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1 INTRODUCTION
1.1 Opening Remarks

Since the Annual Review of Fluid Mechanics first published a review on micro-
organism locomotion by Jahn & Votta (1972) considerable progress has been made
in the understanding of both the biological and the fluid-mechanical processes
involved not only in microorganism locomotion but also in other fluid systems
utilizing cilia. Much of this knowledge and research, which has been built on the
solid foundation of the pionecering work of Sir James Gray (1928, 1968) and Sir
Geoffrey Taylor (1951, 1952a,b), has been reported extensively elsewhere, particularly
by Gray (1928, 1968), Sleigh (1962), Lighthill (1975), and Wu, Brokaw & Brennen
(1975). The subject is now sufficiently broad that it precludes any exhaustive
treatment in these few pages. Rather, we restrict this review primarily to a summary
of present understanding of the low-Reynolds-number flows associated with micro-
organism propulsion and the hydromechanics of ciliary systems. In this introductory
section we wish to put such fluid-mechanical studies in biological perspective.
Section 2 outlines the present status of low-Reynolds-number slender-body theory,
and we discuss the application of this theory to biological systems in the final
sections.

1.2 Ciliary and Flagellar Propulsion in Perspective

In the scheme of life the role of contractile elements is a major one. Some life
functions are totally dependent on them and others are more efficient because of
them. When considered as isolated structures, contractile elements are those that
use up biochemical energy in doing mechanical work. But the artificiality of
such isolation becomes evident when one considers the role of contractility in the
two other kinds of work requiring biochemical energy, synthesis and concentration
(Lehninger 1971). Consider, for example, the process by which bone is aided in its
growth by motion-generated stresses (Black & Korostoff 1974). By such relationships
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340 BRENNEN & WINET

contractility contributes significantly to biosynthesis. Consider also the recent
demonstration that cilia lining the brain ventricles have a significant effect on
transmural transport in the ependyma (Nelson 1975), and the link between con-
tractility and concentration will be established. To be sure, concentration and
biosynthesis can be said to generate some movements; the most familiar examples
are the growth tropisms (geo- and photo-) and the opening and closing of stomates
caused by turgor pressure changes, which is characteristic of the higher vascular
plants. This review is not, however, concerned with noncontractile adaptations. In
any case, it is a gross oversimplification to view contractile structures as isolated
elements for they are an integral part of the life functions to which they contribute.

Coniractile elements can be grouped into four classes for convenience: 1. pro-
karyotic flagella, 2. cytoplasmic filaments or microtubules, 3. eukaryotic cilia and
fagella, and 4. smooth or striated muscle. Although only the first and third classes
are the concern of this review, some perspective into the utility of each type of
contractile element can be gained by an all-inclusive overview such as the onc
presented in Table 1. This table illustrates how natural selection has distributed
the mechanisms of contractility among living things and their life functions. The
life functions that directly include some aspect of propulsion are irritability, con-
tractility, ingestion, digestion, circulation, reproduction, respiration, and excretion.

It may also be noted upon examination of the table that no mode of contraction
has gained the exclusive right to serve a given life function. This diversity has come
about not only because natural selection is opportunistic (i.c. whichever adaptation
works at the “moment of truth” is the one selected for) but also becausc at least
two classcs of contractile elements cyloplasmic microtubules and eukaryotic
flagella—are interchangeable (e.g. the amoeboftagellate Naegleria).

In order for contractile elements to maintain required services for the lifc
functions they attend and in order for them to assist in biosynthetic and concentration
work, they must be provided with biochemical energy and structural replacements
by biosynthesis (which includes chemical respiration) and concentration. Such intet-
dependence is a natural consequence of the division of labor that is so characteristic
of living systems and that must be kept in mind lest one be tempted to analyze in
situ contraction as an isolated process. Inversely, this interdependence has the
benefit of allowing one to learn some of the details about b1osynthesls and
concentration from their contributions to the contractile process.

In general the elucidation of propulsion by contractile elements is just as much
an cxercise in relating structure and function as is any other biological investigation.
By contractile structure we mean the somewhat stable part of the contractile
element - the components that actually move— while function refers to the motion,
which is to say the performance of mechanical work. Such a division is, of course,
artificial not only because changes in structure accompany all contractions (e.g.
cytoplasmic streaming in amoebas) but also because the propulsive structure of the
system—i.e. the part of the contractile system in contact with the Nuid -and the
physical structure of the fluid—density, homogeneity, viscosity, pressure, etc—
interact to form a dynamic feedback relationship that is not always predictable from
knowledge of structurc alone.
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1.3 An Overview of Structure and Function of W hiplike
Contractile Elements

The contractile elements considered in this review are all slender oscillators that
arc responsible for propulsion of the organism in the fluid or propulsion of the fluid
alone. They are called cilia or flagella, but the latter term is somewhat ambiguous
because it is used for two evolutionarily unrelated structures: prokaryotic and
eukaryotic flagella. Furthermore, cilia and eukaryotic flageila are closely related
organelles having essentially the same structure (Section 5.1) for a given motion, and
both utilize' ATP as a.primary energy source. The energy source for prokaryote
motility is unknown (Larsen et al 1974), however, so there are few restrictions at
present on the energy aspects of models for their motion. What can be said with
some conviction is that this energy is devoted to helping the microbe move to a
new environment, an ability that gives the motile prokaryote a distinct advantage
over the nonmotile one.

2 FLUID MECHANICS OF SLENDER BODIES AT LOW
REYNOLDS NUMBERS

2.1 Background

Since the oscillatory motions of cilia and flagella produce a mean translational
motion it is important to define two Reynolds numbers, one for cach kind of
motion. The Reynolds number defined by the propulsive velocity, U, and the typical
dimension of the organism L is UL/v where v is the kinematic viscosity of the
organism’s liguid environment ; values range from 10 ¢ for many bacteria to about
1072 for spermatozoa, and most of the organisms considered here lic within this
range. Equally important is an oscillatory Reynolds number, Re, based on the
radian frequency of beating of the organelle, w, and the typical length of that
organelle, I(Re = wl?/v); typical values of this quantity are about 10~3. Thus the
fluid motions that result are dominated by viscous forces and the inertial forces
usually play little part in the propulsive mechanisms. Of course there cxist organisms
in all ranges of Réynolds number, but the difficulties in the fluid-mechanical
analyses when the Reynolds numbers approach unity are such that little quanmatlve
work has as yet been done [or natural swimming in this regime.

Before we can deal sensibly with the hydromechanics of cilia and ﬂagella it is
necessary to digress and discuss the fluid-mechanical basis for the analyses of the
low-Reynolds-number flows past slender bodies. That we return to these basic
principles is a reflection of the fact that the study of these biological systems has
actually been one of the principal motivating factors for the development of slender-
body theory at low Reynolds numbers (the other being studies of suspemlom of
elongated particles).

22  Fundamental Singularities

Analysis of the detailed hydrodynamics of low-Reynolds-number flows due to cilia
and flagella has been greatly aided by the development of mcthods to construct
the flow fields by means of distributions of fundamental singularities. For the purpose
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of describing these methods we must dwell briefly on the nature of the fundamental
solutions to the equations of motion for an incompressible inertialess Newtonian
fluid of viscosity u. They consist of a continuity condition on the fluid velocity u,

Veu=0, 9]
and since there are no inertial forces, a condition of force equilibrium
Vp = uViu ' @)

containing the fluid pressure, p. From this it follows that p is a harmonic function,
and since V*u = 0, the velocity is a bi-harmonic function. The primary fundamental
solution to these equations due to a single point force, F, in an unbounded inertialess
fluid was first obtained by Oseen (1927), developed [urther by Burgers (1938), and
named a stokeslet by Hancock (1953). If one represents the strength and direction
of the singular force at the origin of a coordinate system x by 8zux, where a denotes
the stokeslet strength and direction, the resulting fluid velocity and pressure are,
respectively, (see, for example, Chwang & Wu 1975)

w(x; ) = a/r+ (o0 - X)x/r3,
3)
p(x;a) = 2po - x/r?,

where r = |x|. It follows that a derivative of any order of this solution is also a
solution to the basic cquations. Thus onc can construct higher-order singularities
such as a Stokes doublet, Stokes quadrupole, etc. Batchelor (1970b) indicated how
a Stokesdoublet could be decomposed into an antisymmetric component representing
the flow field due to a singular moment of strength 8zuy and called a couplet
[Chwang & Wu (1974) call this a rotlet] with velocity and pressure

u=yxx/r’;  p=0 (4)

and a symmetric component representing a pure straining or extensional motion
of the fluid and termed a stresslet. Furthermore, a Laplacian of the stokeslet
solution leads to a potential doublei of strength § for which

u=—8/r*+3(6-x)x/r’; p=0 . (5

and which has zero vorticity. One sees that this has the same kinematic form as
the conventional doublet in potential flow of an inviscid fluid but that its dynamic
contribution to pressure is now zero because the inertia terms have been deleted.

Hancock (1953) seems to have been the first to attempt to use linear superposition
of these singularities [ permissible because the basic Equations (1) and (2) are linear]
in order to construct the fluid mechanics of flagellated microorganisms; his classic
work with Sir James Gray (Gray & Hancock 1955) remains a landmark in this
respect for both biologists and fluid dynamicists. These works are the forerunners
of slender-body theory and resistive-force theory as applied to microorganism
locomotion; we return to these subjects shortly.

Chwang & Wu (1974, 1975)and Chwang (1975) have recently shown how solutions
to many complex flows may be constructed by superposition of these fundamental
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singularities; indeed, for mathematically simple bodies such as spheroids in mathe-
matically simple flow fields (uniform flow, shear flow, quadratic flow, extensional
flow, etc) exact solutions are obtained. The simplest example is that of rectilinear
translation (at velocity U} of a sphere of radius a, which requires at the center of
the sphere only a stokeslet of strength 3aU/4 in the forward direction and a potential
doublet of strength a*U/4 in the opposite direction in order to satisfy the no-slip
boundary condition at the surface of the sphere. Indeed, one can visualize the
stokeslet as simulating the drag on the body; this is the dominating effect in the
far-field since a stokeslet, being the lowest-order singularity, decays least rapidly
(like 1/r). Furthermore, the potential doublet provides the finite geometry of the
body in the near-field and its velocity contribution is necessary to satisfy the no-slip
condition at the body surface (see Lighthill 1975, p. 48).

We reiterate' Chwang & Wu’s (1975) observation on the exact solution for ‘the
translation of a prolate spheroid of major axis, a, and minor axis, b. They observed
that if the translational velocity is decomposed into components U, and U, parallel
and perpendicular to the major axis and if one examined the force on an element
of this spheroid containied between two planes perpendicular to the major axis and
length ds apart, then this was composed of two components F, and F, in the same
two directions where

Fy=—=C.Uyds; F,=—-C,U,ds, ‘ 6)

and Cyand C, were simple constants dependent only on g, a, and b and independent
of the position of the element or the velocities U; and U,. This is a remarkable
example of a case in which the resistive-force theory that we examine below holds
exactly, irrespective of the slenderness of the body. For a slender prolate spheroid
such that b/a =g<l, the resistive coefficients, C, and C,, become

2ny " ’ _
4y 2 :
Co= W [1+0()] ®)

2.3 Small Inertial Eﬁ’ects

It is wise to note at this point that the solutions above represent exact solutions
only at zero-Reynolds number. Introduction of the small contribution of inertia at
low but finite Reynolds numbers necessitates re-examination of the far-field where
the magnitude of the inertia terms becomes comparable with the viscous terms and
leads, for example, to the well-known Stokes paradox for translation of an infinitely
long cylinder. Linearization of these far-field inertia effects by means of Qseen’s
approximation still, however, permits the construction of flow fields by means of a
modified set of fundamental solutions in which the oseenlet replaces the stokeslet.
Developments of slender-body theory along these lines is only beginning [see a
recent paper by Chwang & Wu (1976)]. Finally it should also be noted that, of
course, there exists the fundamental solution of the entire Naviet-Stokes equations
for a singular force known as the round laminar jet and due to Slezkin (1934),
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Landau (1944), and Squire (1951). The stokeslet is simply the limiting case of the
round laminar jet for an inertialess fluid. However the nonlinearity of the Navier-
Stokes equations does not permit superposition of these fundamental solutions.

2.4 Image Systems for Singularities

In the proximity of a boundary, whether it is a solid wall, a free surface, or a
hypothetical boundary simulating a line of symmetry in the flow under consideration,
it becomes advantageous to develop image systems for the fundamental singularities
constructed so that the boundary conditions on that wall are automatically satisfied.
In inviscid potential low this is usually a simple matter since, for example, a solid-
plane boundary requircs only the identical singularity at the image point in order
to satisfy the condition of zero normal velocity. At low Reynolds numbers onc must
also satisfy the no-slip condition, and the types of singularity required at the image
point in order to accomplish this are not immediately obvious. Blake (1971c)
obtained the image system for a stokeslet (at various orientations) in a stationary
plane boundary, and more recently Blake & Chwang (1974) derived similar image
systems for a couplet, a source, and a potential doublet. Some of these are indicated
schematically in Figure 1. One of the important effects of the presence of the wall
{or equivalently the image system) is that the nature of the far-field is altered. A
stokeslet oriented parallel to a wall leads to a far-field, which is a stokes doublet

. x.
T 3 FAR-FIELD: STOKES - QUADRUPOLE
SOURCE -DOUBLET

"3 FAR-FIELD: STOKES-DOUBLET

STOKESLET (F} .
P 7| STOKESLET (F)
re X rd
- I
e Ve
~ * ~ X
~ ~ ~
> ~
——— 1 . . + .. ~ I R
+ . + .
IMAGE SYSTEM ! STOKESLET  STOKES- SOURCE - '
{~F) DOUBLET DOUBLET
(2kF) (—4 phF) IMAGE SYSTEM: STOKESLET STOKES — SOURCE ~
(-F) DOLBLET DOUBLET
(~2hF) (4ph?F)
Xg FAR-FIELD : STRESSLET ~ { y )
-— .i’ SOURCE %
@ ROTLET (22,
X2
X IMAGE | \MAGE SYSTEN: \*/ ‘ L]
SYSTEM : + . + o6 € SYSTEM: 71-\. + ? + .
ROTLET  STRESSLET  SOURCE -
(—a) (167pQ)  DOUBLET SOURCE EM; STRESSLET SOURCE—
(87ha) —4uM DOUBLET

2hM

Figure I The image singularities in a no-slip boundary (x;x, plane) for a stokeslet
tangential to the boundary, a stokeslet normal to the boundary, a rotlet whose axis is
parallel to the boundary, and a source.
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decaying like #~ 2 rather than the r~! of a stokeslet in unbounded fluid. On the
other hand the far-field of a stokeslet oriented perpendicular to a wall is even weaker
and is like a stokes quadrupole or potential doublet. Blake & Sleigh (1974) belicve
that this has important consequences for the hydromechanics of cilia or for flagella
near walls. The far-fields of the other singularities in the presence of a wall are
similarly affected, the far-fields for both a rotlet and a source becoming stresslets
(like r~2); note that this differs from the far-field of a source near a wall in inviscid
potential flow in the absence of a no-slip condition that is like a potential doublet

(r 3.
2.5 Slender-Body Theor y

The objective of slender-body theory is to take advantage of the slenderness in order
to achieve simplifications in obtaining approximate solutions for the flow around
such bodies. The development of low-Reynolds-number slender-body theory evolved
through the work of Burgers (1938), Broersma (1960), and Tuck (1964); recent work
by Taylor (1969), Tillett (1970), Batchelor (1970a), Cox (1970), and Blake (1974b)
has concentrated on construction of slender-body solutions by distributions of
fundamental singularitics along an axis of the body. [With the exception of
Batchelor’s (1970a) work on arbitrary cross-section, rescarchers have concentrated
on bodies of circular cross-section.] A simple but elegant demonstration of low-
Reynolds-number slender-body theory is given by Lighthill (1975, p. 49).

In choosing axes fixed relative to a particular section of the slender body under
examination (Figure 2), onc seeks the distribution of stokeslets, doublets, etc on
the axis of the body that will satisfy the no-slip condition at points such as 4 on
the surface of the slender body (local radius is a). The integrated induced velocity
at such points must then be equated with the known or assumed translational
velocity of the section under consideration. The result will, in general, be a system
of complicated integral equations for the strength of the singularity distributions.
The first simplification of slender-body theory results from the obsecrvation that the
velocitiesinduced at A by singularities outside a certain “near-ficld” will be dominated
by the stokeslets in the “far-field” since their far-field effect (like r~ ') dominates
that of the other singularities. Thus the primary distribution is one of stokeslets
along the entire axis of the body. The boundary condition at the cross-section under
consideration is satisfied by introducing a potential doublet (or if necessary other

Figure 2 Slender-body schematic.
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singularities) only within the near-field. In particular the integrated effect of
singularities with a far-field decay faster than r~ ! can be fairly accurately determined
by terminating the integration at some distance s = +4 from the section under
consideration where s,, s, > A > @, s, and s, being the distances to-the ends of the
slender body. On the other hand, the integration for the velocity induced by the
stokeslets cannot be truncated in this way and indeed yields a velocity with terms
like In (s45,/a®). The reader is referred to Lighthill (1975, p. 49) for the forms of
the integrated induced velocities. Note that this is another manifestation of Stokes’
paradox for the translation of an infinitely long cylinder; when s; or s, tend to
infinity, the boundary condition at the section under consideration” cannot be
satisfied. We must also note that such a construction is limited to sections sufficiently
far from the ends of the slender body; Tillett (1970) has examined some of the
' problenis associated with such “end effects.” '

The net result of these considerations is that one must seek the strength and
direction of stokeslets distributed along the entire axis of the slender body plus the
local distribution of higher-order singularities that satisfies the required boundary
condition at every point on the slender-body surface. A useful approximate way
of implementing this has been suggested by Lighthill in his John von Neumann
lecture (June 1975 at Rensselaer Polytechnic Institute, Troy, New York) and by R.
Johnson and T. Y. Wu (private communication). If the local radius of curvature
of the body is large compared with g, then the combined effects of both the near- and
far-field distributions may be replaced by a distribution of stokeslets alone in the -
far-field regions, s > é and s < — 4. For the components of ‘the stokeslets normal
to the axis, é = a/2 \/;, whereas for the components tangential to the axis, § =
a\/E/Z. This observation considerably simplifies the algebra required in obtaining
solutions for the motions of slender bodies of more complicated geometry.

The simplest solutions are those for the translation of straight slender cylinders
as obtained by Tillett (1970) and Cox (1970). Defining force coefficients as the force
per unit length of the body divided by the translational velocity, U, Cox (1970)
improved on the original work of Burgers (1938) and Broersma (1960) to show that
the force coefficient for a cylinder, with length 2/ and maximum radius a, moving
perpendicular to its axis was

4np u .
C,= 0] 5 : 9
in @)+ C, [(m l/a)3} ' ©)
while that for motion parallel with its axis, C,, was o
2rnp [z
Co=—r—+0| ———| 10
In 2l/a)+C, |:(ln l/a)3:| v (10

The value of C, was C,—1 and the value of C; depended on the axial variation
of the radius of the cylinder. A uniform axial cylinder took a value C; = In2—% =
0.193, whereas a prolate spheroid yielded C; = +%. The latter agrees with the
results of the exact solution for a spheroid, Equations (7) and (8); in this case the
answers are more accurate than the error terms in (9) and (10) indicate.
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2.6 Resistive Force Coefficients

The translation of any rigid slender body through a viscous fluid can be fairly
readily analyzed by such methods, provided the radius of curvature is large compared
with the body radius. In the present context it is useful to view the results by
decomposing the velocities of each element relative to the fluid at infinity into
normal and tangential components, U, and U, and similarly decomposing the force
on that local element into components involving normal and tangential force
coefficients as defined in Equations (6). The- resulting values of C, and C, always
take the forms of Equations (9) and (10), but the coefficients C, and C, are dependent
on the overall geometry of the body (through the integration of stokeslets along
the entire axis)..For example; a circular ring or torus moving in the direction of
one of its major- diameters takes values of C; = 0.74, C, = 0.24 (R. Johnson and
T. Y. Wu, private communication).

This is the background for what has come to be known as resistive-force theory
in which the force on any element of a slender body such as a cilium or flagellum
is calculated from (a). motion of each elemental length of the organelle relative to
the fluid at infinity and (b) force coefficients, C,, and C,, which are determined from
the geometry alone.

Hancock (1953) and Gray & Hancock (1955) made a major contribution to
research on microorganism movement by applying slender-body theory to the
analysis of a flagellum along which travelling waves were propagating (Figure 3).
The motion of each individual element relative to the fluid at infinity is thus com-
prised of a combination of the oscillatory motions due to the passage of the wave
and the steady translation of the flagellum through the fluid. The results of
Hancock’s analyses and the subsequent force coeflicients derived by Gray & Hancock
(1955) can be interpreted in a simple-qualitative way by dividing the axial stokeslet
distributions for such a flow into components due to each of these motions and by

Wave " velocity. , ¢

relative- to body

U , propulsion fluid velocity
relative to body

Figure 3 Flagellar propulsion with a planar waveform.
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examining primarily the oscillatory motions for these generally involve larger
velocities. It follows that the stokeslet distributions due to the oscillatory motions
will be harmonic with distance s from the section at which the integrated velocity
is being evaluated (see last section). Lighthill has pointed out that this will result
in an integral that will converge more rapidly than those that gave terms like
In (5,5,/a%) in the last section ; indeed, the resulting velocity will instead involve a
term like In (4/a), so that the wavelength, A, will be the effective body length rather
than the overall flagellar length: The resulting force coefficients according to Gray
& Hancock (1955) are

C,=2x /in(z—)')—»l-} : | (11)
s “~ Au// a 2 3

€y =2C, (12)

Recently Lighthill (1975) has shown that the evaluation of the mtcgrals harmonic
in s leads to an “effective length” I¥* = 0.092, so that

2ru 2ap
= _ - e 3
O = lin @r/a—1] ~ [in GAja)—2.90]" (13)
4ru 4zu

Co= [In 2¥/a)+%]  [In(2%/a)-1.90] (14
These can, however, be regarded as only approximate; indeed, it is likely that more
accurate coefficients, which are presently being sought, will.also involve the total
flagellar length, L. One indication of this is suggested above, since clearly the
stokeslet components due to overall translation of the flagella will contribute terms
like In (2L/a} as in the case of the translation of rigid slender bodics.

We return later to the consequences of such analyses in the context of the fluid
mechanics of biological slender bodies. But the section would not be complete
without the addition of one other force coefficient, namely that due to rotation at
angular velocity & of an element of a slender body about its own axis. Chwang &
Wu (1974) have shown that the resulting moment M acting on the body about the
axis is simply given by

M=CyQds; Cy=4nud’. . (15)
2.7 Wall Effects on Slender-Body Motions

The resistive coefficients on any body are clearly altered by the prescnce of a nearby
boundary. Moreover, therc are many situations in microorganism propulsion and
in ciliary mechanics in which the slender bodies operate close to solid boundaries.
Examples are {a) effects of the presence of the epithelial wall on ciliary dynamics
{(Blake & Sleigh 1974), (b) the motion of spermatozoa, in vivo, either in close
proximity to a single wall or within narrow passages, and (c) the effects of a
coverslip on studies of microorganism propulsion (Katz 1974 and Winet 1973).
Concern about such wall effects has led to a significant number of recent papers on
the influence of nearby boundaries on resistive coefficients for slender bodies.
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When the distance of the center of the body from the wall, h, is large compared
with its length, 2/, the results of Brenner (1962) for the motion of bodies of arbitrary
shape near walls are very useful. Brenner (1962) showed that the wall-affected
resistive coefficient (drag/2/U) denoted by C* was related to the coefficient, C, in
the absence of the boundary by

c* c! 1\t
—={1-Z——+0|- , 16
e 75l | 9

where Z was a function only of the geometry and the direction of particle motion.
Examples of the numerical values of Z are (a) Z = 9/16 for motion parallel 1o a

Table 2 Wall effecls on resistive coefficients for (he translation of straight slender
cylinders”

()rlentdtl()n Parallel to the Wall

Ih <1 Iih » 1

1 . T 20\
Cy = 271;.:/ In Cyp = 2au/|In{ =
H 8k H a

Cpy=4 /,l 0193 — ¢, =4 /{1
n2 = 7fﬂ/ + 2 n2 = 71/1; )

! | . 3 . /—l 2h
Cn3 = 47'[!1/ n + 0.193 — 2Z (,"3 = 475‘11/ -n _a _ 1

_Orientati_on Norrpz}ﬂg the Wall

NN
\_/
o
OO
=
it

:

TR

3

-

—r——-l

_‘_.

C:—-—

T dle2a

ih<1 Ifh— 1

. : j 21 3! . / 21
Coy=Chpg=dauf/[In{ =) +0193 - - Coy = Coy—dmp/[Iny-—|) - 075
/L a 4h i a i
. / 21 3! . 1 21
Cis = Znuy’ In{ -)—0807 — - Cez3 — 271;1 In{—}—~175
! \a 4h a

* Compiled from Brenner (1962), Katz & Blake (1975), Katz, Blake & Paven—Fontana
(1975), de Mestre (1973), and de Mestre & Russel (1975). Second subscript refers to direction
of translation and force.
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single solid plane wall, {b) Z = 9/8 for motion perpendicular to a single solid plane
wall, (¢) Z = 1.004 for motion parallel to and equidistant between two solid plane
walls, and (d) Z = 2.1044 for motion along the axis of a cylindrical tube; other
useful vatues are also given by Brenner (1962). First-order, or O(//h), corrections for
wall effects on the resistive coeflicients are therefore readily obtained by combination
of the result (16) with the coeflicients, such as (9) and (10) in the absencc of walls.
Some examples are listed in Table 2, with Cox’s coefficients for slender cylindrical
bodies (Cox 1970). '

Another general result of particular importance for microorganism propulsion
can be readily deduced from Brenner’s result ; we shall see that the value of the ratio
y = C,/C, for a slender element of a cilium or flagellum is of ¢onsiderable con-
sequence to its propulsive capability. From (16) it is readily seen that the first-order
wall effect on this ratio is given by

y= CHCE = 7e [1 A 1J, | (7
3npu h

where C;°, C? are resistive coefficients in the absence of the wall or walls and

Yo = C°/C;7. Notice in particular that since C, > C, and provided Z is positive, the

cffect of the nearby boundary always decreases y. Note from Brenner’s (1962) quoted

values for 7 that this quantity is invariably positive for solid boundaries.

When the slender body is closer to the wall so that I/h is no longer small, the
geometry of the body becomes important and a more detailed analysis becomes
necessary. Katz & Blake (1975) and Katz, Blake & Paveri-Fontana (1975) recently
examined this situation by constructing the flow by a distribution of stokeslets
along the axis of slender bodies and satisfying the no-slip condition at the wall or
walls by adding the appropriate system of image singularities. The resulting integral
equations are solved by the techniques developed by Tillett (1970) and Cox (1970).
Solutions were obtained for slender cylinders parallel to a single-plane wall and
between two plane walls when the distance, h, from the wall is much smaller than
the length, 2/ (but still much greater than the radius a). Their results arc included
in Table 2; it is significant to note that h now replaces I in the leading term for the
coellicient. Dc Mestre (1973) and de Mestre & Russel (1975) have examined the
wall effect for general values of I/h (both large and smaller) and orientations both
parallel and perpendicular to the wall. Their results converge asymptotically to the
simple results-obtained by Brenner’s relation at small I/ [provided some typo-
graphical errors in de Mestre & Russel (1975) are corrected] and to the results of
Katz, Blake & Paveri-Fontana (1975) for parallel slender cylinders. The additional
results for perpendicular slender cylinders as ! — h are also incorporated into Table
2; it is reassuring that if one arbitrarily sets I/h = 1 in the expressions for I/h < 1,
then the result differs only slightly from the more exact expressions for I/h = 1.

3 PROKARYOTIC CELL PROPULSIVE STRUCTURE
AND FUNCTION

The flagella of bacteria are composed of a helical protein, flagellin. From one to
eleven strands of flagellin coil together to form a single flagellum sheath (Gerber



352 BRENNEN & WINET

1975) which has an amorphous core and a radius of 1.2-2.0 x 10~% cm. Both motile
and fixed-and-stained flagella form a helix that has a pitch range of 1.5-2.5 x 1074
cm (Lowy & Spencer 1968). Each flagellum is attached to the cell at its base; the
attachment site, called the “hook-basal body complex” (DePamphilis & Adler 1971),
consists of four rings around the flageliar cylinder, each 2.25 x 1076 ¢m in diameter
as shown in FFigure 4. The most important of these rings are apparently the S and
M rings, which are located at the base of the hook.

The contractile mechanism for bacterial flagella has been a subject of recent
controversy (Routledge 1975). Doetsch (1966) first proposed the rather startling
hypothesis that the material of the flagellum rotates relative to the cell body, indeed
that the hook rotates.in the cell wall, thus providing a unique example in nature
of continuous rétational deformation. Berg & Anderson (1973) and Berg (1974, 1975)
have further examined the evidence for, and apparent quantitative features of, this
bacterial motor system. The motor seems to consist of rotation of the S and M -
rings with the flagellum that they carry being driven by some mechanochemical
process, presumably akin to the cross-bridge-stepping of heavy meromyosin on
actin in striated muscle (Berg & Anderson 1973). However, some recent evidence
(Larsen et al 1974) indicates that ATP is not the energy source for this process, so
cross-bridge models may be premature. Nevertheless, the basic model of a bacterial
flagellar motion appears to be gaining acceptance (Silverman & Simon 1974) at the
expense of alternative hypotheses that the contraction consists of a helical wave

HELICAL FILAMENT
PITCH 2700 nm

i

.| | sAsAL compLEX
27 nm ’

SITE OF CROSS BRIDGE ? \. CYTOPLASMIC MEMBRANE
8nm

l~22.5 nm

Figure 4 The hook-basal body complex at the junction of a prokaryotic cell and its
flagellum. In the rotating-shaft models motion is presumed generated between the M and
S portion of the hook and the cytoplasmic membrane. Possible sites of cross-bridges for
a model analogous to the muscle sliding mechanism have been indicated. (Adapted from
Routledge 1975)
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passing along the flagellum due to propagation of dislocations in the molecular
structure of the outer sheath (Harris 1973, Calladine 1974). In terms of the external
hydromechanics of the helical flagellum the two models differ only in the material
motion of the surface of the flagellum. In the basal motor hypothesis the flagellum
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Figure 5 ~The flagellated bacterium Salmonella abortus-equi with its flagella bent aftward
and associated in a flagellar bundle (Routledge 1975). This is .a fixed specimen. The
swimming organism would show less clearance between flagella. The scale baris 1 pm. (We
are indebted to Dr. L. M. Routledge for this photograph.)
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is basically like a rigid corkscrew rotating relative to the head; in the wave-
propagation model the material of the flagellum does not rotate relative to the
material of the cell body, but the helix is formed by the helical conformation of
the propagated wave. Unless one can observe the material rotation of the flagelium,
the two motions appear identical and thus it is difficult to distinguish between them.

Many bacteria (e.g. Escherichia coli, Salmonella; see Table 3) have several flagella
attached at points distributed over the surface of the cell (sce Figure 5). When such
bacteria are swimming, the scparate flagella come together in a synchronous flagellar
bundle, which propels the cell (Iino & Mitani 1966). In some strains, periods
of concerted swimming are interrupted by brief periods of erratic wobbling
(“twiddling”), which may be caused by the fact that the bundle has come apart
and cach {lagellum is acting independently (Macnab & Koshland 1972, Adler 1976).
Anderson (1975) has recently discussed the qualitative hydromechanical features of
the formation of flagellar bundles.

The close association of rotating flagella in the bundle clearly implics the presence

Table 3 Prokaryote propulsion data

Body Flagellar

Length, L (um)
or

Length (B) (um) No. of No. of waves
Prokaryote x width (um)  Shape flagella x wavelength
Eubacteria :
Bacillus megaterium 30x15 (] ~36 25%3.9
Bdellovibrio bacteriovorus 14 x0.23 =1 1 L=34
Clostridium retani 6.0x0.5 — ~15 4x18
Escherichia coli - 30x1.5 o 6 2x27
Photobacterium phosphoreum 1.2 o L. 1.5x3.1
Pseudomonas aeruginosa 1.5x0.5 o 1 2x1.7
Salmonella typhosa 2.5%0.65 o 6 42x%x25
Sarcina ureae 2.0 SO0 1/cell 4x32
Serratia marcescens 1.0x0.5 [an) >4 1.5x23
Spirillum serpens 3.0x1.0 =D >14 1.1 x2.7
Spirillum volutans 13.5%x 15 AR > 46, 200 L1x6.5
Thiospirillum jenese 400 x40 == —
Vibrio cholera 3.0x045 = | [0x24
Spirochaetes

Cristispira balbianii 80.0 x2.0 ARRS >100 3.5x6.0
Cristispira sp. 440 x 1.4 PRy — 3.1x14.2
Leptospira icterohemorrhagiae  7.5x0.27 Sz, 1 -
Spirochaeta litoralis 13.0 x 045 o, 3 1.6 x8.2
Spiroplasma citri® 60x0.16 AN ? 4.1x0.97

* Flagellum was tethered. ® Observed in 0.25% agar.
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of lubricating layers of fluid between the individual flagella and thus a significant
~ fluid resistance internal to the bundle, especially in the basal motor model; to our
knowledge the hydromechanics of this situation has not as yet been closely examined
quantitatively,although Berg & Anderson (1973) discount it. Viewed from the exterior
fluid the flagellar bundle could be considered as a single slender body whose mean
surface rotates relative to the head if the basal motor model is assumed. Thus,
whether the principal propulsive unit is a single flagellum or a bundle will have
relatively minor effects on the external hydromechanics within the context of a
particular contractile process. Finally, it is noteworthy that many bacteria exhibit
an increased motility with small increases in viscosity of the surroundmg medium
and a subsequent decrease with larger increases in viscosity (Sc¢hneider & Doetsch
1974 and, Shoesmith 1960).
. Since the hydromechanics of bacterial flagella is best dealt with in con]unctlon
with the hydromechanics of eukaryotic flagella, we delay the details until Section
4.6.

Table 3 Continued

Bundle” Organism
Body
Amplitude rotation, :
h (um) U/B Ulc Q (sec™ ) Conditions - - References
0.94 6.7 — 19-25°C 139,183
damped 100 — 600* 173,208
0.24 — — . 32,139
0.60 10 — 78 19-25°C 13,139,183
0.40 — — 32,139
0.17 40 — 19-25°C 139,183
0.17 10 — : 32,62,139
0.38 10 — 19-25°C 139,183
0.09 30 — 19-25°C 139,183,
0.55 6.7 ® . ) 19-25°C . 139,183
147 63 . ° Q/ke =037 20°C 32,62, 152,158,227, 233
— 0.5 b 19-25°C ' 183 ‘
0.17 16.7 — 32,139, 158
— — — 31,32,120
1.69 0.36 0.16 300 . 20°C 31,55
— 2 — 19-25°C 31, 32,65, 158, 183
0.84" - 0.46 0.08 300 20°C 55,104
0.18 — — : 30°C 67 ’

2Flagellum was tethered. ®Observed in 0.25% agar.
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4 EUKARYOTIC CELL PROPULSIVE STRUCTURE
AND FUNCTION

4.1 Structure of Cilia and Eukaryotic Flagella

Much more is known of the structure and function of cilia and eukaryotic flagella
(we use the single word cilia for convenience) than is known for prokaryotic
flagella. Since there are extensive books and review articles (Gray 1928; Sleigh
1962, 1971, 1974a; Holwill 1966a, 1974; Brokaw 1975; Brokaw & Gibbons 1975)
on thissubject, we attempt only the briefest overview aimed at the fluid mechanician.
A typical cross-sectional view of a cilium or eukaryotic flagellum is shown in Figure
6. Within a membrane is the “axoneme,” which consists of longitudinal fibrils or
tubules (one of the structural elements of which is tubulin) arranged as a number
of peripheral pairs plus a central pair. The number of outer pairs is often nine (hence
the reference to a “9+2” pattern), although many other numbers and modifications
of this basic pattern have been observed. “Arms” consisting of dynein project from
the outer pairs of fibrils. The dynein and tubulin are believed to interact in a manner
analagous to heavy meromyosin and actin in striated muscle, although the precise
mechanical details of this interaction have yet to be clearly identified. It has, however,
been well established that the energy source, namely ATP, is the same for both
systems. The details of the sliding mechanism have not been fully determined as
one can gather {rom the variety of models still being proposed (e.g. Brokaw 1975;
Costello 1973a,b; Douglas 1975; Dryl 1975; Harris & Robison 1973 ; Satir 1974;
Summers & Gibbons 1971). An important series of electron microscopy studies
by Satir- (1965, .1968) and Warner & Satir (1974) have demonstrated that the

DOUBLET TUBULE

~-QUTER ARM
(both dynein)

INNER ARM -

NEXIN LINK

TUBULE A
{both tubulin)

TUBULE B

CELL MEMBRANE

Figure 6 A diagrammatic representation of a cross-section through a cilium (or eukaryotic
flagellum). Sliding is generally assumed to be generated longitudinally between the dynein
arms and the B tubule across the gap spanned by the nexin link. The active role of the
radial spokes in the contraction is not agreed upon. (Modified from Brokaw & Gibbons .
1975.)
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microtubules remain constant in length during bending and that the bending is
associated with longitudinal switching of the “radial spokes”; Figure 7 (from Warner
& Satir 1974) is a particularly good electron micrograph showing the rather faint,

Figure 7 An eléctron micrograph of two bending cilia, which ‘are longitudinally sectioned
and viewed from the side (Warner & Satir 1974). Sliding displacement is indicated by Al
The right-angle markers denote the upper part of the basal body. The radial spokeés are the
faint lines extending out from the core of each cilium. The cilia are about 0.18 pm wide.
(We are indebted to Dr. F. D. Warner for this photograph)
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though visible, spokes on two bent cilia. These investigators have concluded that
the radial spokes and their attachment to the central fibers are an important
component in the generation of the sliding of peripheral subfibers past one another.

Figure '8 A sea urchin (Tripneustes gratilla) spermatozoon extruding microtubules by
active sliding following treatment with ATP (Summers & Gibbons 1971). Scale bar is-10 um.
Note the two subfibers coiling as they are extruded. (We are indebted to Dr. K. E. Summers
for this photograph.)
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In an important series of physiological studies Summers & Gibbons (1971) have
- demonstrated the sliding phenomenon by inducing spermatozoa whose membranes
have been partially digested to extrude subfibers by treating them with ATP; Figure
8 (from Summers & Gibbons 1971) shows this extrusion by sliding dramatically.
These investigators propose that the total sliding force is generated between the
~ dynein arms on one pair of peripheral fibrils and subfibril B of the adjacent pair.
The discovery of motile spermatozoa lacking central fibrils (van Deurs 1974) appears
to support the Summers & Gibbons form of the model. A more extensive account
of the development of the “sliding filament” model since its proposal by Machin
(1958)' may be found in Brokaw & Gibbons’ (1975) review.
It is evident that the actively generated bending moment in the contractlng
cilium is balanced by an internal resistance to motion (both elastic and viscous)
-and by the external viscous resistance. In this review we concentrate on the
evaluation of the latter quantity, although it should be borne in mind that in the
mechanics of cilia both elastic and viscous internal forces also appear to. play
significant roles and must be included in any attempt to extract knowledge of the
basic activating force from knowledge of the motions of cilia and the fluid flow they
create (see for example Brokaw 1970, 1971, 1972). The base of a cilium or eukaryotic
flagellum is firmly imbedded in the cell membrane, and there is no question of
relative motion between that base and the cell membrane as there was for prokaryotic
flagella ; propulsion is always achieved by propagation of waves along the cilia or
flagella. The energy source for the motion, namely ATP, may either diffuse along
the length of the flagellum or be diffused in from the surrounding fluid. Therefore,
the principal unknown is the control mechanism. Much of the recent work has been
directed toward identifying the control and feedback systems evidently associated
with eukaryotic flagella and cilia (Sleigh 1966, 1969 ; Brokaw & Gibbons 1975).

4.2 ' Eukaryotic Flagellar Motions

In this section we concentrate on some of the characteristies of eukaryotlc cell
propulsion by single organelles, which we continue to call flagella at the risk of
confusion with prokaryotic flagella; later we deal with propulsion by multiple
_ organelles such as cilia. '

The first fact to emphasize is the great variety of configurations of flagella and
organisms (see Jahn & Votta 1972); here we can do no more than indicate some
characteristic forms of flagellar motion and identify in particular those with different
hydromechanical implications.

Many organisms, including spermatozoa, have long ﬂagella along which they
propagate either a planar wave (e.g. Ceratium) or a helical wave (e.g. Trichomonas)
or some combination of the two (see Table 4); typically one finds about two
wavelengths along the flagella as illustrated by the multiple exposure of sea urchin
sperm in Figure 9 (Brokaw 1965) and the data of Table 4. Commonly the wave is
propagated from the base to the tip, although the reverse has also been observed
in the trypanosomes (Jahn & Votta 1972). Normally the direction of propulsion is
opposite to the direction of wave propagation, although there exist counter
examples, especially that of Ochromonas (Jahn, Landman & Fonseca 1964). This can
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Table 4 Eukaryote propulsion by one to four flagella

Body Flagellum

Length, L (um)

or
Eukaryotes with Length (B) (um) No. of No. of waves
1-4 flagella x width (um) Shape flagella x wavelength
“Exoflagellates”
Ceratium fusus® - 45022 . 4 2 L =200
Ceratium tripos® 225x332 .9 2 2x125
Chilomonas paramecium - 35%x 12 0 -2 1.5x?
Chlamydomonas sp. 13 o} 2 1x6.3
Codonosiga botrytis 15x%5 i) 1 L =30
Dinophysis acuta® 65 x 55 v 2 L=65
Dunaliella sp.
Euglena gracilis i 45x 15 V/i 1 L=45
Eugleng viridis : 52x17 g 1 1.5x35
Gonyaulax polyedra®, 48 x 45 a 2
Gyrodinium dorsum® 34.5x24.5 g 2
Gyrodinium dorsum =~  34.5x245 4 1
Menoidium cultellus - . 45%x7 1 1.0x10
Monas stigmata 6 o 2 L=315
Monas stigmata ‘ 6 e} 2 L=3,15
Ochromonas malhamensis 3 O 1 28x17
Peranema trichophorum 55x12 4 2 L =40
Polytoma uvella 22x 11 -0 2 L=39
Polytoma uvella 22x11 0] 2
Polytomella agilis 9.8x49 a 4 L=85.
Rhabdomonas spiralis 40x 10 4 1 1.0x15
Strigomonas oncopelti 82x26 0 1 L=17
Trypanosoma cruzi® 20%2 & 1 3x35
“Endoflagellates”
Eimeria sp. merozoites 15x 1.5 Vi — 1.67x 10
Plasmodium berghi sporozoites 10x2 ' — o L=3§8

? Dinoflagellates with helical flagellum in peripheral groove. Note second Gyrodinium has no helical
flagellum.

" Cell body propagates a wave, one wave of 11 ym length.
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Continued
Flagellum Organism
Amplitude Beat
h(um) form U/B Ulc Q/w, Conditions References
helical + 0.56 18-20°C 133,163
planar
hélical + 1.11 18-20°C 133, 163
planar
helical 44 26°C, mastigonemes 133,137, 221
50 " 116, 143
. w, = 180 194, 198
11 helical+  sessile 18-20°C, mastigonemes 163, 194
planar
226/ 20.5-21.5°C 83,116,133
helical 36 :

6 helical 1.5 0.19 0.08 108, 116, 133
helical + 52 97,133
planar
helical + 9.5 Q=94 99
planar
planar 43 Q=282 99

3 helical 43 047 0.06 108
planar? 45 ®, =300 in 3 mm deep chamber - 143
planar? 1.7 w, =120 between thin slides © 143

1 planar 19.2 w, =430 18°C, mastigonemes 107
3-D 0.36 mastigonemes 133,196
3-D 34 20-22°C 40,85
3-D 4.1 w, =90 20-22°C 40, 85
breast 8.4 0.09 20-22°C 84,85
stroke ) N

3.5 helical 30 0.32 0.056 ° mastigonemes 108, 221

24 planar 2.1 0068 w,=110 22°C ) 110

0.5 planar 152 b in blood, flexible body . 117

5 planar 047 in bile 30

29 planar in salivary gland fluid 219

2Dinoflagellates with helical flagellum in peripheral groove. Note second Gyrodinium has no helical
flageltum. )
bCell body propagates a wave, one wave of 11 uym length.
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Figure 9 Multiple flash records of swimming tunicate (Ciona intestinalis) spermatozoa
(Brokaw 1965). The flash rate is 50 Hz and the scale bar is 10 ym. (We are indebted to
Dr. C. J. Brokaw for this photograph.)

be explained hydromechanically (Holwill & Sleigh 1967, Brennen 1976) because the
flagellum of Ochromonas has attached to it a large number of rigid projections
known as mastigoneines, which move through the fluid in response to the passage
of the flagellar wave as indicated in Figure 10 (see Section 4.4).

We have listed some of the observed characteristics of the propulsion systems
of eukaryotes with flagella in Tables 4 and 5 and depicted the general features of
some spermatozoa in Figure 11 (for planar wave propagation w, = kcin these tables).
Note again that few organisms are completely documented and even more rarely
are all data for the same organism gathered under similar conditions.

TRAVELLING PLANAR WAVE OF
THE FLAGELLUM

DIRECTION OF
PROPULSION

G /
CELL

BODY

D FLAGELLUM

P

MASTIGONEME RIGIDLY
ATTACHED AT NORMAL
TO FLAGELLUM

Figure 10 The flagellar/mastigoneme propulsion system.
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Figure 11- A sampling of the variety of spermatozoon body geometries. The mammalian
spermatozoa—from bandicoot downward—are drawn at their relative sizes with the human
spermatozoon 40 um long. (Selected from Austin 1965.)
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43 Hydromechanics of Flagella with Planar Waves

From a point of view of hydromechanical understanding it is simplest to begin by
considering the propulsion of an organism by means of a single flagellum propagating
planar waves from base to tip. A simple but idealized example might best serve as
a starting point for the discussion. Suppose the spherical body of radius, 4, of the
idealized organism in Figure 3 is propelled by means of a flagellum with planar
waves of wavelength A(k = 2r/1), and wave amplitude, h, travelling at wave velocity,
c relative to the body. We view an element of the flagellum, S, in a frame fixed in
the body and assume the motion of § is purely normal to the direction x so that
the motion of the element relative to the fluid at infinity (which has a velocity, U,
corresponding to the velocity of propulsion) has components normal and tangential
to the axis of the slender-body element S given by '

dn = U sin ¢ —khccos 6 cos o, (18) '
qs = U cos ¢ +khc cos 0 sin ¢, (19)

Table 5 Spermatozoé propulsion

Body Flagellum

Length, L (um)
or

Length (B) (um) No. of waves

Spermatozoa of x width (um) Shape x wavelength
Bos (bull)  10xs 0 1% 60
Chaetopterus (annelid) - 34x%x1.7 a 1.25x25.4
Ciona (tunicate) - . 41x24 d 1.25x32
Colobocentrotus (sea urchin) 82x29 Jd 1.5x30
Culex (mosquito) . 17.1x 14 = 33x15.7
Didelphis (oppossum)
Mesocricetus (hamster) 13.8x3 7~ L =236
Homo (human) 5.8x3.1 o L=136
Lygaeué (milkweed bug) 4.8x%x1.0 o= 23x13.0
Lytechinus (sea urchin) 51x29 o 1.25x30
Mus (mouse) 33x5.5 2 1.2x65
Ostrea (oyster) 26x%x28 o L=47
Ovis (ram) 10.6 x 6.2 O L=59
Psammechinus (sea urchin) 1.0 Pal 1.25%x24
Tenebrio [ mealworm (beetle)] 6.2x1.7 =

4x11.7

# Midpiece included in “body.”
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where 6 = k(x— ct) and tan ¢ = kh cos 0. If we then assume known resistive co-
' efficients C, and Ci, the force on the element of length ds in the x direction is

C,ds[U—(1—7)U cos® o —(1—y)khc cos 0 cos ¢ sin ¢] (20)

at each instant in time where y = C,/C, is the ratio of the resistive coefficients. From

_an integration over one cycle in time it follows that each element is subject to a
mean force in the positive x direction which can be integrated over the length L
of the flagellum to yield a mean force on the flagellum equal to

C,L[U—(1—y)c—(1—p)(U—)(1 +k2h?)~ 7], ) o3\

If the organism were self-propelling, this would be equal to the drag ‘6n,uUA on
the head, Hence the propulsive velocity U is

U_ (1-p0-p A .
¢ (L-B+yB+0y (22)

where f = (1+k24?)"Y? and 6 = 6rnud/LC,. On the other hand, if the organism

Table 5 Continued

Flagellum Organism

Amplitude Beat

h (pm) form U/B Ulc Qlw, Conditions’ E References
11 3-D 9.7 0075 w, =135 37°C,pu=1cp 46, 170, 186
3.8 2-D 308 0.156 w,=166 16°C, u=1l4cp 41,46
43 3D& 402 0147 w,=220 16°C,u=14cp 41, 46
2-D :
2.8 2-D 278 0237 ®,=200 25°C, ATP reactivated 46, 81
6.4 0.36 165
3-D 37°C, swim as pairs 164
3-D 0.2 37°C . 164
3-D 8.6 0.5 37°C, U decreases 46%, 103, 164
in cervical mucus :
2.1 : 165
4.6 2-D 310 0185 (,=180 16°C,u=14cp 41, 46
15 3-D 0.5 37°C ) 164
4.7 2-D*  63.0 w, =270 23°C 70
3-D i
74 2-D° 128 w, =180 355°C 70
3-D .
4 2-D 190 w, =220 . ’ 91,93
4.2 2-D? 161 0.33 w, =176 6, 165

"> Waves formed by flagellar beat are two-dimensional near a boundéry (slide glass) and three-
dimensional far from the boundary. :
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wererestrained from moving, the thrust, 7, developed by the flagellum in the positive
x direction follows directly from (21) with U = 0 and is

T (1-pa- ﬁ)
brpdc é

(23)

Lighthill (1975, p. 55) shows that the results for more general waveforms do not
differ from the above, provided one uses a more general definition for f as the mean
value of the square of the tangential direction cosine of the waveform.

These results show the primary dependence of the performance of the flagellum
on the wave velocity, ¢, the resistive-force-coefficient ratio y = C,/C,, and the
nondimensional wave amplitude, kh. The performance is clearly enhanced by
decrease in both y and f (the latter arising from increasing kh) not only in terms of
uniform translational motion as given by U/c but also from the point of view of
acceleration from rest and maneuverability, both of which could be characterized
by T. Although there has been a tendency for the fluid-mechanical analyses to
concentrate on the optimization of the propulsive system in terms of seeking that
which would give maximum rectilinear propulsion per unit energy expenditure, it
is not at all clear that this is necessarily the most important feature of the system
for any particular microorganism. Indeed the ability to accelerate and maneuver
could be an asset as important, if not more important, to the organism.

According to the relations (22) and (23), U/c and T/6rpAc increase monotonically
with decreasing f or increasing nondimensional wave amplitude kh approaching
asymptotic values of (1—v)/(1+0) and (1 —v)/8, respectively, for large kh. But the
penalty paid for these enhanced propulsive effects is an increase in the energy
required; the mechanical rate of work being done on the fluid can readily be
obtained by integrating the increment of rate of work done per unit flagellar length
C,(gn)* + C(g,)? over one cycle of time and summing for the entire length of the
flagellum. Lighthill (1975) has shown that this leads to a maximum efﬁmency of
rectilinear propulsion by a general planar wave when

B =y"PA+0)/[y+0+y"*(149)], 24

for which U/c.= (1=9Y2)/(1+6). Furthermore, this optimurm value of 8 is rather
insensitive to the values of either y or é and takes values for y = % of 0.586 for
very small § (i.. an organism with a small cell body, A) and 0.471 for véry large &
(i.e. an organism with a large cell body). In the case of a sinusoidal waveform, these
values correspond to nondimensional wave amplitudes kh of 1.37 and 1.88, respec-
tively, and it is of interest to observe that many organisms with planar flagellar
waves appear to operate with wave amplitudes of this order. Similarly it is
instructive to examine the maximum mean propulsive force in one direction that
can be generated by a small element of a slender body whose position can oscillate
sinusoidally in time within one plane and whose angle of inclination in that plane
is also allowed to oscillate sinusoidally. One finds that the optimum propulsive
force per unit energy expenditure occurs when the position oscillates normal to
the direction of the required thrust, the mean inclination to- this direction is Zero,
and the inclination oscillation is 7/2 out of phase with the position oscillation. This
corresponds precisely to the form of motion in a travelling wave, and one further
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finds that the optimum amplitude of the inclination oscillation, 6, is 63.9°, which
- for a sinusoidal travelling wave yields a value for kh of 2.

Gray & Hancock (1955) examined the propulsion for sea urchin spermatozoa
(P. milians), which propagates a particularly sinusoidal waveform (see Figure 9), and -
observed an average propulsive velocity of 1914 um sec™!, in excellent agreement
with a value of 191 um sec™ ! computed by using the observed wave amplitude,

“length, and velocity and an expression similar to Equation (22) with y = 0.5. Lighthill
has since suggested, and Gray & Hancock were probably aware, that such agreement
was in some sense fortuitous and misleading. First, the more sophisticated analysis
of Hancock (1953) [see also Lighthill (1975) and Section 2.5] suggests that a more
accurate value of y is significantly higher (about 0.7), which in view of the factor
(1—7) in the expression (22) would cause significant disagreement. On the other
hand, Gfgy & Hancock (1955) do mention that propulsion was occurring in close
proximity.to either the glass or the air surface; from Section 2.6 we have seen that
the value of y could be significantly reduced and propulsion enhanced by the
proximity of a boundary and it would seem that the net result is a y of order 0.5.

The last observation serves further to illustrate the difficulty of wall effects upon
data obtained in the confined fluid of a microscope slide; it also further exemplifies
the beneficial propulsive effect that can be obtained by a flagellated organism
moving close to a solid boundary. The recent detailed analyses of this problem by
Katz(1974)yielded further information on these wall effects for flagellated organisms.
The results do not differ qualitatively from those expected on the basis of the result
(17), although Katz has examined the waveforms on the flagellum that would fead
to the maximum benefit in the presence of a boundary.

In concluding this section we must remark that while the snnphc1ty of the
resistive-force theory is a boon to biologists seeking apprommate estimates, many
potentially significant hydromechanical effects have been neglected in such an
approach. First, there is the previously discussed uncertainty in the force coefficients,
C, and C,, which in reality implies the necessity of abandoning such a simplistic
approach in order to seek more accurate solutions. Secondly, the effect of the often
large cell body on the flow experienced by the flagellum has been entirely neglected
and is a problem clearly in need of attention. A more acciirate analysis will require
construction of the entire flow field due to both the cell body and the beating
flagellum by means of fundamental singularities. Further evidence for the necessity
of such an approach is provided by the observations of the flow field near-a flagellum
obtained by Lunec (1975). Lunec compared the actual flow near the flagellum of
Crithidia oncopleti (as visualized by tracer particles) with a theoretical reconstruction
based on a distribution of stokeslets along the flagellar axis, whose strength was
obtained from Gray & Hancock’s resistive-force coefficients. The resulting fluid
velocities were in marked disagreement, and Lunec concluded that this could in
part be due to the proximity of the cell body.

44 Hispid Flagella

Some eukaryotic organisms such as Ochromonas (Figure 10), which propagate planar
waves, have rigid projections known as mastigonemes, which. protrude from the
flagellum. These mastigonemes move through the fluid as the waves pass along the
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flagellum, and their net effect is to propel the organism in the direction opposite
to that which would occur in the absence of mastigonemes. Jahn, Landman &
Fonseca (1964) suggested that a simple way of viewing the hydromechanical effect
of the mastigonemes is that they increase C, much more than C,, resulting in values
of y greater than unity and thus propelling the organism in the direction opposite
to that which occurs when y <'1 [Equation (22)]. It is, however, a simple matter to
apply resistive theory to the mastigonemes as Holwill & Sleigh (1967) and Brennen
(1976) have done and to show that for rigid mastigonemes the result (22) is altered
to

Ufe= —(1— B)(3=a)/(5+ 20+ 200+ B — B, 25) .

where o = 6mpuA/Cybn, and n, b, and C? are respectively the number, length, and
normal resistive coefficient of the mastigonemes. Here y has been assumed to be
one half for both flagellum and mastigonemes. Clearly if the total length of all the
mastigonemes together (bn) is greater than the flagellum length so that § > «, then
UJc is always negative and an organism with a hispid flagellum moves with its
flagellum forward while propagating waves along the flagellum in the same direction.
The result (25) yields a value of 60 pum sec”! for Ochromonas, which is in good
agreement with the observed values of 55-60 pm sec™! (Holwill & Sleigh 1967);
Brennen (1976) has also examined the case of flexible mastigonemes and concluded
that while the mastigonemes of Ochromonas are probably thick enough to have
sufficient rigidity for hydromechanical purposes, the smaller “hairs” on Euglena
flagella are probably so flexible that they have little hydromechanical effect.

. Helical Flagellar Propulsion

The propagation of a helical wave along any flagellum, as illustrated in Figure 12,
gives rise to a net torque on the flagellum about the longitudinal axis; this causes
the cell body to rotate (the material of the flagellum must rotate with the same
angular velocity) so that an equal and opposite torque on the cell body is generated
and the total torque on the organism is zero as it must be from mechanical first

U, propulsnon fluid velocity
-relative’ to body Wave velocity ,; ¢
relative to body:

HELICAL WAVE FREQUENCY RELATIVE
TO CELL BODY , w

Figure 12 Flagellar propulsion with helical waveform.
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principles. Although this point was fully appreciated by Gray (1953), it was left
-unresolved in some of the early resistive-theory analyses by Holwill & Burge (1963)
and Holwill (1966b). Chwang & Wu (1971) (see also Schreiner 1971) first presented
a complete solution in which both the condition of zero total longitudinal force
and the condition of zero total torque were applied to obtain not only the ratio
of the forward speed, U, to the helical wave velocity, ¢ (relative to the cell body),
but also the ratio of the angular velocity of spin of the cell body (equal to the
material rotation of the flagellum), r, to the angular velocity of the helical wave
propagation relative to cell body, w (equal to kc where k = 2z/A and 4 is the wave-
length of the helical wave). These interconnected results are

o 142PR 4 A [ 2(1+KPhAP 4 (24 KPR A 26
N S (1+2k*h*+ A*%)B* |’
' 2p2 1 g%\ B
Loy, (+ReanE @n
) 2(1+k2h%)*+(2+ k*h?) A* S

where we have changed the sign of the second expression by defining values of
w and Q to be positive in the same rotational sense in order to highlight the fact
that, as a result of the torque balance, w and Q are naturally of opposite sign. In
the above expressions & is the helical wave amplitude and ‘ '

A* = 3pA(1 +k*h) V227 LC,
B* = 4y[na® + A3(1+Kk*h2)? /2 L] /h2C,

where A is the radius of the cell body (assumed spherical), L is the distance from
the cell body to the end of the flagellum, a'is the radius of the circular cross-section
of the flagellum, and C, is the tangential resistive coefficient. It was assumed that
y = C,/C, was equal to 1/2. These results show interesting asymptotic limits; with
a vanishingly small head (4 — 0) the forward propulsion given by U/c will become
small and the material tends to rotate with a velocity, Q, almost equal and opposite
to the angular wave velocity, o. This particular limit has relevance to the propulsion

. of a spirochete, which, lacking a flagellum, propels itself by propagating a helical
wave along its long thin body; apparently the torque arising from the helical wave
is balanced by an opposite rotation of the surface of the body (Chwang, Winet &
Wu 1974 ; Kaiser & Doetsch 1975; Wang & Jahn 1972). On the other hand, for
a large cell body Q tends to zero, but the propulsive velocity again becomes small -
due to the large drag on the cell body. Between these limits a maximum value of
U/c occurs. For typical values of kh and kb of 1 and 0.1, respectively, this maximum
occurs when the “head-to-tail” ratio, 4/a, is between 10 and 20, Wthh is apparently
typical for many organisms.

As far as the helical flagellar propulsion of eukaryotic cells is concerned there
have been few comprehensive comparisons of the theory with observations; the
obvious difficulty is that the material rotation, Q, is extremely difficult to observe
or measure. Some partial analysis for Euglena by Holwill (1966b) did, however,

" appear to yield propulsive velocities of the same order of magnitude as those
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observed, and the results of Chwang, Wu & Winet (1972) and Winet & Keller
(1976) provide a detailed analysis of a more complex form of propulsion, namely
that associated with the prokaryote Spirillum. In Tables 4 and 5 we have compiled
some of the known data on eukaryote propulsion by flagella ; invariably the helical
wave propagation frequency quoted is the apparent wave frequency, w,, seen by the
observer, and it should be noted that according to the present definitions for helical
waves o, = O+ o.

4.6 Prokaryotic Flagellar Propulsion

The above analysis applies to helical eukaryotic flagella and requires modification
as far as prokaryotic flagellar propulsion is concerned; wave propagation along
the flagellum should be replaced by relative material rotation between the cell body
and the flagellum if the basal motor model is to be accepted. Although the results
for this case do-not appear explicitly in the literature, they should be readily
obtained by the same methods used by Chwang & Wu (1971), and one can anticipate
that the results will only differ from (26) and (27) because of the torque created
by the different angular velocities of the material of the flagellum. The effect is
probably small when the cell body is relatively large, and the torque due to the
motion of the flagellar element through the fluid in an azimuthal dlrectlon is much
larger than the torque due to flagellar material rotation.

Shimada, Yoshida & Asakura (1975) made a complete set of measurements for
the bacteria Salmonella (many flagella forming a bundle) and Pseudomonas (single
flagellum) and comipared their observations with the expressions (26) and (27). The
proper comparison might be with the expressions modified as suggested above;
nevertheless, it is of interest to observe that while the agreement in the case of
Pseudomonas appeared reasonable, the theory gave significantly lower values for
U/c than those observed for the multiflagellated Salmonella. Although other
explanations are possible, these results suggest that the effective y for a flagellar
bundle may bé¢ significantly less than 1/2, a not unreasonable possibility.

5 THE HYDROMECHANICS OF CILIARY SYSTEMS
5.1 Ciliary Motions

In the previous section we discussed the hydromechanics of locomotlon in organisms
propelled by individual flagella or flagellar bundles. In some organisms ‘with more '
than one flagellum the hydromechanical analysis could proceed along similar lines,
provided the hydrodynamic interactions between the flagella are relatively weak.
However, there are organisms with more than one flagellum that seemingly derive
a beneficial propulsive effect by adjustment of the phase relationships of the beat
patterns of their “fagella” [for example Mixotricha (Cleveland & Cleveland 1966)
and Volvox (Hand & Haupt 1971)]. It appears that such beneficial interactions can
also accrue to groups of individual organisms swimming close to one another ; there
are clearly analogous natural phenomena at high Reynolds numbers in the flight
patterns of groups of birds and in the schooling of fish (Weihs 1975).

Cilia are essentially short flagella, which may beat back (recovery stroke} and .
forth (effective strake) at different rates transcribing what is known as a “polarized”
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beat or which may oscillate in a manner indistinguishable from “eukaryotic flagella.”
" They occur in large arrays, such as “ciliated epithelium,” and produce fluid motion
by collaborative action arising from a definite phase relationship between the beats
of neighboring cilia. The presence of such a relationship is known as metachrony,
which often results in a wave, known as a metachronal wave, travelling over the
array. It may be that ciliary systems evolved from flagella, because of the beneficial
hydrodynamic effects of the interactions of the cilia.

Cilia occur throughout the animal kingdom and indeed are extensively used not
only for producing fluid motion but also for sensing motion. Examples of the former
use are the cilia in the gills of nonmotile marine animals, used for ingestion of water
(Aiello & Sleigh 1972, Sleigh & Aiello 1972), and the cilia lining the trachea and
lungs that provide a cleaning mechanism by continuously propelling mucus up and

“out of the lungs. (Figure 13 is an electron micrograph of the cilia of.frog lung
mucosa.) Cilia also line the oviduct and contribute to the transport of the ova in
that organ (Halbert, Tam & Blandau 1976; see also Dirksen & Satir 1972); the
uterine wall is ciliated and the fact that spermatozoa appear to swim close to this
wall may be because they derive a beneficial effect from the beating cilia. In addition,
the cilia on the membrane lining the ventricles of the brain (the épendyma) have

Figure 13 A scanning electron micrograph of frog respiratory mucosa. These fixed
organelles display a typical metachronal pattern that reflects the beat-rhythm orientation.
Scale bar is 10 um. (We are indebted to Dr. P. P. C. Graziadei for this photograph.)
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been shown - to create sufficient local mixing to affect the thickness of the so-called
unstirred layer, thereby enhancing the diffusion or transport of ions across the
membrane (Nelson 1975). There has been little detailed hydrodynamic analysis of
this system. Other functions in which motile cilia play a major role are cited in
Table 1. So-called sensory cilia tend to be nonmotile and often display a 9+0
‘microtubular axoneme. They are found in sensory organs devoted to photoreception
(“eyes”; the flagellum of some protozoa is also part of a photoreceptor system: e.g.
Hand & Haupt 1971), chemoreception (olfactory organs: e.g. Reese 1965), and
mechanoreceptors, which are adapted for detection of sound, touch, or orientation
in a gravity field. In no case has it been demonstrated that the cilia are in fact
“transducers” of stimulus energy into nerve transmission energy (Barber 1974). They
all appear to “sensitize” the cells carrying them for the transduction process by
either (a) distortion of the membrane so as to produce changes in the molecular
organization of the excitable area, which cause changes in ion permeability leading
to a depolarization, (b) deformation of adsorbed mucus so as to give rise to
piezoelectric potential differences, or (¢) initiation of electrical changes, which result
from some “inherent mechanosensitivity” in the cilia (Barber 1974). Understanding
of the operation of sensory cilia'is beyond the limits of a strictly fluid-mechanical
analysis, but the fluid mechanician needs to be aware of these limits to keep his
analysis in perspective. The importance of ciliary systems extends even into ecological
areas. For example, an individual California mussel Myrtilus californianus can
remove a significant amount of suspended mud and other matter from water, given
an average filtration rate of 2.6 liters of water per hour through its cilia-lined gills
(Fox & Coe 1943)..

‘But- perhaps the ciliary systems most readily observed are those that provide
propulsion for eukaryotic cells (e.g. Figures 14 and 15). A sampling of the propulsive
parameters of such cells is presented in Table 6. From a hydrodynamic-point of
view these systems are more readily understood because the fluid is usually
Newtonian, .or at least is readily adjusted to be Newtonian without placing the
organism in an unusual environment. On the other hand, the fluid in mammalian
ciliary systems is often highly non-Newtonian (e.g. the mucus in the lung). Although
we concentrate here piimarily on the locomotion of ciliated organisms, the future
extension of the knowledge gained to the understanding of other c111ary systems in
nature should be borne in mind.

Each individual cilium usually has a fairly regular beat pattern (see, for example
Sleigh 1960, 1962, 1968, 1972, 1973, 1974c; Parducz 1967), which often appears to
be created by the propagation of a bend from the base to the tip of the cilia as
illustrated by the beat pattern for Opalina in Figure 16. That phase of the beat in
which each cilium is moving in a general direction s6 as to propel the organism
is. termed the effective stroke. Generally the cilium is straightened out during this
‘phase and in the remainder of the beat known as the recovery stroke the cilium
sneaks back to its starting point in a bent position so that a significant portion
of each cilium is moving tangential to the fluid rather than normal to it as in the
effective stroke. Such asymmetry immediately suggests that the cilia are taking
advantage of the difference in the force coefficients for flow normal and tangential
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“to a slender body. Furthermore, the motion is often three-dimensional with some
recovery motion taking place out of the plane of the effective stroke, as is the case
with Paramecium (Machemer 1972a,b; Tamm 1972). While precise information on
the ciliary beat pattern represents necessary dala prior to any hydrodynamic analysis,
it is difficult to obtain from light microscopy studies. In this respect the beautiful
electron microscopy studies originated by Tamm & Horridge (1970) and Tamm
(1972) greatly add to our knowledge of ciliary motion (sce Figures 14 and 15).

Often eukaryotic cilia ensembles exhibit metachrony: in one surface direction a
cilium beats slightly out of phase with its neighbor so as to produce a mctachronal
wave (velocity, ¢)travelling over the surface (see Figure 14). To add to the complexity
the dircction of wave propagation may have almost any orientation relative to the
direction:of the effective stroke. Knight-Jones (1954) coined a series of terms to
identify this relationship : when the metachronal wave propagation and the effective
stroke are in the same direction, this is known as symplectic metachronism; if they
are in opposite directions, it is termed antiplectic; and if the directions are normal
to one another they are termed diaplectic (dexioplectic if the rotation from the
metachronal wave direction to the effective stroke direction is 90° anticlockwise
viewed from.above and laeoplectic if 90° clockwise). Symplectic mietachronism is
illustrated by the electron micrograph of Figure 14 (Tamm & Horridge 1970) and
the upper part of Figure 16 for Opalina; the lower part of Figure 16 represents an
antiplectic approximation to the beat pattern of Paramecium, which does, however,
contain a dexioplectic component as indicated in the electron micrograph of
Figure 15 (Tamm 1972). On the other hand, there are ciliary sysiems in which
metachrony is indiscernible. For example, Cheung & Jahn (1975) could not detect
any organized metachrony in rabbit tracheal cilia, and Figure 17 from the [rog’s
olfactory epithelium shows almost random cilia orientation (Graziadei 1971); on the
other hand, another scanning electron micrograph from Graziadei (1971) of the
cilia in the lung mucosa of the frog shows clear metachronism (Figure 13).

Many organisms have an avoidance response in which they reverse the direction
of metachronal wave propagation and thus their direction of motion, a phenomenon
known as ciliary reversal (Jahn 1975). This appears to be linked to their longitudinat
electropotential gradient since it can be achieved by external imposition of an
clectrical potential. Other organisms such as Opalina appear able to vary con-
tinuously the direction of wave propagation and thus achieve greater maneuver-
ability (Sleigh 1962). These responses in organisms with no identifiable and separate
nervous system merely serve to highlight one of the great puzzles of ciliary systems,
namely how these delicate phase relationships between the cilia are controlled. If
one had 1o build a mechanical model to simulate such a system il would be
extremely difficult, which probably accounts for the singular lack of mechanical
model studies [the carly work of Miller (1966) is the only work of this kind that
we know of]. Nervous control of ciliated epithelium is one of the important problems
to which these studies may be applied. In this context it- may be noted that
Murakami & Takahashi (1975) have shown that transient depolarization of the cell
carrying the cilia by nervous activity is correlated with the “quick-arrest response”
of the cilia.
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Figure 14 A scanning electron micrograph following rapid fixation of the ciliated protozoan
Opalina (from Tamm & Horridge 1970). As in the preceding figure, the in vivo metachronal
wave orientation is reflected in the pattern over the fixed specimen. Arrows indicate the
directions of the metachronal wave. The key difference between the two specimens-is that
this figure is limited to all or part of a single cell. (We are indebted to Dr: S. L. Tamm for
this photograph.)



374 BRENNEN & WINET

Figure 14 A scanning electron micrograph following rapid fixation of the ciliated protozoan
Opalina (from Tamm & Horridge 1970). As in the preceding figure, the in vivo metachronal
wave orientation is reflected in the pattern over the fixed specimen. Arrows indicate the
directionis of the metachronal wave. The key difference between the two specimens is that
this figure is limited to all or part of a single cell. (We are indebted to Dr: S. L. Tamm for -
this photograph.)
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O)

Figure 15 A scanning electron micrograph following rapid fixation of the ciliated protozoan
Paramecium (from Tamm 1972). The metachrony of this specimen is dexioplectic and/or

antiplectic. A-P, anterior-posterior axis; D-V, dorsal-ventral sides. (We are indebted to Dr.
S. L. Tamm for this photograph.)
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In the following sections we confine ourselves to the hydromechanics of ciliary
systems. We would, however, be remiss in not mentioning the important work in
which attempts have been made to recover the internal motive force for ciliary beat
patterns by working backwards from the known motion, the hydrodynamic forces,
and the presumed elastic structure of the cilia (Holwill 1966a, Harris 1961, Sleigh
& Holwill 1969, Rikmenspoel & Sleigh 1970, and Rikmenspoel 1975). Hopefully
such analyses will make contact in the future with the clectron-microscopy studies

Table 6 - Eukaryote propulsion by cilia

Body

Cilia
. Cilia No. cilia/um?
Length (B) (um) length or
Eukaryote x width (um) Shape [ (um) distribution
Balantidium entozoon 106 x 55.6 It)
Coleps hirtus 66 x 30 D
Colpidium sp. 79.1 x 38.6 G
Condylostoma patens 371 x102 0
Didinium nasutum 126 x 87 £x 2 circular rows
Euplotes patella® 202x 124 Q
Frontonia sp. 378 x 213 o
Haiteria grandinella® 60 x 50 o4
Kerona polyporum® 107 x 64 6 rows cirri
Metopides sp. 11533
Nyototherus cordiformis 139 x97.2 4]
Opalina ranarum 350 % 112 0 15 10
Ophryoglena sp. 250x92.8
Ovpisthonecta henneg® 126 x 75 o
Paramecium aurelia 125% 31 4
P. bursaria 126 x 57 d
P. calkinsii - 120 x 44 Vi
P. caudatum 242 x 48 4 12 0.5
P. marinum 115%x49 4
P. multimicronucleatum 251 %62 4
Prorodon teres 175 x 160 0
Spirostomum ambiguum?® 1045 x 95 a 8.2
S. polymorphus® 208 x 15.2 J 27.5 3.5 um long.
separation
Styionichia sp.® 167 x 86 0
Tetrahymena pyriformis 55.7x20 0. 7 17-23 columns
Tillina magna 162 x 82 (S
Urocentrum turbo 90 x 60 0 2 circ. rows
Uroleptus piscis® 203 x 52
U. rattulus®
Uronema sp. 40x 16 0

* Has undulating membrane and/or membranelics
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of the internal structure of cilia, particularly those of Warner & Satir (1974) and
" Warner (1974).

The fluid mechanics of ciliary systems is clearly quite complex and most of the
detailed and quantitative analyses have been based on simplifying assumptions
concerning the interaction of the cilia and the fluid. Most of these studies have
concentrated on what we shall term local fluid/cilia interaction models; for these
purposes most authors have considered an infinite flat surface upon which the cilia

Table 6 Continued

Cilia Organism

S Cilia
. Wavelength beat )
Metachrony A (pm) freq. (Hz) U/B U/c Condition References

t 11.6 149

104 47
dexioplectic 10 . 149
- 2.8 20°C 47,149
dexioplectic 3.7 ‘ 47, 149
62 . 47
43 21.5°C 47
8.9 47
43 47
dexioplectic 17.1 3.1 47, 149
dexioplectic 26.6 149
symplectic ) 4 ) 47,194
dexioplectic 11.4 16 149, 161
dexioplectic 10 95 119,149
16 21°C. 47
79 25°C 47,48
8.3 48
12 29 10.9 ) 48, 149, 199, 200
10.8 8.1 19°C 47,48
11.3 48,210
) 6.1 47
antiplectic 8.5 30 0.78 R 47,53
dexioplectic 13 33 4.6 126 20-22°C 47,194, 203
25.5 59 28 22°C 47, 146
dexioplectic 16.2 20 8.1 20°C 149, 162, 231
123 47, 149
7.8 28.5°C 47
24 22°C 47
21°C 47

47
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motions are spatially and temporally periodic so as to form metachronal waves.
The manner in which such solutions should be applied to finite, ciliated organisms
is not entirely -obvious; we return to this later. For the present, we discuss the two
principal kinds of local fluid/cilia interaction models, the so-called envelope and
sublayer models. ’

5.2 The Envelope Model

The envelope model assumes that the cilia are sufficiently closely packed together,
as in the case of Opalina in Figure 14, so that the fluid effectively experiences an
oscillating material surface. This envelope is commonly assumed to be impenetrable
and the motion of each “particle” on the surface is assumed to be roughly
equlvalent to the locus of the tip of an individual cilium. An analysis of the low-
Reynolds-number flow due to such an oscillating sheet was made by Taylor (1951)
asarough two-dimensional model for flagellar propulsion ; thus Taylor only pursued
the solution in which the “particles” had motions normal to the plane of the surface.
Subsequently in a short note Tuck (1968) delineated the nature of the solution in
which the oscillatory motions were purely tangential to the surface. Since then,
solutions of a more general kind with oscillatory particle motions or ciliary loci of
more general form have been produced by Reynolds (1965), Blake (1971b), and
Brennen (1974). Consider an arbitrary elliptical form for the ciliary tip locus

OPALINA , SYMPLECTIC METACHRONISM

EFFECTIVE STROKE METACHRONAL WAVE
: PROPAGATION

PARAMECIUM , ANTIPLECTIC METACHRONISM (APPROXIMATION)

EFFECTIVE STROKE " . METACHRONAL WAVE

PROPAGATION
{ - K X

Figure 16 Approximate beat patterns for Opalina and Paramecium with the positions of
an individual cilium at equal intervals in time on the left and the positions of an array
of cilia at a given time on the right, showing the symplectic metachronism of Opalina and
an antiplectic approximation to the metachronism of Paramecium.

A
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Figure 17 A scanning electron micrograph of the mucociliary epithelium of the olfactory
surface of the frog. These cilia operate with no apparent metachrony, and the resulting
random motion serves to stir and mix rather than propel the ambient fluid. Accordingly,
they may affect transmembrane transport, an important consideration in any chemo-
sensitivity analysis. The scale bar is 10 yum. (We are indebted to Dr. P. P. €. Graziadei for
this photograph.)

’ (Figure 18) in which the tip performs a simple harmonic motion of amplitude h;
tangential to the surface and a simple harmonic motion of amplitude 4, normal to
the surface. These deflections of frequency  have a linear phase shift in the s
direction along the surface so as to produce a metachronal wave of velocity, ¢, and
wavelength, A(k = 2z/A), travelling in the positive s direction. The mean position
of the material surface (and thus of the ciliate) is fixed in this frame of reference.
Far from the envelope these oscillatory motions produce a rectilinear translation
of the fluid tangential to the sheet whose magnitude in the positive s direction we
shall denote by U. If at any point, s, the motion tangential to the surface leads the
motion normal to the surface by a phase angle (§—/2) and we define a parameter
K = (h2 —h2)/(h? + h?), then the various cilia loci that are so described are indicated
diagrammatically in Figure 18. Note that K = — 1 corresponds to Taylor’s (1951)
solution, whereas K = +1 corresponds to Tuck’s (1968) solution. Brennen (1974)
has shown that, provided the amplitudes h, and h, are small compared with the



380  BRENNEN & WINET

wavelength 4 and the Reynolds number Re = w/k?v is small, the translation velocity,
U, is given by ‘

u_, (B+1) B=1 ]

— =$k2h2+hY)| = (1-K*"2 cosf - —=~ K 28

L=l )[_2/3 ( )% cos 2% (28)
where

B={[(1+ReH)V 2+ 17312

Notice that this steady translation is-quadratic in the nondimensional amplitudes
khg, and kh,; since thése are assumed small, the velocity U is much smaller than
the oscillatory velocities produced by motion of the envelope, which are first-order
inkhgand kh,; and which, incidentally, decay like e * with normal distance, n, away

K=1 et — = -~ - s . —— & e — — — - ———

!
|
!
|

§
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' I

'

'

|

i

|

Ciliary tip locus
(sympilectic)

Metachronal

wave

7 77 7777

Figure 18 Variations of arbitrary elliptical ciliary tip loci with the parameters K and 6.
Thefigureis correlated with the cell surface horizontal, the fluid above it and the metachronal
waves travelling to the right. An example of a ciliary tip locus (symplectic) is indicated in-
the lower part of the figure.
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from the envelope. The translation, U, arises from two different quadratic com-
binations of first-order oscillatory terms. The first and most important is in the
quadratic term of the Taylor series.expansion through which the velocity conditions
on the envelope are satisfied. The second quadratic term is O(Re) smaller and arises
from the inertia terms in the Navier-Stokes equations. The latter disappears, there-
fore, when Re — 0 and then '

U , .
= B0+ (1~ K?) cos - K], (29)

which is in agreement with Blake’s (1971b) results. The variation of the propulsion
velocity, U, with the (K, §) parameters was investigated by Brennen and is shown
in Figure 19 in which contours of constant Uj/ck*(h% 4 h2) are plotted. Notice that
this exhibits two optimum forms for the ciliary locus. When K = —1/\/5 and
0 = 0 a maximum propulsive velocity of ck(hsz+h,?)/\/§ is achieved in the positive
s direction, a situation that corresponds to symplectic metachironal propulsion. A
simple Galilean transformation to bring the fluid at infinity to rest models a ciliate
travelling in a direction opposite to the direction of wave propagation. On the
other hand, maximum antiplectic propulsion of the same magnitude can equally well
be achieved with a ciliary tip locus for which K = + 1/ﬁ, ‘0 = 7 (see Figure 18).
The energy expenditure per unit surface area, E, for these motions is simply given
by uc?k3(h2 +h2). It follows that the above optima are also the most efficient means
of propulsion in terms of propulsive velocity per unit energy expenditure per unit
area. Finally, we note that calculations based on the expression (28) for nonzero

1-0

Wi
ww

Figure 19° Variation of the dimensionless propulsive velocity U/ck?(h? + h2) with the ciliary
tip locus parameters K and 8 according to the envelope model result (29). Contours are
shown for various labelled values of U/ck?(h? +h2); the figure should be used in conjunction
with Figure 18. ) )
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Reynolds number indicate that even when Re is of order unity, the contours are
little changed from those of Figure 19 (Brennen 1974). :

Envelope models of this kind have been applied to a wide variety of physiological
situations. Blake (1971b) and Brennen (1974, 1975) considered their application to
the locomotion of ciliated microorganisms. Katz (1972) and Shack & Lardner (1972)
used the method to model the propulsion of fluid in the ciliated tubes of mammalian
reproductive systems, both female and male (see also Blake 1973b). In this regard
considerable attention has been given to the role of the cilia in the mammalian
oviduct in propelling the ovum. Ross {1971) has also used an envelope model to
study the propulsion of mucus by the ciliated epithelium of the trachea. Such
analyses have much in common with peristaltic pumping (Jaffrin & Shapiro 1971)
where: the “envelope” is a real material surface; in this case, considerations of and
conditions upon the extensibility of the envelope are often imposed.

Apart from other more general problems to be discussed below, one of the major
difficulties in comparing results from envelope model analyses with observations is
that most of these analyses are limited to amplitudes h, and A, that are small
compared with the metachronal wavelength, A; that is, kh, and kh, are small. On

olc

4
3
2
!
L 1 ot )
o} 1 2 3 4 5
ka

F igt)re 20 Comparison of the propulsive velocity of some ciliates (data given by areas
denoting the scatter in the available information) with extrapolated predictions of envelope
theories of the form U/e o«c k*I2.
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the other hand, as illustrated by the values in Table 6, most ciliary systems appear
to operate with values of kh, or kh, that are of order one or greater. This point is
exemplified by the data presented in Figure 20, where values of U/c are compared
with kI, I being the cilia length ; for purposes of comparison with-the expression
(29) and Figure 20 we may note that for many real ciliary beat patterns

P~ 4(h2 +h2).

Blake (1971b) has done some preliminary envelope analysis for larger amplitudes by

evaluating higher-order terms in khj, kh,. But further nonlinear analyses, which also

incorporate higher-order harmonics in time in order to model the differences in the

speeds of the “effective” and “recovery” strokes, are probably necessary before a
conclusiye evaluation of the utility of envelope models can be made.

53 Suéblayer Models

A second distinct set of models has been proposed and developed for ciliary systems.
These models concentrate on the interactions between individual cilia with the
surrounding fluid and hence deal specifically with the flow among the cilia. For this
reason they have been termed sublayer models. Blake (1972) first' proposed such
an analysis for the flow created by a regular array of cilia beating metachronously
on an infinite plane wall.

By considering the relative motion between an element of a cilium and the
surrounding fluid, sublayer models seek to establish the incremental force (or
stokeslet strength) on each and every cilium element through use of resistive-force
theory. The entire flow field, denoted by its velocity q(x) wheré x is a position
vector, is then considered as having been created by this distribution of stokeslets
and can be formally represented as an integral of the velocities induced at each
point by each cilium element. Since these slender bodies operate close to a wall,
the effect of the image system of singularitics should also be included in order to
satisfy a no-slip condition at that boundary. This has important .consequences for
ciliary propulsion because of the different forms of image systems for stokeslets
oriented normal and tangential to the wall, as discussed in section 2.4. Since the
far-field for normal stokeslets decays more rapidly (like » %) than that of tangential
stokeslets (like »~2), it follows that the tangential motion of the cﬂlary elements is
of much greater consequence than the normal motion.

The fluid-mechanical problem is completely defined when the relative motion
between an elemental length of cilium at a position x4 and its surrounding fluid is
formulated in terms of a known cilium motion due to a specified beat pattern and
the fluid velocity, q(xo). There is, however, a difficulty here because the model
presupposes that after a Galilean transformation utilizing q(x,) the element is
translating as though in fluid at rest far from the element. This implies that the
methods developed up to the present time must be limited to situations in which
the cilia are sufficiently widely spaced so that the local flow field around one cilium
does not extend to the neighboring cilia. One is left with the impression that such
difficulties are not entirely resolved in the existing literature. Indeed, Blake & Sleigh
(1974) have pointed out that desirable improvements to the present sublayér models
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could be provided by studies of the translation of slender bodies in the presence of .
other similar bodies. - .

The above description suggests an iterative scheme that begins with a best guess
for q(x) and proceeds through evaluation of the stokeslets to the calculation of a
“new” velocity field q(x). Such iterative methods have been used by Keller, Wu &
Brennen (1975). Alternatively the problem may be put in the form of an integral
equation for q(x) as originally demonstrated by Blake (1972).

In his sublayer analyses Blake (1972) included only a steady or time-averaged
velocity of the fluid tangential to the wall, u, in his calculation of the stokeslet
strength and obtained. the steady velocity profile u(xs) (x; being the coordinate
normal to the wall) that results from his solution of the integral equation. Keller,
Wu & Brennen (1975) pointed out, however, that since oscillatory velocities of
comparable and greater magnitude are created by the cilia motions these should
be included in evaluation of the forces on individual cilium elements. They used a
method somewhat different from that of Blake in which these forces are smoothed
out to form a continuous body force field within the cilia layer and their solution
is achieved by solving the Stokes equations in this layer with these body force terms
included, The resulting iterative solution yields a velocity profile not only for the
steady velocities but also for the oscillatory velocities both normal and tangential
to the wall. :

16 1.6

L2 1.2 —
X3 X3 |

o1 0.8~ —

o4l 04| -

o) Z — 1 OL ) 1 ! L L

-05 -0 0.5 1.0 1.5 =1 0] | 2 3 4 5

u{xz)/c ufxg) /¢

Figure 21 Mean tangential velocity profiles within the ciliary array (the normal coordinate,
X3, has been nondimensionalized by the cilia length ) for Opalina (left) and Paramecium
(right) by using the planar beat forms of Figure 16. The dashed lines (Blake 1972) neglect
the oscillatory velocity interactions of the cilia and were computed for cilia spaced at
intervals d,, d, on the cell surface, where k2d,d, was assumed to be 0.04 for Opalina and
0.00025 for Paramecium. The solid lines (Keller, Wu & Brennen 1975) include oscillatory
velocities and are computed for values of k2d,d, of 0.082 and 1 3, values apparently more
consistent with the observed cilia distributions.
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The solutions are all obtained in a frame fixed in the organism so that u(oo) is
the.propulsive velocity of the ciliary system. Indeed a particular feature of all the
present infinite-sheet sublayer models is that u(x;) remains constant beyond the
maximum extent of the ciliary tips; we return to this point later. The majority of
existing solutions are also for purely planar cilia beat patterns and for purely
symplectic or antiplectic metachronism. As observed earlier, virtually all beat
patterns contain to some greater or lesser degree displacements in all three
coordinate directions and have metachronal patterns that deviate toward the
diaplectic. Velocity profiles derived by Blake (1972) and Keller, Wu & Brennen
(1975) for Opalina and Paramecium are shown in Figure 21; these are based on the

_planar beat patterns of Figure 16 and the assumption of symplectic and antiplectic
metachronism for these two organisms, respectively. In both cases there are practical
difficulties because the cilia of Opalina are too densely packed (see Figure 14) for one
to have confidence in the sublayer model as presently constituted, and in the case
of Paramecium because the metachronism is diaplectic and the beat three-dimensional
(see above). The latter point was later rectified by Blake (1974a) who incorporated
three-dimensionality in a sublayer model for Paramecium.

Apart from the individual imperfections of the two local fluid/cilia interaction
models mentioned above, there are further difficulties in.applying either to real
physiological systems. We confine ourselves here to discussion of two of the
principal difficulties to which some attention and thought has been given.

54 Ciliated Organisms

Apart from the infinite-sheet geometries discussed above, ‘several attempts have
been made to apply these models to finite organisms. In the first solution of this
kind Blake (1971a), extending earlier work by Lighthill (1952), approximated smail-
amplitude travelling waves on a spherical body by combining two spherical-
harmonic functions whose orders differed by one. This envelope model is rather
restrictive in terms of the permitted variation of wave form and amplitude and it
approximates travelling waves only near the maximum width of the body.
Subsequently Brennen (1974, 1975) has pointed out that the flow around most
ciliated organisms for which the metachronal wavelength is small compared with
overall dimensions will be comprised of two parts: (a) a relatively thin oscillatory
boundary layer within which the oscillatory motions created by the cilia will decay
rather rapidly with distance from the surface and (b) an outer steady Stokes flow
around the organism. The problem is then to find some way of matching a local
fluid/cilia interaction model within the boundary layer to the so-called comple-
mentary Stokes flow outside the boundary layer. For self-propelling organisms this
complementary Stokes flow and the velocity of propulsion can only be obtained
explicitly after application of the condition of zero total force on the organism;
the velocity field far from the organism in this case probably cannot be like a
stokeslet since the self-propelling organism exerts no net steady force on the fluid.
It must be like a Stokes doublet or higher order. In this regard- it is of interest to
relate that some recent flow-visualization experiments with minute polystyrene
tracer particles suggest that it is not like a Stokes doublet but more liké that.of a



386 BRENNEN & WINET °

potential doublet (Keller & Wu 1976). Such a flow has less dissipation of energy .
than the Stokes doublet, which suggests that the ciliary system, at least in the
organism observed, has been optimized to the extent of producing a complementary
Stokes flow that does not contain a Stokes-doublet component. On the other hand,
if the organism is pinned down, the complementary Stokes flow will be like that of
a stokeslet in the far field and the thrust produced by the restrained organism can
be computed. Brennen (1974, 1975) has applied such a matching technique to the
propulsion of spherical and ellipsoidal ciliates using an envelope model for the
local fluid/cilia interaction, and Blake (1973a) has also considered the effect of a
finite cell body on results obtained for infinite-sheet models. -

One particular feature of Brenneri’s results (1974, 1975) is that they allow
evaluation of the thrust, T, that a restrained organism can produce. [With regard
to this it is worth noting, as Taylor (1951) did, that there is zero net thrust in the
infinite-sheet solutions.] Typical values from an envelope model are shown in
Figuré 22 for direct comparison with Figure 19. Note that the ciliary beat patterns
for optimum thrust on restrained organisms differ from those for optimum
rectilinear propulsive velocity. This raises questions, which will not otherwise be
discussed here, of whether a large starting (or turning) thrust or an optimum steady
propulsive velocity is of greater importance for individual species.

Recently some attempts have been made to measure the actual velocity profiles
near the surface of ciliated microorganisms. Cheung & Winet (1975) report on some
such measurements on Spirostomum using minute polystyrene tracer particles. One
would hope that further quantitative data for other physiological situations will be
obtained in order to allow detailed evaluation of the theoretical models. The mean
velocity profiles-of Cheung & Winet (1975) are shown in Figure 23. A particular
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Figure 22 Typical contours of the nondimensional thrust, 3T /4rnuk?(h? + hZ) Ac, where T is
thrust developed by a restrained ciliate of typical dimension 24, according to an envelope
model for the fluid/cilia interaction (Brennen 1975). For comparison with Figures 18 and 19.
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Figure 23 Measured mean tangential velocity profiles for a swimming Spirostomum for
different swimming speeds U (in pm/sec) as indicated [from Cheung & Winet (1975), who
observed polystyrene tracer particle motions]. The normal coordinate x3 is given in cilia
lengths and the horizontal velocity axis has been nondimensionalized by dividing by the
fastest tracer particle value for each profile. Effective stroke toward the right.
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feature of these results concerns the variation of the mean tangential velocity with
distance, x3, from the surface (here normalized with respect to cilia length) for the
larger values of x3. The corresponding envelope model for an infiriite sheet would
suggest that the velocity approaches its asymptotic value within a value of x; of
about 3; the sublayer model for an infinite sheet has no variation beyond x; = 1.
Thus it-would seem that one is measuring the complementary Stokes flow at the
higher values of x;; hence the aforementioned need to understand the interaction
between this predominantly steady flow and the more localized and unsteady
interaction between the cilia and the fluid. In this context studies of the propulsion
of ciliates in tubes can yield important information (Winet 1973).

5.5 Internal Flows and the Propulsion of Mucus

It appears that the primary difficulty regarding internal flows (and a number of
external flows: Jahn et al 1965, Jahn & Hendrix 1969, Winet & Jones 1975) in
organs with ciliated epithelia is that the fluid usually is non-Newtonian. This fluid
virtually always consists of mucus or some other association of glycoproteins. Such
systems are called mucociliary systems. When the concentration of these long-chain
polymers in the colloidal system is greater than about 1% (wt vol ™1), the system
invariably displays significant viscoelastic, shear-thinning, or thixotropic effects. At
higher concentrations gel particles and eventually gel networks form. At all mucin
concentrations up to and including the ones that produce gelation—the network-
formation process—liquefaction (gel — sol transformation) will occur under applied
stress (see Frey-Wyssling 1952; Eliezer 1974 ; Litt 1970; Hwang, Litt & Forsman
1969 ; and others). ’

The propulsion of mucus in mammalian trachea is one such situation that
appears to be dominated by viscoelastic effects. The conventional view is that a
blanket of highly viscoelastic mucus lining the airway is propelled by cilia that are
surrounded by a much less viscous fluid (serous fluid). The cilia appear to move
the blanket by contacting it only during the effective stroke (Cheung & Jahn 1975).
Experiments by Sadé et al (1970) have indicated that the propulsion of mucus is
quite sensitive to the form and state of the mucus, with optimum propulsion
occurring when the concentration of glycoprotein is close to that of the sol — gel
transformation. Ross & Corrsin (1974) constructed a theoretical two-fluid-layer -
model (inner serous-fluid layer and outer viscoelastic blanket of mucus) for mucus
transport employing an envelope model for the cilia/serous fluid interaction. Their
calculations indicate that propulsion is enhanced when the mucus is fairly rigid and
when the ciliary tip loci have predominantly horizontal motions. Blake (1975) has
also applied his sublayer method to model the interaction of the cilia and the
serous fluid (see also Miller 1969 and Barton & Raynor1967) and the subsequent
propulsion of a solid slab representing the mucus blanket ; he also gives a qualitative
discussion of the effects of the elasticity of the slab.

However, the observation by Cheung & Jahn (1975) of more direct mechanical
propulsion of the mucus blanket appears to require a reevaluation of the. fluid
mechanics of tracheal revicus propulsion. If the cilia penetrate the mucus only during
the effective stroke, this provides a much more direct mechanism for mucus pro-
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pulsion. Furthermore, such a mechanism would not refuire any particular
organization of the metachrony of the cilia, unlike most of the fluid-mechanical
models. Indeed, some confirmation of this direct-contact mechanism is provided
by the fact that propulsion secems to take place in the absence of organized
metachronism (Cheung & Jahn 1975), which is often hard to observe in tracheal
cilia. The observations suggest that the cilia attached to each ciliated cell (which
are usually interspersed with secretion cells) beat in synchrony but that any
relationship between the phase of the cilia on different cells is not readily apparent.
Tt should be noted, however, that the tissue utilized for this study was observed in
vitro (i.e. removed from its site in the organism and macerated to create a layer
thin enough for observation on a thin slide preparation), and in vivo influences on
ciliary motion such as the nervous effect described by Murakami & Takahashi (1975)
could not have been taken into account. In any case a reexamination of the fluid
mechanics of tracheal mucociliary propulsion should also show awareness that both
the mucus blanket and the distribution of ciliated cells on the epithelium can be
quite nonuniform.

In mucociliary systems where mucus is an incidental component of the propelled
object, e.g. the mammalian oviduct in which ova and perhaps spermatozoa are the
primary objects of ciliary activity, the role of mucus is not clear. It has long been
assumed, for example, that mucus acts as a lubricant for the transport of ova down
the isthmus of the oviduct. No quantitative test of this assumption appears to have
been conducted in situ. A model system utilized recently for measuring the lubri-
cation effect (Winét 1976) consists of a ciliated spheroid swimming down a
mucin-filled tube. Observations of this system indicate not only a lubrication effect
for small clearances but also an optimized drag reduction effect at larger clearances.
Although we have concentrated here on tracheal mucus flows, we should mention
in closing that there are many other internal flows in ciliated tubes such as the
ductus efferentes and the oviduct for which some modification of an ‘infinite-sheet
model may suffice (e.g. Blake 1975). Some of the characteristics of internal ciliary
systems have been collected in Table 7. However, neither sufficiently detailed
observations nor complete quantitative information are presently available to allow
confident examination of most of these ciliary systems.

6 | CONCLUDING REMARKS

In closing we should emphasize again that, although we have concentrated in this
review on the fluid mechanics of cilia and flagella, a complete understanding of
the life functions of these biological systems requires much more than fluid
mechanics: At the same time, fluid mechanics is an integral component of any
quantitative analysis for the contraction processes and indicates where ciliation and
flagellation give selective-advantages to organisms not only in terms of their ability
to propel fluids but also in terms of biosynthesis and concentration. Indeed, the
ubiquity of these systems as indicated by Table 1 would itself be a worthy study by
comparative physiologists.

We have thus attempted to give an overview of the fluid mechanics of these
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biological slender bodies. It should be clear that the subject is still in a developmental
stage and much remains to be done. One expects to sce further developments in
the basic fluid mechanics of slender bodies at low Reynolds numbers, especially
when these operate close to a large “cell” body. Furthermore, the present under-
standing of the fluid mechanics of ciliary systems is still rather limited and we have
tried to indicate that there are many other ciliary systems that have not yet received
attention from a fluid-mechanical point of view. But in conclusion we must stress
that a multidisciplinary approach is very necessary for any assessment of the fluid-
mechanical models and, consequently, for a fuller understanding of cilia and flagella
and the life functions they attend.
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