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Leading-Edge Flutter of Supercavitating Hydrofoils

C. Brennen,’ K. T. Oey, ' and C. D. Babcock'

This paper presents the results of experiments and analysis of the phenomenon of leading-edge flutter
which has been observed to occur for supercavitating hydrofoils. The experiments confirmed the exis-
tence of such a single-degree-of-freedom flutter involving chordwise bending and indicated that for long,
natural (or vapor-filled) cavities the reduced flutter speed, Ur/wgec, was in the range 0.15 to 0.23. Secon-
dary effects observed were the variation with the angle of attack (a minimum flutter speed occurred at 10
deg) and with'a foil mass ratio. Shorter cavities typically yielded lower fiutter speeds due to a complex in-
teraction between the bubble collapse process occurring in the cavity closure region and the unsteady hy-
drodynamic load on the foil. Finally, a relatively simple theoretical analysis for supercavitating hydrofoils
with elastic axes aft of midchord is presented. This linear analysis yields reduced flutter velocities some-

what lower than those observed.

Introduction

HYDROFOILS utilized for hydrofoil boats, propeller blades, and
pump or turbine blades are, of course, subject to the same kinds
of fluid/structure interaction instabilities as airfoils [1].2 However,
increasing speeds led to the need to redesign foil shapes for efficient
operation with large attached vapor- or gas-filled cavities; such
redesigns involve relatively thin wedge-shaped foils with sharp
and thin leading edges [2]. [t has become apparent that such foils
operating with fully developed cavities exhibit a hydroelastic in-
stability which involves chordwise bending vibration of the thin
leading edge. This phenomenon, which is termed “leading-edge
flutter,” is somewhat similar though not identical to airfoil stall
flutter or leading-edge flap flutter in subsonic aeroelasticity. One
of the earliest reported observations of leading-edge flutter was
made in 1957 by Waid and Lindberg [3]. During performance
tests of certain supercavitating foils in a water tunnel, they ob-
served that at a certain critical speed the forward portion of the
. foil including the leading edge began to vibrate violently in a
chordwise bending mode while the thick trailing-edge part of the
foil remained relatively stationary (see Fig. 1). One result of this
vibration was the creation of a train of waves on the cavity surface
originating at the leading edge. Similar observations were made
by Spangler [4]. There have also been reports of similar phe-
nomena and failures in supercavitating propellers and inducer
pumps.

These sketchy and early observations suggest (correctly as will
be seen) that leading-edge flutter requires only a single elastic
mode, namely, that of chordwise bending of the foil. This con-
trasts with conventional wing flutter, which involves two modes
(usually spanwise bending and torsion, or, more fundamentally,
pitching and heaving) interacting in such a way that the foil ab-
sorbs energy from the flow. Kaplan and Henry [5] and Song [6]
have examined the conventional flutter potential for cavitating
(or separated) flow theoretically and Song and Almo [7], Kaplan
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Fig. 1 Above: typical supercavitating hydrofoil shape with the lead-
ing-edge flutter mode and the cavity configuration sketched. Below:
configuration of the models used in the experiments

and Lehman [8), and others have performed conventional flutter
experiments. Further discussion on these will be delayed until
the final section.

One other phenomenon demands mention. It is well-known
that hydrofoils with cavities extending from the leading edge to .
a length of between about Y% and 1% chords (that is, closure in the
neighborhood of the trailing edge) are unstable at almost any
speed; the lift exhibits oscillations as the cavity oscillates between
closure on the suction surface and a point downstream of the
trailing edge. This will be referred to as partial cavitation insta-
bility; it is a purely fluid mechanical instability which can occur
with a'completely rigid foil. When the foil is flexible, however,
the partial cavitation instability can lock into the natural structural
frequency. In the context of the present study it will be seen that
there is an overlap between leading-edge flutter-and partial cav-
itation instability when the cavity length is short.

The present investigation was designed to concentrate primarily
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Table 1

Data on 15.2-cm-span foils

First-Mode Frequency,

Flexible/ Z : Flutter Flutter Speeds for Long Cavities
Total Mass In In “Still” Frequency, e
Foil Thickness, Chord, Ratio, Air, Water, Hz, Ur, m/s Ur/wrc
No. t mm alc  wp* = pst/pa  wal2w ww/2w wr/2w a=T7°" a=10° a=13° a=7° a=10° a=13°
H31 0.787 0.583 0.024 71.6 ¢
(67.2)@ (8.9)
Heé8 1.73 0.583 0.052 159.3 51.2 44 <11 <0.26
(147.4)° (25.6)°
H89 2.26 0.583 0.069 195.7 71.2 60 11.6 8.5 9.8 0.20 0.15 0.17
(192.9)¢ (42.5)%
Hi125 3.17 0.583 0.096 294.0 95.8 83 18.3 15.9 >18.3 0.23 0.20 >0.23
(270.4)¢ (70.8)®
H50A 1.27 0.417 0.054 192.3 56.0 53 <8.9 <0.175
(212.4)° (35.5)°
H125B 3.17 0.706 0.080 200.0 80.1 60 11.5(8°) 10.9 12.3 0.20 (8°) 0.19 0.215
(185.5)¢ (48.0)%

@ Theoretical values using Barton’s [14] method.

b Theoretical values using Lindholm et al’s [15] method.

¢ Diverged and destroyed before a cavity could be formed.
NoTE: All foils have a chord of 15.2 cm.

on leading-edge flutter for long fully developed cavities and to
minimize the complexities which might occur with the appearance
of hybrid forms of instability such as that discussed in the pre-
ceding. The experimental observations will be described first; this
will be followed by some theoretical considerations which help to
explain the basic phenomenon.

Excitation systems and vibration characteristics of
model foils

The foils tested were intended to model the gross structural
features of supercavitating foils and yet be simple enough to be
manufactured in significant number. As shown in Fig. 1, they
consisted of thin flat aluminum plates (6061 T-6 aluminum) of
various thicknesses; at the trailing edge they were bolted to a much

“thicker and stiffer mounting bar which essentially fixed the rear
portion and trailing edge of the foils. All foils had a chord of 15.2
cm and their leading edges were machined with a 30-deg wedge
to produce a clean, sharp cavity separation at this point. The
length of the cantilevered flexible portion of the foil will be de-
noted by a and the total chord by ¢. The foils were each fitted
with three strain gages bonded to the suction side of the flexible
portion in order to monitor chordwise bending; the three gages
were placed at midspan and near the ends of the span. One ad-

ditional gage on the mounting bar registered the fluctuating lift
(actually the force normal to the mounting bar). Dynamic cali-
brations were performed in air, using acoustic excitation in order
to relate the output of the foil-mounted gages to the leading-edge
displacement. The deflection mode shape under these conditions
is close to that of the hydrodynamic mode under flowing condi-
tions; any differences are neglected in Figs. 6 and 7. The
mounting bar gage was calibrated statically.

Experiments were carried out in both the Free Surface Water
Tunnel (FSWT) and the High Speed Water Tunnel (HSWT) in
the Hydrodynamics Laboratory at the California Institute of
Technology [9, 10]. The foils tested in these facilities had spans
of 35.6 and 15.2 cm, respectively, and details are given in Tables
1land 2. Most of the data presented here are taken from the more
extensive series of tests conducted with natural or vapor-filled
cavities in the HSWT, though some reference will be made to the
tests with ventilated or air-filled cavities performed in the FSWT.
Further detailed information can be found in Oey [11] and
Brennen et al {12].

Most hydrofoils, propellers, or pump blades are supported in
such a way that their modes of vibration are quite complicated;
nodal lines do not lie simply in the chordwise or spanwise direction.
Examples of mode shapes for a typical supercavitating hydrofoil
are presented by Brennen et al [12] and for pump blades by Ost-

Nomenclature

a = flexible chord
¢ = chord
Cp = drag coefficient
Cu = coefficient of moment, M /YpU2c?
E = modulus of elasticity
I = moment of inertia
Iy = dimensionless moment of inertia, I =
IOpstc2
j = imaginary unit
k = reduced frequency, wc/U
= cavity length
K = spring constant
M = hydrodynamic moment per unit span
P = freestream tunnel pressure
pe = cavity pressure
Q = Q-factor, wy/Aw
R = equivalent cylindrical radius of the
pinched-off cavity
s = foil span

It
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t = flexible foil thickness
T = time
U = tunnel velocity
Up = tunnel velocity for foil divergence
y = leading-edge displacement
o = angle of attack
B = distance of hinge from leading edge/c
6 = leading-edge displacement amplitude
A = wavelength of waves on leading-edge
cavity surface
4 = mass ratio, pst/pc
u* = modified mass ratio, pst/pa
v = kinematic viscosity of liquid
0 = liquid density
ps = foil material density
¢ = cavitation number, (p.. — p.)/YepU?
w = radian frequency
wyv = first-mode natural frequency of foil in
vacuo

w, = first-mode natural frequency of foil in
air A

ww = first-mode natural frequency in “still”
water

wy = first-mode natural frequence with
flow

Aw = half power bandwidth

Modifiers

subscript 0 refers to mean quantities

subscript R refers to real part

subscript I refers to imaginary part

subscript F refers to quantities at critical
flutter conditions

tilde (7) over character refers to complex
fluctuating quantity

dot (") over character denotes time deriv-
ative
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Table 2 Data on 35.6-cm-span foils

Second-Mode

First-Mode Frequency, Frequency,
Hz Hz .
Mass In In “Still” In In “Still” Flutter Flutter
Foil Thickness, Ratio Air Water Air Water Divergence Frequency, Speed,
No. t, mm wt = pst/pa  wa/27 ww/2n wa/27 ww/27 Speed Hz, wp/27 Ur Ur/wpe
Fi6 0.406 0.012 37.0 6.3 1.2 & g g
(35)e (2.2)° (42)¢ (4.3)° (1.16)c (1.62)¢
F31 0.787 0.024 69.0 14.0 19.2 2.1 12 <1.2f <0.106
{67 (5.9) 82)° (11.5)® (3.2)c (4.)¢
Fel 1.55 0.047 37.5 50.5 € 38 ~4 0.109
(132)¢ (16.1)% (160)“ (31)% (8.9)c (12.0)¢
F89 2.26 0.069 230.4 62.5 267 89.0 e 65 ~7 0.113
(193)¢ (28.2)% (234)¢ (55)0 (15.6)¢ (21.3)¢

¢ Theoretical values using Barton’s [14] method.

b Theoretical values using Lindholm et al’s [15] method.
¢ Nonseparated flow theoretical value [12].

d Cavitating or wake flow theoretical value [12].

¢ Velocity not attainable in present experiments.

f Unbounded flutter occurred at the lowest speed at which a cavity could be formed.

£ Noncavitating divergence occurred before a cavity could be formed.
NoOTE: All foils have an a/c ratio of 0.583 with a chord. (¢) = 15.2 cm.

erwalder and Sonsino [13]. However, the present foils were de-
liberately intended to have fairly simple modes of vibration in
order to facilitate comparison with theory.

The first natural frequencies of the model foils in air were
measured by tuned excitation using an acoustical loudspeaker;
these are listed in Tables 1 and 2. The first mode involved pure
chordwise bending in every case; the second mode was similar
except that the phase of the bending varied over the span with the
ends out of phase by 180 deg and a node at midspan. In Tables
1 and 2 comparison is made with theoretical values for the first
natural frequency in a vacuum obtained using the method de-
scribed by Barton [14]. The agreement is fairly good and the small
differences are probably due to aerodynamic damping and added
mass.

A different excitation system was developed for tests under
water. This was used for bench testing in tanks of “still” water
and the experiments in the FSWT. A music wire attached to the
leading edge (usually near midspan) was connected to an elec-
tromagnetic shaker. A weak spring and a load cell were interposed
in the wire. The spring allowed decoupling of the motion of the
shaker and the foil. The purpose of the load cell was to monitor
the force applied to the foil. Since frequency response spectra are
most meaningful when the amplitude of the applied force is con-
stant, a feedback system was installed which automatically adjusted
the motion of the shaker to ensure a constant preset level of force
as monitored by the load cell. Using this system, frequency re-
sponse spectra of the foil displacement as monitored by the foil
strain gages were obtained using relatively low sweep rates. The
bandwidth, Aw, about the resonant or natural frequency wy in-
dicated the amount of damping for a particular foil under the
prevailing fluid conditions.

In the bench tests in air this excitation system yielded natural
frequencies identical to those obtained by acoustical excitation.
The natural frequencies measured in “still” water are listed in
Tables 1 and 2. They are compared with theoretical values ob-
tained using the unmodified strip theory of Lindholm et al [15],
which incorporates estimates of the added mass of the water. The
large discrepancies between theory and experiment are similar
to the discrepancies recognized by Lindholm et al in comparison
with their experiments; there would appear to be considerable
difficulty involved in the accurate prediction of the “still” water
natural frequencies for foils with span/chord ratios of one or
greater. Some of the difficulty may be due to lack of validity of
the strip theory, though viscous and eddy-shedding characteristics
of the real flow may also play a role. The theoretical values are

substantially lower than the actual, indicating that the amount of
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fluid contributing to the added mass is much less than that antic-
ipated by the strip theory. Later it will be seen that the natural
frequencies (and flutter frequencies) of foil vibration in a cavitating
flow are quite close to those in “still” water.

Some measurements of the damping of the 35.6-cm-span foils
were also made in “still” water. The principal conclusion of this
investigation as reported in Brennen et al [12] was that the damping
was nonlinear and dependent on the oscillatory Reynolds number
associated with the vibration. These measurements are only of
incidental interest since the damping is quite dependent on viscous
and eddy-shedding effects at the leading edge and these effects
would probably be significantly different in the presence of an
oncoming stream.

High-speed water tunnel experiments with natural
cavities

The 15.2-cm-span foils were tested with natural vapor-filled
cavities in the HSWT. The mounting system is shown in Fig. 2.
The independent velocity and pressure regulation in this tunnel
allowed observations of flutter onset for a wide range of foil
thicknesses (see Table 1) over a wide range of speeds (4.5 to 18.5
m/s), angles of attack (7 to 13 deg), and cavitation numbers (from
short to long cavities).

When the tunnel velocity was raised for a given cavity length,
the onset of leading-edge flutter in these HSW'T tests was sudden,
dramatic, and repeatable. It not only could be recognized by the
sudden appearance of a sinusoidal output from the strain gages but
was also visible and audible. Furthermore, the appearance of the
cavity would change as illustrated by Fig. 3 and discussed later.

The flutter speed for a given foil at a particular angle of attack
tended to a maximum asymptotic value for long cavities (shown
later). These long cavity flutter speeds ranged from 8.5 to 19.8
m/s for Foils H68, H89, H125, H50A, and H125B (Foil H31 di-
verged and was destroyed before a cavity could be formed).
However, when the flutter speeds, Up, were nondimensionalized
using the flutter frequency, w (see Table 1), the resulting values
all lay between 0.15 and 0.23 as illustrated in Fig. 4. The arrows
in this figure indicate that the flutter speeds for H68 and H50A
at @ = 7 deg had not reached a clear limit for the longest cavity
conditions examined; also, the flutter speed for H125 at @ = 13 deg
seemed to be a little above the maximum velocity of the tunnel

.under these conditions.

An angle of attack of about 10 deg consistently manifests the
lowest flutter speed (see Fig. 4). The reason for this is not clear.
It should also be recorded that a few spot-checks at negative angles
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Fig. 2 Mounting system for the 0.152-m-span foils in the High Speed
Water Tunnel

Fig. 3 Photographs of Foi!l H89 with cavity under quiescent {(above) and
fluttering (below) conditions [ = 7 deg (above) and 10 deg (below); ve-
locity = 6.6 m/s (above) and 7.4 m/s (below)]
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of angle of attack. The theoretical value of 0.143 is indicated on the
vertical axis

of attack with the mounting system inverted indicated flutter
speeds and flow patterns identical to those at a positive angle of
attack. This eliminated the possibility of any Froude number or
buoyancy effect in the phenomenon.

The values of Ur/wrc for different foils with long cavities seem
to be displaced up or down in Fig. 4 by the same amount at all
angles of attack. Leaving aside for the moment the dependence
on cavitation number (or cavity length to chord ratio), one would
expect parametrically that the reduced flutter speeds for these
geometrically similar foils should depend only on ¢, the mass ratio
i = pst/ pe, and the flexible-chord/total-chord ratio, a/c. Col-
lation of the data in Fig. 4 with the tabulated values of a/¢ and a
modified mass ratio, u* = pst/ pa, included in that figure suggests
a fairly consistent increase in the reduced flutter speed with in-
creasing u* and no consistent separate trend with a/c.

The effect of cavity length (or cavitation number) on the flutter
speed was similar for all foils and is typified by the results presented
in Fig. 5. For angles of attack of 10 deg and above, there was only
a very slight decrease in the flutter speed as the cavity length was
decreased. At lengths less than about 2 chords the amplitude
would increase markedly as the leading-edge flutter phenomenon
began to merge with the partial cavitation instability (see Figs. 6
and 7). The danger of foil and tunnel damage limited the ex-
periments that could be performed in this short cavity regime.

Cavity length had a more marked effect on the flutter speed at
the smaller angles of attack (7 and 8 deg) as indicated in Fig. 5. In
addition to the decrease in flutter speed with decreasing length,
a rather interesting “resonant length” phenomenon occurred. The
experiments were often carried out by setting the tunnel speed at
a value just a little less than the long cavity flutter speed and sub-
sequently decreasing the cavity length by increasing the tunnel
pressure. At the low angles of attack, flutter would occur at some
cavity length but subsequently disappear as the length was de-
creased, only to appear again at another resonant length. These
“resonant lengths” were often integer multiples of the chord
length. This accounts for the hatched area in Fig. 5 where all the
onset points are plotted. This effect probably represents one in-
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fluence on flutter of the cavity pinch-off and collapse phenomenon
described later.

Finally, it is important to record that the foils were also tested
in wake flow at tunnel pressures high enough to suppress all cav-
itation. No sign of flutter could be detected in any of these tests
even when the tunnel velocity was much larger than the cavitating
flutter speed (see reference [12] for incidental data on the wake
pressure fluctuations). It seemed that no dynamic fluid/structure
interaction would occur prior to reaching the divergence speed.

Oscillating load displacement and cavity pressure
during flutter

The purpose of this section is to record a number of detailed
measurements made during the flutter tests in HSWT. Both the
leading-edge displacement (from the foil strain gages) and the
oscillating load (from the mounting bar strain gage) were recorded
during flutter and spectral analysis and cross correlation subse-
quently performed on a digital signal processor.

Both the displacement and the oscillating load varied with angle
of attack and cavity length for a given foil. At the larger angles
of attack (10 deg) and greater) the flutter speed was constant with
cavity length; hence typical displacement and load amplitudes are
plotted against length in Fig, 6. This indicates decreasing am-
plitudes of flutter with increasing length, a fact referred to pre-
viously. On the other hand, at the lower angles of attack (7, 8 deg)
the flutter speed changes significantly with cavity length. In this
case the variation with flutter speed rather than cavity length is
most apparent, and not unexpectedly both amplitudes appear to
increase with the square of the velocity as typified by Fig. 7.
Furthermore, cross-correlation confirmed that the load (positive
upward) was in phase with the foil displacement (positive upward)
during flutter.

Measurements were also made of the oscillations in the cavity
pressure during flutter; a piezoelectric pressure transducer was
mounted within the cavity for this purpose. These measurements
indicated that the magnitude of the oscillating cavity pressure was
very small (about 400 N-m?2) and its contribution to the oscillating
load on the foil was virtually negligible. Though the traces were
rather noisy, the basic flutter frequency could be discerned in the
signal from the transducer [12]. The magnitudes at the funda-
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mental flutter frequency were obtained by spectral analysis, and
all values are plotted together in Fig. 8. They are plotted against
cavity length because there appears to be a rough trend for larger
oscillating cavity pressures with shorter cavities. No other trends
were evident; for example, the cavity pressure oscillations did not
increase with foil displacement; indeed the reverse seemed to be
the case. Cross-correlation of the cavity pressure oscillation and
the displacement revealed no consistent relationship, though the
cavity pressure generally lagged behind the displacement. All
of this suggests that the cavity pressure oscillations play little or no
role in the dynamics of flutter and that the cavity pressure remains
essentially constant. This is consistent with the fact that the
thermodynamic time constant for vaporization is extremely short
in water at normal temperatures.

Observations of flow in region of cavity closure

This section is devoted to a description of the interesting events
which occurred at cavity closure during flutter. Earlier we re-
marked on the change in the appearance of cavity closure and
cavity wake when flutter occurred; this is illustrated in Fig,. 8.
Upon closer inspection using high-speed movies taken at 600
frames per second, the following picture emerged. The lead-
ing-edge movement during flutter produced a train of waves on
the upper cavity surface as sketched in the upper part of Fig. 9.
The amplitude of these waves increases as they are convected
downstream along the cavity surface. As seen from the cavity
interior, the crests become quite sharp and a portion of the cavity
is pinched off when a crest reaches the cavity closure region as
indicated in Fig. 9. There are some smaller-amplitude waves on
the lower surface which play a much lesser role. A detailed
frame-by-frame tracing of the pinch-off process is included in Fig.
9. The resulting “separated bubble” had the appearance of a
cloud of small bubbles; the interior may however have contained
larger voids. Tt also had the appearance of a pair of cavitated
vortices with the upper and lower surfaces rotating in opposite
directions. Consequently, the periodic pinching-off also consti-
tuted the elements of a Karman vortex street with pairs of vortices
imbedded in each separated bubble; clearly this feature is associ-
ated with the oscillating lift on the foil. It should be noted that
Karman vortex streets in the wake of steady cavitating flows have
been observed previously [16].

The situation was further complicated by the fact that shortly
after pinch-off, these clouds of bubbles collapsed; subsequent re-
bounds and collapses followed in synchronization with the flutter
frequency as the whole structure was convected downstream. A
typical volume history for this collapse and rebound process is
shown in Fig. 10 for Foil H89 fluttering at a tunnel speed of about
7.9 m/s with a frequency of 60 Hz; the radius of the volumetrically
equivalent cylinder for a particular separated bubble is plotted
against time. (It should be noted that the significant three-di-
mensionality could be discerned in the structure after the first
rebound.) One should visualize a train of these structures, each
separated in time by a flutter period. The time between pinch-off
and first collapse varied considerably with different foils and flow
configurations and ranged from almost zero up to about 2 flutter
periods.

The question arose as to whether the pressure perturbations in
the liquid which would be generated by the periodic collapse of
the pinched-off bubble clouds could cause sufficient oscillatory
loading on the pressure surface of the foil to generate a closed-loop
resonant system. One estimate of the magnitude of this radiated
pressure perturbation would be 20R(R)2/r where R and R are the
radius of the bubble and its time derivative, respectively, and r is
the distance to the sensing point (this is based somewhat unreal-
istically on spherical bubble collapse). Taking typical values of
R and R from Fig. 10 and the length of the cavity for r, such cal-
culations result in values of the oscillating pressure at the foil which
are of the same order of magnitude as those required to cause the
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(a) Sketch of the form of the waves on the cavity surfaces during flutter. (b)

Detailed traces of the pinch-off process in the region of cavity closure. Profiles at

the end of the cavity and the pinched-off bubble are shown at times (in seconds) as

foliows where the origin, T= 0, is arbitrary: 7T=0—; T=0.005~--; T=0.015

-=--; T=0025......... ; T=0.055 — - « — (for Foil H89 at &« = 10 degand a

velocity of 7.9 m/s). The pinched-off bubble seems to have opposite directions of
rotation at the top and bottom as indicated by arrows

observed oscillating lift (about 3000 N-m?). To examine this
further, a piezoelectric pressure transducer was mounted in the
tunnel wall to monitor the fluctuating pressure in the water close
to the closure region. A typical trace and power spectrum for such
measurements is shown in Fig. 11. The harmonic content is
consistent with the violent and nonlinear process of cavity collapse.
The magnitude of the fundamental component decayed with
distance from the closure region as indicated in Fig. 12, and its
magnitude was indeed of the order of 3000 N-m?.

All of this is consistent with the closed-loop resonance mentioned
in the preceding.” Furthermore, cross-correlations revealed that
the pressure perturbations and the foil displacement could either
be in-phase with one another or 180 deg out of phase. Any lightly
damped system would yield similar results since the phase shift
through resonance is very abrupt and one is unlikely to detect the
theoretical 90-deg phase shift. Furthermore, it could explain why

the flutter speed decreased with decreasing cavity length since the
pressure perturbations encountered by the foil are greater for
shorter cavities.

Despite all this, the foregoing does not constitute proof that the
postulated mechanism is the primary reason for flutter. It will
be shown in the next section that leading-edge flutter for cavitating
hydrofoils can be explained without any reference to these closure
region events. Nevertheless, there seems little doubt that the
phenomenon is in some way affected by the closure phenomena.
The effect of cavity length and the resonant-length phenomenon
are probably outward manifestations of this influence.

Some supplementary data from the FSWT tests

The preliminary experiments in the FSWT were performed
prior to those described in the preceding. The detailed results

TYPICAL
R=2.5 m/sec

1 1

E
S 4
z T
o
o 3
o
=
- TYPICAL R=5.5 m/sec
o
+—
wl 1k
s
2
5
> _ 1
o) 001 002
TIME after

0.03 0.04 Q.05

PINCH- OFF, sec

Fig. 10 Volume history of the pinched-off bubble versus time from pinch-off, showing
the first collapse and rebound (Foil H89, «« = 10 deg, Ur =~ 7.9 m/s, flutter frequency
= 60 Hz)
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Typical trace of the pressure in the flow near cavity closure with its power

spectrum (Foil H89, o = 7 deg, velocity = 8 m/s, at a point 30 cm downstream of cavity
closure)

were not included here for the sake of brevity; they are available
in reference {12]. However, several features do deserve brief
mention insofar as they contrast or supplement the results from
the HSWT tests.

The FSWT tests were conducted with ventilated or air-filled
cavities rather than the natural or vapor-filled cavities of the
HSWT tests. The air was either supplied artificially to the suction
surface of the foils or entered the cavity naturally by ventilation
to atmosphere via the wakes of the surface-piercing support struts.
Furthermore, the foils listed in Table 2 had a larger, 35.6-cm span
and provision was made for external excitation by means of the
system described earlier.

The thinnest foil (F16) diverged at a speed lower than that at
which a cavity could be generated and F31 exhibited unbounded
flutter as soon as a cavity could be formed. The two thicker foils
(F61 and F89) both exhibited flutter with ventilated cavities.
Perhaps due to the presence of the air in the cavity, the onset was
nowhere near as distinct as the onset of flutter in the HSWT tests;
indeed the tunnel velocity could be raised significantly higher than
the flutter velocity with only a gradual increase in leading-edge
amplitude. Furthermore, the reduced flutter velocities for long
cavities, though less clearly defined, were significantly lower (about
0.11; see Table 2) than in the HSWT tests. Asin the HSWT tests,
a minimum flutter speed was observed to occur at an angle of at-
tack of about 10 deg. Steady-state performance measurements
revealed no significant change in the steady-state life slope until
angles of attack of nearly 20 deg.

Questions concerning the effect of the shape or finish of the
leading edges of the foils were also investigated by placing two
different shapes of rounded plastic cover over the leading edge of
one foil. No significant differences in the flutter behavior were
observed with either type of cover despite the fact the separation
point was observed to oscillate back and forth on the rounded
cover.

Forced-excitation experiments were performed to obtain Q-
factors for the foils at velocities up to and beyond the flutter onset
speed. The results indicated the expected loss of damping,
Furthermore, the resonant frequencies for the foils with ventilated
cavities varied only slightly as the tunnel velocity was increased
and virtually coincided with the observed flutter frequency (see
Fig. 13). These frequencies were surprisingly little different from
the natural frequencies in “still” water (see Table 2), considering
the fact that one might envisage a substantial decrease in the added
mass in a flow with a cavity. This feature was consistent with the
HSWT results.

Theoretical analysis

The experimental results indicate that the reduced flutter ve-
locity, Up/ wrc, though roughly constant, depends to some extent
on the cavitation number (or cavity length), angle of attack, and
the mass ratio parameter. In this section we shall explore a simple
model for this phenomenon and attempt to collate the observations
with previous investigations of conventional flutter for cavitating
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hydrofoils. It can be anticipated, however, that no single model
of such a complicated unsteady flow will be capable of explaining
all the observed experimental observations.

Perhaps the simplest model is that of a rigid foil hinged at some
point at or near the training edge; the effective spring constant of
the spring which restrains rotational motion about this hinge will
be denoted by K. This hypothetical foil (chord, ¢) can be thought
of as performing oscillatory motion identical to that of the zero lift
line of the actual foil undergoing leading-edge flutter. The hinge
position will be denoted by 8 where ¢ is its distance from the
leading edge.

Such a model is of course similar to that employed for conven-
tional wing flutter analyses except that the possibility of additional
heave motion of the hinge point is excluded. The instantaneous
angle of attack, e, is subdivided into a mean angle, g, and a small
time-dependent component, according to

o = qg + Re {aei«T}

1)

where & represents the magnitude of the oscillations, w = wg +
jwr is a complex frequency, and T is time. It is convenient to
establish the origin of T such that & is purely real. The hydro-
dynamic moment about the hinge point (positive in the leading-
edge-up direction) is similarly represented as

M = Mg + Re {MeicT} (2)

where M = My + jM] is necessarily complex in general. Then
if the effective moment of inertia of the foil is I, the equation of
the perturbations becomes

&K —w2)=M (8)

If the coefficient of moment about the hinge point is defined in
the conventional manner as Cyy = M /% pU?c2, and M/ & is re-
placed by dM /d &, the real and imaginary parts of equation (3)
yield

Lpuzer SR = ¢ 1 - wf) 4)
l/0U2 2 dcﬁu = —2lwRrwy (5)
2 dé

where the quantity Cay = Cyr + jCar will be obtained from the

unsteady hydrodynamics and will be a function of the reduced
frequency, k = wgre/U.

It follows that the divergence speed, Up (if it exists), is given
by

dCu

U$ = 2K/ pe? |—= 6

D /pe ( 1% ) im0 (6)

On the other hand, flutter may occur if w; is negative for any

nonzero value of wg; this implies from equation (5) that the system

is unstable if dCps/d& > 0 and that the neutral stability or flutter

point is given by

dCus
( & @
This will determine a reduced flutter frequency kr = wpe/Up.

The flutter speed, U, and frequency, wg, will then follow from
equation (4), which can be written as

dCur _ (21() 1

)=0forwR#0

— — 2l ouk? 8
o) U2 oM (8)
where u is the mass ratio 4 = pyt/pc and I is a dimensionless
moment of inertia for the foil (I = Iypstc®). Atk = kg, this yields
U = Up, given Igu, 2K/pc?, and the value of the left-hand side at
k= kF

Consider first the case of subsonic, noncavitating and nonsep-
arating flow examined by Smilg [17] using Theodorsen’s linearized
unsteady airfoil theory. Smilg found that single-degree-of-free-
dom flutter could occur only when the hinge was located between

da  \pc2
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the leading_edge and the quarter-chord point (0 < 8 < 0.25),
otherwise dCpyy/d& was negative for all nonzero valuesof k. Even
within the range 0 < 8 < 0.25, single-degree-of-freedom flutter
could occur only for foils with very large mass ratios. Conse-
quently, single-degree-of-freedom flutter will not occur for
practical foils such as those employed in the present experiments.
In the noncavitating tests discussed earlier, however, the flow was
clearly separating from the leading edge and forming a wake. It
might be suggested that the dynamics under these circumstances
would be more akin to those of the cavitating flow as anticipated
by Woods [18]. The present tests did not support this view; though
the cavitating foils {luttered, there was no evidence of flutter in
noncavitating flow at speeds as much as 50 percent greater than
the cavitating foil flutter speed. The reason for this discrepancy
is not entirely clear but is probably due to the differences in the
dynamic response of free shear layers and cavity-free surfaces.
Turning now to the case of cavitating flow, we shall restrict our
theoretical analysis to the simplest case of infinitely long cavities
in an unbounded flow. One of the reasons for this restriction is
the difficulty involved in finding satisfactory closure models for
the cavity in unsteady flow. Certainly none of the available
models come close to representing properly the real events we have
described occurring in the closure region. The unsteady lift and
moment coefficients for the case of infinitely long cavities were
evaluated first by Woods [18] and Parkin [19]. Later the linearized
theory for small angles of attack was further developed by Martin
[20] and Parkin [21]. In addition, Kelly [22] has extended Woods’s
[18] results to larger angles of attack and finite cavities. For
present purposes we shall employ Martin’s and Parkin’s linearized
results which yield a moment coefficient about the hinge point
given by
2dCy __ 5

28M_ 2 - 2222
7 di 16 87 T512

+8 {Q(k) + 15—6 KW (k) — Zj—i k2] e [jkW(k) - 19—6 k2} ©)

[Q(k>+§ 245 ]

where (k) and W (k) are complex functions tabulated by Parkin
[21]. A polar plot is presented in Fig. 14 for various locations of
the hinge point, 3; values of k are indicated on the curves. Note
that in direct contrast to the Smilg case the flow with an infinite
cavity will exhibit single-degree-of-freedom flutter if the effective
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hinge point is anywhere between about midchord and the trailing
edge (8 = 1). The critical or flutter-reduced frequency, kg, for
which dCyz/dé = 0, is plotted against the hinge position, §, in Fig.
15; also shown is the corresponding value of dCyg/d & at k = k.
It remains to determine whether single-degree-of-freedom flutter
or divergence will occur by comparing the flutter speed, U, with
the divergence speed, Up. From equations (8) and (8) it is clear

From expression (9)
(i% =T ( 8- 3
da Jr=0" 2| 16

and this is included in Fig. 15. Consequently, the flutter speed
is virtually always less than the divergence speed, irrespective of

(11)

that Iop. Indeed the foil will exhibit single-degree-of-freedom flutter
5 at speeds far below the divergence speed as demonstrated by the
Ur _ ( dCur / dCur + 2louk? (10) values of Ur/Up plotted in Fig,. 16 for various hinge point locations
U% \ dd k=0 dé Ji=kp F and values of Igu. Furthermore, the flutter frequency, wg, is
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readily related to the natural frequency of the foil in a flow at
speeds much smaller than the flutter speed (denoted by wy) by

or _ ({1 dCur ‘
wN [(kz dé )k»w + 210#]/
1 déMR , 1/2
{(ﬁ ddé )k:kp + 210”” (12)

As seen by the plots included in Fig. 16, wg/wx for small values
of Iou is virtually always between 0.85 and 0.9 and tends toward
1.0 for very large Iou.

It is surprising that this unique feature of supercavitating foil
dynamics has received little attention in previous studies, despite
the fact that it was briefly alluded to by Woods {18] in his pi-
oneering calculations of the unsteady lift and moment coefficients.
What makes it more surprising is the fact that most supercavitating
foils with wedge-like thickness distributions will have an elastic
axis at a distance about 2¢/3 from the leading edge and hence will
be susceptible to single-degree-of-freedom flutter. Kaplan and
Henry [5] and Song [6] both performed conventional two-de-
gree-of-freedom wing flutter analyses for supercavitating hy-
drofoils without mentioning the simpler instability. The experi-
ments of Kaplan and Lehman [8), Song and Almo [7], and Cies-
lowski and Pattison [23] all utilized systems with elastic axes for-
ward of midchord and are therefore relevant only to the possibility
of the conventional wing flutter which could arise under these
circumstances. We have not been able to identify any other ex-
perimental results for the more practical sup®Cavitating foil case
in which the elastic axis is aft of midchord.

Discussion and conclusions

The experimental reduced flutter speeds for long cavities (see
Fig. 4) are in the range 0.15 to 0.25, corresponding to a range of
reduced frequencies, kp, from 7 to 4. These are in fair agreement
with the theoretical results for a model hinged at the trailing edge
for which kp = 7. Ome might argue that it is more appropriate
to use a theoretical model whose chord is equal to the flexible
chord, a, in the experiments. However, this yields theoretical kz
values of about 12 which are even further from the 4 — 7 range
observed experimentally. It should be appreciated, however, that
the model is rather crude and that the oscillatory camber which
is absent in the model may have significant dynamic effects.
Recently Murai [24] and Shimuzu [25] have computed reduced
flutter frequencies for various shapes of foils rigidly supported at
their trailing edge. Their value of kg = 12 for a flat plate suggests
that the oscillating camber has neither a large nor an unexpected
effect.

The experimental observation of a minimum flutter speed at
an angle of attack of about 10 deg cannot, of course, be predicted
by a linear theory whose results are independent of cg. It is in-
teresting to note that Kelly’s [22] nonlinear calculations at ccg = 0,
10, 20, and 30 deg reveal some instances in which the coefficients
exhibit extremums at 10 deg. However, more pertinent evaluation
of polar plots like those of Fig. 14 using Kelly’s tables indicated that
though the values of dCyy1/dé& increased considerably with c,
neither the value of kr nor the value of (dCyr/d & Jx=¢, was sub-
stantially different from those given in Fig, 15.

Kelly’s results can also be used to assess the effect of cavity length
since he calculated coefficients for cavitation numbers greater than
zero (0.3, 0.6, and 0.9). In general the shorter cavities vield
marginally smaller values for kr. Superficially this is consistent
with the experimental trend. We believe, however, that the cavity
closure dynamics discussed earlier cause substantial alterations in
the flutter dynamics for short cavities. None of the theoretical
models adequately incorporates these observed closure phe-
nomena.

Some other interesting trends emerge from a comparison of
experimentally measured lift and moment coefficients with those
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predicted by the theory. DelLong and Acosta [26] measured
coefficients for supercavitating hydrofoils performing heave
motions only and found that both in phase and quadrature lift
coefficients (which would contribute to dCyr/d& and dCyyp/dé
in our notation) were both in general less than the theoretical
values. One could conclude that the resulting experimental kg
would be less than the theory, which is consistent with the results
of this investigation. Furthermore Klose and Acosta [27] found
that ventilated, air-filled cavities exhibited significant cavity
pressure variations. This could account for the fact that their
measured in-phase lift coefficients were much larger than the
theory and their quadrature coefficients were comparable with
the theory. Comparison with DeLong and Acosta’s results suggests
significant differences between the coefficients for ventilated and
natural cavities. In the present tests the air-filled cavities exam-
ined in the FSWT tests manifest substantially lower reduced flutter
velocities (about 0.11) than the natural cavities in the HSWT
tests.

It was also shown in Fig. 16 that the theoretical flutter fre-
quency, wr, should be only slightly smaller than the natural fre-
quency, wy, in flows with velocity well below the flutter velocity.
This was borne out by the experimental results of Fig. 13, which
suggest a flutter frequency no more than 10 percent less than wy.
Furthermore, the experiments indicated that wy was close to the
natural frequency of the foils in “still” water ww (see Tables 1 and
2). This quantity ww may be difficult to estimate theoretically,
however, as discussed earlier.

Finally, it is necessary to discuss the nature of leading-edge
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flutter as defined in the Introduction. Tt should now be clear that
a practical supercavitating foil rigidly supported at one end with
its elastic axis aft of the midchord and with a slender leading edge
is susceptible to several different instabilities. One can for example
identify a simple torsional instability for which the results of the
last section are directly applicable. There is also the possibility
of leading-edge flutter which involves chordwise bending and large
amplitudes at the slender leading edge. The flutter speed for each
of these will presumably be governed by U = wic*/kj where w3
is the natural underwater frequency in that mode, ¢* is an “ef-
fective” chord length (c* = ¢ for torsional instability but less for
leading-edge flutter), and k} is the appropriate critical constant
for each instability. Now wj would normally be greater for the
leading-edge flutter mode than for torsional instability. However,
c* is less for the former; consequently, it is not immediately obvious
which instability will have the lower flutter speed. In this respect
it is of interest to review the two cases [3, 4] mentioned in the In-
troduction. According to Fig. 15, the lowest torsional flutter speed
is given by kg = 17. If the cavity surface waves are converted at
U;, then this leads to a cavity surface wavelength-to-chord ratio
of A/c = 0.3. On the other hand, if we estimate leading-edge
flutter to occur when wkc*/Up =~ 3(c* = a = effective flexible
chord), then A/c* =~ 2. Now the photographs of Waid and
Lindberg [3] and Spangler {4] indicate ¢ /\-values of about 4 and
8, respectively. This suggests that leading-edge flutter was pre-
dominant in both cases with effective flexible chord lengths of ¢ /8
and ¢/16, respectively.

The present report has concentrated on a fundamental inves-
tigation of leading-edge flutter and has demonstrated conclusively
the existence of the phenomenon. The experimental models were
designed to have relatively simple modes of vibration and it has
been demonstrated that once these underwater modes and natural
frequencies are known, reasonable estimates can be made of the
leading-edge flutter speed. Furthermore, a rather simple theo-
retical model yields values of the critical reduced velocity, 1/kr,
which are within a factor of two of the observations and could be
used as conservative design estimates since they are lower than
those observed experimentally.
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