much higher than linearly. Probably



this was due to smaller nuclei becoming activated. But it is
also true that the nuclei number distribution in the working
section of a water tunnel may vary significantly with velocity
even when the nuclei number distribution in the rest of the
tunnel remains unchanged. It is therefore difficult to interpret
the existing data without more careful documentation of the
nuclei number distributions existing at each operating point.

4. BUBBLE INTERACTIONS

We now turn to a discussion of the circumstances under
which there is significant interaction between bubbles and the
nature of those interactions. In the idealized and relatively
small scale environment of a water tunnel one can produce
flows in which single, non-overlapping cavitation events occur.
However, in practice, cavitation events usually overlap and may
therefore interact. This is particularly true when the scale of
the flow is increased while the nuc¢lei number density remains
the same. Then the cavitation region contains more bubbles
-and the chances of significant interaction occur. Since most
model to prototype scaling involves such an extrapolation, it
is important to consider the possibility of interaction in the
prototype even though it may be insignificant on the model
scale.

While the dynamics of bubbly flows have been extensively
studied for many years (see, for example, van Wijngaarden
[1968, 1972]), it was not until quite recently that the possible
relevance to cavitating flows of the interactive effects implicit
in those two-phase flow models has been considered. A number
of experimental observations motivated such investigations. As
early as 1969, Erdmann, et al [1969] noticed an unexplained
sharp decrease in the level of traveling cavitation bubble noise
on hydrofoils when the cavitation became extensive, and this
same observation has subsequently been made by many inves-
tigators. During their observations of traveling bubble cavita-
tion on a Schiebe headform, Marboe, et al [1986] found that
the noise spectra tended to shift toward lower frequencies than
those expected from single bubble dynamics. They suggested
that this shift might be due to asymmetric bubble collapse,
though the lower frequencies associated with clouds of bubbles
(see below) could also provide a possible explanation. Some-
what similar results have also been presented by Arakeri and
Shanmuganathan [1985] who observed that when they seeded
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Figure 12. Schematic of a spherical cloud of bubbles.

a cavitating flow so that it contained a greater nuclei number
density, the maximum size to which those nuclei grew was de-
creased, a fact which clearly indicates interaction between the
bubbles.

Another type of collective effect occurs because many cav-
itating flows seem to be susceptible to a relatively low fre-
quency instability so that cavitation takes the form of a peri-
odic growth and collapse of a cloud or group of bubbles. In
particular, Mgrch [1980, 1981, 1982] and Hanson, Kedrinskii
and Mgrch [1982] correlated the collapse of clusters of cavita-
tion bubbles with the creation of strong shock waves. Other
examples of the formation and collapse of clouds of cavitation
bubbles are contained in Brennen, et al [1980] and Bark [1986].
Often the clouds occur in the core of a shed vortex which adds
greatly to the complexity of the vortex dynamics and of the
bubble dynamics.

One of the first attempts to analyze bubble interaction
effects was made by van Wijngaarden {1964] who considered
the case of a uniform layer of bubbles next to a solid wall.
Like virtually all of the other analyses which followed, van
Wijngaarden simultaneously solved space-averaged continuity
and momentum equations of the form

(1487)v-u= 207 0
(1+7) Vo= —p 2 ©)

where u(z,t) and p(z,t) are the fluid velocity and pressure
fields, 7(z,t) is the bubble volume, p is the liquid density and
B{z,t) is the population of bubbles per unit liquid volume.
These equations neglect relative motion between the bubbles
and the liquid which has subsequently been shown to have a
negligible effect in the acoustics of the mixture (d’Agostino and
Brennen [1989]). Furthermore, the effects of liquid compress-
ibility have been omitted (for their inclusion see d’Agostino
and Brennen [1989]) as have the viscous effects in the equa-
tion of motion (9). The fundamental bubble interaction effect
is evaluated by solving equations (8) and (9) simultaneously
with the Rayleigh/Plesset equation relating the location bub-
ble volume, 7, to the “local” pressure, p(z,t). It is normally
assumed that the void fraction, & = 87/(1 + fr) is sufficiently
small so that one can define a local pressure which, to an indi-
vidual bubble, appears to be the pressure at infinity. However,
Chahine [1982a,b] has considered higher order interactions in
which a bubble is effected by the local pressure perturbation
fields surrounding its neighbors.

This system of equations contains important nonlinear
terms which seem to preclude analytic solution. Consequently,
most of the analyses focus on solutions to the linearized forms
of these equations. Even then, solutions have only been ex-
plored for geometrically simple flows and geometrics. Perhaps
the simplest of these is the spherical cloud of bubbles of mean
radius Ag, mean void fraction oy, containing bubbles of mean
radius Ry and surrounded by pure liquid (see figure 12). As
shown by d’Agostino and Brennen [1983, 1988} (see also Omta
[1987]), this spherical cloud has its own series of natural fre-
quencies, wy,, corresponding to different natural modes, n, and
given by
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(10)
where wp is the natural frequency of an individual bubble in
an infinite liquid (Plesset and Prosperetti [1977]). The above
represents an infinite number of frequencies, the lowest of which
is given by

(%) w, =wp I

(11)

4 Agao B %
3n2

w1 = wp [1+— R(Z)

All the natural frequencies are contained within the interval
w1 < w, < wpg with increasingly close packing near wp as n
becomes large. Furthermore, it is clear that the size of this
interval is determined by the parameter AZaqo/R3Z. For large
values of this parameter, the cloud natural frequencies can be
much smaller than wp. Thus AZao/ R?2 determines the degree
of significant bubble interaction. Note that even when a is very

small, there may still be significant interactions if the cloud is
much larger than the individual bubbles.

The response of a spherical cloud to forced oscillations
was also examined. At frequencies 0 < w < wp the response
consists of the expected resonances at each of the natural fre-
quencies and with amplitudes of oscillation which do not vary
greatly with radial location. However, when the cloud is sub-
jected to frequencies above wg, quite a different kind of re-
sponse is encountered. This consists of significant amplitudes
occurring only in a surface layer of the cloud; the interior is
essentially shielded by this surface layer. This shielding effect
may have important consequences for acoustics of cavitating
hydrofoils or propellers. Characteristic bubble dynamic damp-
ing was also included in the analysis (d’Agostino and Brennen
[1989]), and a typical Tesult is shown in figure 13 where the re-
sponse in terms of amplitude of bubble radius oscillation at the
surface of the cloud is presented with and without damping.
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Figure 13. A typical non-dimensional amplitude of bubble os-
cillation at the surface of a spherical cloud showing the dif-
ference between the response in the absence of damping (solid
line) and the response when typical damping is included (dot-
dash line) (see d’Agostino and Brennen [1989]).
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Figure 14. Typical damped responses of a spherical cloud of
bubbles for various values of 3ag(1 — ) A2/RE of 2 /4(solid
line), 72/8 (dot-dash line) and x?/2 (dotted line) (from
d’Agostino and Brennen [1989)).

1t is important to note that the higher frequencies, Inciuding
the bubble natural frequency, are much more attenuated than
the first cloud natural frequency. Consequently, if the param-
eter agAZ/R? is greater than unity, one should expect to see
a dominant response, not at the bubble natural frequency, but
at the cloud natural frequency. Three such damped responses
for different (1 — o) A2/ RZ are shown in figure 14.

In this first example there was clearly no steady compo-
nent of the flow, and therefore we sought another simple ex-
ample of a flow in which the interactions between cavitating
bubbles could be examined. A suitable characteristic flow in
which the bubble size linearization is still tenable is the planar
flow over a wavy surface of small amplitude (see figure 15). The
solution to this problem was presented in d’Agostino, Brennen
and Acosta [1988]. It transpires that the crucial parameter is
similar to that for the spherical cloud; in this case we define a
special Mach number, M as

M2 = 47rﬂUgRo

=8 __. 12
T (12)

where Uy is the free stream velocity and k is the wave number
of the wavy wall. This corresponds to a Mach number based on

" Ug and the sonic speed of the bubbly mixture at the frequency
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kUy: Consider first the case of a fixed wall geometry (with a
single wavenumber, k) and vary the free stream velocity, Up.
1t then transpires that there are three separate regimes of flow
rather than the two which occur in single phase flow (subsonic

and supersonic). At the lowest speeds (kUs < wp, M <
1) the flow is “subsonic,” the equations are elliptic and the
behavior is similar to that for single-phase subsonic gas flow. In
an intermediate range of speeds (kU < wp, M > 1), the flow
is “supersonic,” the equations are hyperbolic and the flow is
similar to that for single-phase, supersonic gas flow. However,
in bubbly cavitation flow there is an additional, higher speed
regime of flow which we have termed “super-resonant” (kUp >
wp, M? < 0) which has no single phase analogy and in which
the equations again become elliptic.
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Figure 15. Schematic of a bubbly liquid flow over a wave-
shaped surface.

The same fundamental solution was also used (d’Agostino,
Brennen and Acosta [1988]) to analyze the bubbly cavitation
flow at a speed, U, over a Gaussian-shaped wall projection
or bump containing a spectrum of wave numbers, k. The re-
sults can be written in terms of integrals over the wave num-
ber. In the absence of bubble dynamic damping these integrals
are necessarily singular at the two critical points, M = 1 and
kU = wp, and hence the inclusion of appropriate damping
is important. Some typical bubble amplitude responses to a
Gaussian-shaped bump of typical width, a, are shown in figure
16 as a function of a coordinate z in the mean direction of
flow. The three cases presented correspond to three different
reduced velocities, Uy /awp, but are for a given wpa /car where
¢, is the mean sonic speed for the bubbly mixture. Note that
for the low value of the reduced speed the response is essen-
tially quasistatic and symmetric with respect to z = 0, the line
of symmetry of the bump. However, as Uy is increased the re-
sponse of the bubbles is delayed and hence the largest bubble
radii occur some distance beyone the maximum projection.

The pressure in the flow is perturbed in a manner very
similar to the bubble volume. It is of interest to examine these
pressure perturbations since they yield clues as to how the bub-
bles and the liquid pressure may effect one another in other
cavitating flows. The pressure perturbations at the solid sur-
face for the typical cases used for figure 16, are presented in
figure 17. For the smallest reduced velocity,the pressure distri-
bution is much as one would expect for incompresible potential
flow. Note, however, that since the bubble dynamics become
more important as the reduced velocity increases the pressure
becomes much less symmetric. The bubble growth tends to
relieve or increase the pressure in the cavitation zone down-
stream of the maximum projection. Finally we note that these
solutions exhibit the phenomenon that increasing the number
of nuclei decreases the amplitude of bubble growth, an effect
which, it has been previously noted, was observed experimen-
tally by Arakeri and Shanmuganathan [1985].

The preceding discussion has concerned linear solutions
to the interaction problem. On the other hand, cavitation
noise is generated during a highly nonlinear process. The role
played by interactions in the dynamics of the collapse process
are much harder to evaluate analytically, though a number of
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Figure 16. Bubble amplitude response for a bubbly flow over
a Gaussian-shaped bump of typical width a centered at £ =0
as a function of position. Results are shown for three different
reduced velocities given by (Upr/awg)? = 0.5(A),1(0) and
2(0).

efforts have been made. Chahine [1982a,b] has constructed a
model for a cloud of cavitating bubbles collapsing near a wall
and concludes that the collective effect will be to increase the
violence of the collapse. Omta [1987] has extended the lin-
ear analysis for a spherical cloud to include some nonlinear
effects. At the other extreme Mgrch [1980,1981] and Hanson
et al [1982] speculate that the nonlinear effects result in the
formation of a shock wave, the progress of which constitutes
the collapse of a cloud of bubbles. It is clear that more exper-
imental and analytical work is necessary to clarify our under-
standing of these nonlinear interactions.

5. CONCLUSIONS

In this paper we have tried to highlight aspects of our cur-

10 T T T

[p(x, 0)—pal/ Py

x/a

Figure 17. The perturbation in the pressure at the surface for
the same solutions as presented in figure 16.



rent knowledge of cavitation and cavitation noise which would
benefit from further research.

First, it is clear that cavitation experiments need to be
fully documented through monitoring of the nuclei number dis-
tribution functions. It is also important to recognize that the
relevant distribution is that in the working section and that
this distribution may not only vary with time but with the
tunnel operating point. We argue that it is important to in-
tegrate the measured distributions into analytical methods for
the prediction of cavitation such as the Rayleigh/Plesset solu-
tions presented here.

Secondly, we have tried to illustrate by example that much
remains to be learned about how individual traveling cavita-
tion bubbles are affected by viscous flow phenomena such as
boundary layer separation and transition. In the experimen-
tal observations described, the bubble behaves quite differently
from bubbles in quiescent liquid. It seems self-evident that a
deeper understanding of cavitation damage and noise in flows
around bodies will depend on better documentation of the in
situ bubble dynamics.

We presented several numerical solutions of the Rayleigh/
Plesset equation to demonstrate that the predicted acoustic im-~
pulse generated during collapse comes to within about a factor
of two of the observed impulses measured from experimentally
from individual bubbles. Since the durations of the impulse
also agree quite well, one may be optimistic that both the mag-
nitude and spectra of cavitation noise may be predicted in the
near future provided the nuclei number distribution problems
are thoroughly confronted.

Finally, we have presented a summary of the bubble in-
teraction problems and phenomena. The collective dynamics
within a cloud of bubbles can be quite different from that of its
individual constituent bubbles if a parameter like €A?/R? is of
order one or larger, where « is the void fraction, A is the typi-
cal cloud dimension and R the individual bubble radius. Most
of the analyses to date are linearized solutions of the problems.
In order to properly identify those circumstances under which
bubble interactions are important, it is necessary to continue
the exploration of these phenomena both experimentally and
theoretically. Often, for example, cavitating flows consist, not
of a cloud of bubbles, but of a thin layer of bubbles next to
a surface, yet there exists no analytical treatment of such a
distribution.
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