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This paper is concerned with the interpretation of isostatic recovery data in terms of the flow properties
of the earth’s mantle. A hydrodynamic analysis is first presented that allows straightforward calculation
of the relaxation time for isostatic recovery withina mantle in which the viscosity varies continuously with
depth. However, it transpires that no curve of this type (i.e., choice of a reference viscosity and a rate of
change of viscosity with depth).can of itself adequately explain the available observational data from the
Fennoscandian and Laurentide ice sheets and the pluvial Lake Bonneville. Proceeding onward it is then
demonstrated that the strain rates within such flows are in fact greater than the critical strain rate en-
visaged by Weertman (1970) in his theoretical rheological model of the mantle. Below this critical value,
diffusion creep is the dominant flow process, and the flow can be modeled by a Newtonian viscosity. But
above this value, dislocation glide takes over, and the viscosity exhibits a decrease with increasing strain
rate. This feature is then incorporated into the theoretical model, and the isostatic recovery data are inter-
preted in such a way as to provide experimental values of the strain rate dependent viscosity that can be
compared with the values in Weertman’s rheological model. It is demonstrated that the data become most
self-consistent and exhibit the most satisfactory agreement with Weertman’s model when the increase of
mantle viscosity with depth is given roughly by exp (5 X 107%z), where z is the depth in kilometers. Thus in
addition, the analysis would appear to provide some verification of Weertman’s model of the mantle flow
properties. It is further demonstrated that the much larger increase of viscosity with depth predicted by
McConnell (1968) and others from previous analyses of isostatic recovery data is an artifice induced by
the nature of such flows in which the strain rate decreases with depth; this led to an apparent increase of
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viscosity that is much larger than the actual variation.

The conventional concept of the earth’s crust envisages a
firm outer layer, the lithosphere, which is about 100-300 km
thick and is divided into individual tectonic plates. These
plates float on the weaker asthenosphere, or mantle, which ex-
tends inward about 3000 km to a radius of about 3300 km
from the earth’s center. Inside of the mantle lies the molten lig-
uid core.

It is now recognized that the flow processes occurring within
the mantle itself play a major role in quite a number of
geological phenomena. For example, the large temperature
differences across the mantle are believed to have established
thermal convection cells in the asthenosphere, which are the
driving mechanism for crustal warping, orogenics, and con-
tinental drift. Further, when the crust is locally relieved of a
large mass, such as the ice sheets or pluvial lakes of the
Pleistocene, the ice sheets will seek a new buoyancy
equilibrium, a process known as isostatic recovery. The relaxa-
. tion time Ty for this process is clearly related to the viscous
flow response in the mantle and therefore to its viscosity.
Indeed, detailed studies of isostatic recovery have been one of
the primary means by which the viscosity of the upper mantle
has been estimated.

Early analyses of isostatic recovery were based on the
viscous flow solutions of Vening Meinesz [1937], Haskell
[1935,1936, 1937], Niskanen [1948], and Heiskanen and Vening
Meinesz [1958], which assumed that the mantle flows like a
Newtonian liquid and has a uniform viscosity. For an in-
finitely deep medium this assumption yielded the relation

Tr « u/pgl ()

where u is the dynamic viscosity, p is the mean mantle density.
g is the gravitational acceleration at the surface, and L is the
linear extent of the removed loading. With this in mind
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Heiskanen and Vening Meinesz analyzed the isostatic recovery
of the Fennoscandian ice sheet [Haskell, 1937, Niskanen,
1948], and Crittenden [1963] did the same for pluvial Lake
Bonneville. The two loads differed in linear extent by a factor
of about 10. Thus a dilemma arose when the relaxation times
were found to differ only slightly (order. of 5000 and 4000
years, respectively). Takeuchi [1963] then .suggested that the
flow may be concentrated primarily in a relatively thin layer in
the upper mantle. Jeffreys’s [1952] analysis showed that if a
lower horizontal boundary were placed in the flow at a depth
D, where D << L, then Ty « L2, as opposed to the T, < L~! of
(1). But this did not answer the dilemma except by the
otherwise unsupported postulation of different thicknesses D
of the flowing layer at different places. However, a mantle
viscosity that is not uniform but increases with depth-would
have a similar effect of concentrating the flow in a region near
the surface. With this in mind McConnell [1968], Takeuchi and
Sakata [1970], and others relaxed the second of the early
assumptions, i.e., that the mantle has a uniform viscosity, and
attempted from the isostatic recovery data to construct a
model of the mantle composed of layers of fluid of different
viscosity, predominantly increasing with depth. A few of
McConnell’s models are indicated in Figure 1.

All of these models presumed as did those of Heiskanen and
Vening Meinesz that the mantle flowed like a Newtonian lig-
uid. This assumption was given some credibility by the
pioneering theoretical studies of Gordon [1965, 1967], who
concluded that the flow process in the mantle was one of diffu-
sion creep (Herring-Nabarro creep), in which the stress is in-
deed simply proportional to the strain rate. Moreover, the fac-
tor of proportionality, or viscosity, -is a function of
temperature. Hence on the basis of an estimated variation of
temperature with depth Gordon predicted a rather dramatic
increase of viscosity with depth in the mantle; a curve similar to
that of Gordon (though it was actually taken from Weertman
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Fig. 1. Viscosity of the earth’s mantle as a function of depth:

theoretical model based only on diffusion creep (Herring-Nabarro
creep [Gordon, 1965, 1967, Weertman, 1970]); Weertman’s [1970]
theoretical model based on dislocation glide at a shear rate of 107
s'; exponentially increasing viscosity profiles for u, = 0.6 X 102 P, ¢
= 0.0059 km~!, ¢ = 0.0024 km™?, and ¢ = 0.0005 km~*%; and viscous
layer model of McConnell [1968].

[1970]) for a mantle viscosity based on diffusion creep is shown
in Figure 1. This is in apparent qualitative agreement with the
models of McConnell; it also appeared to yield viscosities of
the lower mantle that were in accord with the value of 10* P
suggested by Macdonald [1963] on the basis of the response of
the earth’s shape to the reduction in its rotational velocity.
However, it is now becoming increasingly apparent that
such agreement is merely fortuitous. In a more recent and
thorough theoretical study of flow processes in the mantle
Weertman [1970] concludes that although diffusion creep may
be the dominant process at very low strain rates, at higher
strain rates the processes of dislocation climb and dislocation
glide creep will take over. Since these are non-Newtonian in
the sense that the strain rate is proportional to the stress to the
third power (for dislocation glide), the viscosity becomes a
function of strain rate. Further, the factor of proportionality

is a function of temperature or, more precisely, the ratio of-

actual temperature to melting point temperature (7/Ty).
Hence based on a number of best guesses as to grain size etc.,
Weertman proposes a rheological model for the mantle, which
is shown in Figure 2. In addition, given a reasonable tempera-
ture profile for the mantle, this model results in a mantle
viscosity profile (at a strain rate of 107'® s~') that exhibits
(Figure 1) a much smaller increase of viscosity with depth
than that based on diffusion creep alone.

‘But Weertman’s viscosity profile based on dislocation glide
(Figure 1) is now at odds with the isostatic recovery data and
Macdonald’s [1963] lower mantle viscosity of 10% P. However,
with regard to the 10?® P value, a more recent analysis of the
excessive fossil equatorial bulge by Dicke [1969] yielded a
value of 10% P for the lower mantle. In addition, Goldreich and
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Toomre [1969] suggest 1022 — 10** P for the viscosity of the
lower mantle in order to explain polar wandering. These
values are thus in accord with Weertman’s profile.

The intention of this paper is to reexamine the isostatic
recovery data in the light of Weertman’s model. It will be
shown that the rapid increase of viscosity with depth inferred
from the isostatic recovery data by McConnell [1968] and
others is most probably an artifice caused by the Newtonian
assumption. Briefly, the thesis examined in this paper is as
follows: The nature of the flow due to isostatic recovery is such
that the strain rate decreases fairly rapidly with depth.
Moreover, a quantitative evaluation of these strain rates (given
in the section on comparison of isostatic recovery data with
Weertman’s theory) indicates that these are greater than the
critical values of Figure 2. Hence the flow will experience an
apparent increase of viscosity with depth simply because of the
decreasing strain rate. It will be shown that the models of
McConnell (Figure 1) exhibit not a real increase in viscosity
but rather this apparent increase; it will further be shown that
an analysis of the isostatic recovery data that permits a strain
rate dependent viscosity yields mantle viscosity profiles that
are consistent with Weertman'’s theory.

We begin in the next section with the hydrodynamic solu-
tion for an isostatic recovery flow in a mantle in which the
viscosity varies with depth in the following simple manner:

)

where u, is the viscosity immediately below the crust, (—z) is
the depth beyond that point, and ¢ is the exponent of the
viscosity variation. Three such profiles are indicated in Figure
L.

B = pee™™

IsostaTiC RECOVERY FLOW IN MANTLE OF
NONUNIFORM VISCOSITY

Because of mathematical necessity and because of the small
size of the amplitudes of the surface wave motion in com-
parison with the wavelength, it is assumed that the
temperature distribution and the viscosity variation are effec-
tively undisturbed by the flow. This assumption may seem con-
tradictory in the light of the earlier discussions, but it is con-
venient to develop this solution first.
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Weertman’s [1970] theory.
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The Navier-Stokes equations of motion for a fluid of non-

uniform viscosity are [Milne Thomson, 1968]
D i
o = PF — Vo — uV x(V x ¥)

+2AVE VI + (V)% (Vxv)  (3)

where v is the velocity vector, p is the density (assumed to be
uniform), F is the body force vector, p is the pressure, p is the
dynamic viscosity, and ¢ is time. The equation of continuity is

Velpv) =0 4

Although it is necessary in studying the stability of the mantle
to consider the thermal variation of density through the
Boussinesq approximation [Chandrasekhar, 1961], this is not
necessary for isostatic recovery flows [Heiskanen and Vening
Meinesz, 1958]. It is sufficient to assume that the fluid is in-
compressible and that the gravitational body force takes its
surface value g. Since the Reynolds numbers of the motions
are extremely small, the inertial terms on the left-hand side of
(3) can be neglected. Thus the equations reduce to those of
Stokes flow, but for nonuniform viscosity,

V(p + pgz) = uV x(V x v)
+ 2AVu- VI + (V) x(V xv) = 0
Vv=20

(5
(6)

where z is the coordinate perpendicular to the surface, positive
in the upward direction and zero at a point immediately below
the crust.

Two particular geometries, one planar and the other ax-
" isymmetric, will be considered simultaneously, since they yield
similar results. The planar case corresponds to an unloading
along a strip that is infinitely long, so that the flow is planar in
the xz plane, x being a horizontal surface coordinate. The ax-
isymmetric case corresponds to the unloading in a circular sur-
face area, so that the flow velocity vector v is a function only of
r, z, where (r, ) are polar coordinates on the surface. Defining
a stream function ¢ such that

_ 9 - %
b = 3z v = dx ™
in the planar case, and
19y 19 ,
T ez ve = T e ®

in the axisymmetric case, and taking the curl of (5) to eliminate
the pressure yields the following differential equation for ¥
when u is a function only of z:

oo P u _
WLILW] + 2252 L] = S5 LW =0 ()
where in the planar case the operators are
’ 9
L, = _('TXE == a—zi (10)
and in the axisymmetric case the operators are
3 19 9’
L, = . ¢35

of "ror T of
Now by substituting the relation (2) (u = uee~*) and examin-
ing the characteristic harmonic solutions of (9) for which ¥ =
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Ae**H(x or r) and
H(x) = sin kx (12)
in the planar case and
H(r) = rJ, (kr) (13)

in the axisymmetric case, where 4 is some arbitrary small
amplitude, & is a wave number, and « is as yet undetermined,
the following dispersion relation is obtained in both cases:

at — 2ea® + (2 — 2kMa? + 2ek’a + KK+ e)=0 (14)
The solution of (14) yields four possible vélues of a:
€ € 2 1/2
@=z=£ [(5) + K+ ike:l (15)
To simplify the presentation set
B ={Y2[k? + (e/2) + (k2 + (k* + (/252372 (16)
so that (15) becomes
@=3+p% ;—kB—‘ an

the choices of sign being independent. However, since
solutions for which o has a negative real part lead to physically
unrealistic solutions with velocities increasing indefinitely with
depth, it is only necessary to consider the solutions

a = <€§ + B) + {’-2"[—;} a8)

It follows that

A(?) exp I:(% + ﬂ)z:l cos {I;—;z -+ go}H(x orr)
' (19)

where ¢ is some as yet undetermined phase angle and the
amplitude 4 may now be regarded as an unknown function of
time ¢.

Boundary conditions. Consider the imposition of the sur-
face boundary conditions on this characteristic solution from
which more complex solutions may be Fourier-synthesized.
Since the horizontal motion of the crust is negligible in com-
parison with the vertical motions and the vertical dis-
placements are small in comparison with lateral dimensions, a
linearized condition on the free surface z = n(x or r, t) is quite
justified, and the kinematic conditions become

Y =

v, =0 or v, =0 on z=20 (20)
_ o
v, = o on z =190 (21)
It follows from (19) and (20) that
28 —(e )
t =+
ang = ~{5+8 (22)
And it follows further from (21) and (19) that
aJ .
5% = — AkH’ cos ¢ (23)
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where H' is cos kx in the planar case and Jy(kr) in the ax-
isymmetric case.

A dynamic free-surface condition that determines the nor-
mal stress o, in the fluid at the surface is also required. If the
surface is considered as having been completely unloaded,
then the linearized form of this condition is

p=0,;=0 on z =17 24)

where simplification occurs by use of (20). From the form of
(19) and the basic equation (5) this condition yields the surface
displacement 5 as

gon = —ApH'Z/k

(- 2)e+s)
<@<+w)2@+@]
~psnel s+ -2

Elimination of AH' from (23) and (25) then yields the follow-
ing differential equation for »:

9n _ _[_&:I
at o K K
where

I

The relaxation time Ty defined in the manner of Heiskanen

(25)

where

2 = cos

(27a)
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Fig. 3. Theoretical relation between the relaxation time for
isostatic recovery Tg, the wave number k, and the viscosity of a mantle
given by uge~%, where (—z) is the depth.

BRENNEN: ISOSTATIC RECOVERY AND MANTLE VISCOSITY

and Vening Meinesz [1958] as Tr™* = —n~"' 89/81t follows im-
mediately from (27a) and is given in both the planar and the
axisymmetric case by

Tr = wkK/pg

Given ¢ and the wave number k, pgTr/u, may be evaluated
directly by using the expression (16) for 8. This evaluation is
shown in Figure 3, where pgTr/ue¢ is plotted against ¢/k. It
represents a generalization of earlier analyses to the case of
nonuniform viscosity. Note that when e/k is very small, the
curve approaches the asymptote

Tr — 2uck/gp

which corresponds to the result of Heiskanen and Vening
Meinesz [1958]. On the other hand when e/k is large, the curve
approaches the asymptote

(28)

29)

Tr — ioe®/gok? (30)

which, when k is recognized as representing 1/L, where L is
the linear extend of the removed load, exhibits the same kind
of dependence of Ty on L as the solution of Jeffreys [1952]
mentioned in the introduction.

Clearly, if the quantities on the right-hand side of (28) are in-
dependent of time, Ty remains constant throughout the mo-
tion, and isostatic recovery is exponential. However, in the sec-
tion on strain rates in isostatic recovery flows it will be
demonstrated that a strain rate dependent viscosity leads to a
time dependent u, and hence to isostatic recovery that is no
longer exponential. Nevertheless, at any instant in this motion,
T is still given by (28).

IsosTATIC RECOVERY DATA

The curve of Figure 3 is replotted dimensionally in Figure 4
for a number of different values of € and u,, p being taken as
34 g/cm® and g as 980 cm/s% Also shown are the data of
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Fig. 4. Comparison of relaxation times T of isostatic recovery with
theoretical curves based on Figure 3. :
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Heiskanen and Vening Meinesz [1958] and McConnell [1968]
for the Fennoscandian ice sheet, the data of Crittenden {1963}
for the pl'uvial Lake Bonneville, and some data taken from An-
drews [1970] for the Laurentide ice sheet. The data of
McConnell include a Fourier analysis in order to ascertain
the relaxation times Ty for the different wave numbers that
compose the surface motion. The relaxation times given by
Heiskanen and Vening Meinesz [1958] are assumed to be rele-
vant to the dominant range of wave numbers in McConnell’s
analysis. For the rest of the data it was assumed that a wave
number comparable to the lateral dimension L would
dominate. Since the loads are predominantly. axisymmetric
.’and since the first zero of Jy(kr) occurs at kr =~ 2.4, it was
assumed that k& = 4.8/L, where L 200 km for Lake

_

Bonneville [Crittenden, 1963]) and around 3400 km for the

Laurentide ice sheet.

M cConnell [1968] attempted to fit a layered mantle model to
similar observational data and hence arrived at the mantle
viscosities plotted in Figure 1. The analysis of the next section
attempts to show that such an analysis is inconsistent with
Weertman’s theory.

However, in passing it might be noted that there is clearly no
theoretical curve of the type derived in the last section that
could fit all the observational data. It is especially notable that
McConnell’s own data have an entirely different trend.
Furthermore, as is clearly indicated by the values in Table I,
Tr is not independent of time for a particular isostatic
recovery motion. In order to reexamine the observational data
in the light of Weertman’s theory and in the manner suggested
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at the end of the introduction, the strain rate distribution
within an isostatic recovery flow must be examined.

STRAIN RATES IN ISOSTATIC RECOVERY FLOWS

In order to proceed it is necessary to interpret the solution of
the section on isostatic recovery flow in mantle of nonuniform
viscosity in a different manner. First, note that the shear strain
rate of that isostatic recovery flow is given simply by L,{¥/) in
the planar case and L,(¥))/r in the axisymmetric case. It follows
from the solution (19) that the strain rate & is of order

~fzhon[lsr ]

The quantitative evaluation of the next section shows that the
strain rates given by (31) are sufficiently large for the conse-
quent motions to be governed by Weertman's dislocation
glide, so that

(G

po= pE) (32)

where u* is a function of T/ Ty, and since T/Ty is a function
of depth in the mantle, u* may be regarded as a function of zin
general. To simplify matters, it will be assumed that -this
temperature-controlled depth variation can be approximated
by '

* (33)
where p,* is a constant and values of €* in the range 0 — 0.006
km~! deserve attention in view of the data of Figure 1. This ¢*

u¥ = u* exp (—€*z)

TABLE 1. Strain Rates éo and Viscosities u, From the Analysis of Some Isostatic Recovery Data for
Different Values of the Real Viscosity Variation e*

Viscosities, u, P x 10-20

Uplift Strain e* = e* =
Years Since Time, Relaxation Remaining Velocity, Rate e X 5 x 107% 24 x 10-2%
Deglaciation yr B.P. Time Tp, yr Uplift, m cm/yr 1016 =1 g* = 0 km~! km-1
A.  Fenmmoscandia (k = 4 x 1073 km-1)t
8,900 3,500 160 14.5 7.5 4.26 0.764
B. Femnoscandia (k = 4 x 10-3 km-1)%
10,000 2,520 22,1 70.2 5.4 3.0 0.54
8,800 3,180 11.8 37.5 6.8 3.8 0.68
8,000 4,460 6.86 21.7 9.6 5.4 0.96
7,000 7,100 3.76 11.9 15.3 8.6 1.53
6,000 8,030 3.06 9.7 17.3 9.7 1.73
5,000 8,770 2.51 8.0 13.9 10.6 1.89%
4,000 9,600 2.08 6.6 20.7 11.6 2.07
3,000 10,300 1.78 5.6 22.2 12.5 2.22
2,000 10,900 1.56 5.0 23.5 13.2 2.35
1,000 11,200 1.41 4.5 24 .1 13.6 2.41
0 11,200 1.31 4.2 24.1 13.6 2.41
C. Laurentide ice sheet (k = 1.4 x 10-3 km~1)7 -
2000 1,110 199 20.0 6.8 1.52 0.066
3000 1,590 133 9.4 9.7 2.17 0.094
4000 ~ 1,960 89 5.1 12.0 2.67 0.115
5000 2,130 61 3.2 13.0 2.91 0.126
6000 2,220 39 1.97 13.6 3.04 0.131
7000 2,320 27 1.31 14.3 3.20 0.138
9000 2,470 12 0.55 15.1 3.38 0.146
D. ILake Bowneville (k = 24 x 10-3 km-1)"
Mean
Time 3,800 64 32 1.37 1.34 0.87

tMeConnell [1968].

SHeiskanen and Vening Meiness [1958].
Y andrews [1970].

Igrittenden [1963].
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Fig. 5. Theoretical dependence of the parameter K and apparant
increase of viscosity with depth (given by e,) on the real increase of
viscosity with depth (given by €*).

variation will be termed the real viscosity variation in the man-
tle to distinguish it from the apparent variations in u in-
troduced through (32) because of the dependence of the strain
rate & on position z. Substituting (33) and (31) into (32) yields

~ {ka—”}_m ex [— *z—3<5+6” (34)
AL WY plTe 3\2 z

But the original premise of the solution was that
B e (35)

and hence comparison of the exponents requires that

e =3*/2+ 8 (36)
It follows from writing (35) as
1= o eXp (—€¥z — €42) 37

that e, = (¢ — €*) is the apparent increase in viscosity with
depth due to strain rate decrease.

Examine first the simpler case of no real viscosity increase,
or ¢* = 0, It follows that 8/¢ = 1 and thence from the defini-
tion of B (equation (16)) that e = ¢, = 1.295k. Thus the ap-
parent viscosity variation is a simple function of wave number.
Further, in this simple case, from the definition (278), K
becomes 11.7, and hence the relaxation time Ty and surface
viscosity pe, which are now functions of time, are related at
any instant by Tp = 11.7uck/gp or u, = 0.085gpTr/k.

When a nonzero value of the real viscosity variation €* is in-
cluded in the picture, it is necessary to solve the simultaneous
equations (16) and (36) for € and § for given values of ¢* and k.
Thus the values of both e4/k and K are functions of ¢*/k; these
relationships are presented graphically in Figure 5. 1t is par-
ticularly important to note that the apparent viscosity increase
€4 is always greater than the real variation e*. Hence isostatic
recovery flows with strain rates sufficiently great for disloca-
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tion glide to be the flow process will always be dominated by
the apparent viscosity increase with depth ¢, rather than any
real variation e*.

It follows that having obtained K for a particular isostatic
recovery flow we may write

o = gpTr/kK (38)

and calculate values of u, at various times during the motion,
knowing the corresponding value of T, at that instant.
Further, we shall rather arbitrarily take a wvalue of
—(k/4)(6n/81).-o as representing the mean surface strain rate
&, over the uplifting area; that is to say, one quarter of the
value at z = 0. By definition of T this can be written in the
alternative form

o= K (@) _ k).

4 \or aT, (39)

where (9),., is the remaining uplift.”

The philosophy of the next section is to evaluate correspond-
ing viscosities and strain rates from (38) and (39) and in this
way to compare the isostatic recovery data with Weertman'’s
theory. This procedure is followed for a number of chosen
values for the real viscosity variation €*. The intention is to ex-
amine whether the isostatic recovery data are compatible with
Weertman’s theory and, if they are, to determine which value
of the real viscosity increase e* yields the greatest degree of
consistency and agreement.

But before proceeding with this it is worth noting that since
1o is now a function of time, the integration of (27a) in order to
determine the deformation #(¢) no longer leads to exponential
decay of the remaining uplift. In fact, from (34) the following
is obtained:

o poOise

|

VISCOSITY

10 ‘
[ REAL VISCOSITY VARIATION, €*:=0
[ FENNOSCANDIA DATA  TABLE IA
- TABLE 1B
L LAURENTIDE DATA TABLE IC
BONNEVILLE DATA TABLE 1D i
- WEERTMAN'S (1970) RHEOLOGICAL 7
MODEL (FIG. 2)
|()I9 L 1L11H1 [ 1 LlllLLl 1 L FOR N T A
—17 Y3 S5 o'
2x10 10 10

STRAIN RATE é, sec

Fig. 6. Comparison between Weertman’s rheological model for
the mantle and data derived from the isostatic recovery information
with the assumption that the real increase of viscosity with depth is
zero (e* = 0). Compare Figures 6, 7, and 8.
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Fig. 7. A comparison between Weertman'’s rheological model for
the mantle and data derived from the isostatic recovery information,
with the dssumption that the real increase of viscosity with depth is
given by ¥ = 5 X [07* km™".

If one substitutes in (27a) and integrates, the recovery flow is
such that the remaining uplift varies with time as

Mo

T+ @/

where 7, is the intitial displacement at ¢+ = 0, and

y 1 (ﬂo* K>3
T = — (B2
2(kno)” \ gp
It also follows that the relaxation time Tx should vary with
time as T = 27T + ¢.

COMPARISON OF ISOSTATIC RECOVERY DATA WITH
WEERTMAN’S THEORY

Isostatic recovery data from McConnell [1968] and
Heiskanen and Vening Meinesz [1958] for the Fennoscandian
ice sheet, from Andrews [1970] for the Laurentide ice sheet,
and from Crittenden [1963] for pluvial Lake Bonneville are
presented in Table 1. Each of these sets requires some ad-
ditional comment, First, it must be noted that since the fluid is
now taken to be nonlinear with a non-Newlonian strain rate
dependent viscosity, the law of superposition no longer holds.
Hence it is not valid to synthesize a particular motion from a
series of Fourier components of different wave numbers & in
the manner of McConnell [1968]. However, since there is
clearly a dominant wave number of k = 4 X 107* in
McConnell’s data, it does seem justifiable to select this point
for analysis, as representing the entire motion quite closely.
The same dominant wave number is assumed to be relevant to
the Fennoscandian data of Heiskanen and Vening Meinesz
[1958] (Table 1). In Table | the remaining uplift is extracted
from McConnell’s data, and the remaining uplift is calculated
from Andrews’s [1970] percentage figures and his total max-
imum uplift of 450 m; the wave number k is based on the mean
dimension, 3400 km, of the ice sheet (see the section on
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isostatic recovery data). In the Bonneville data (Table 1), k is
again based on the dimension L = 200 km. Then the strain
rates &, are computed from (39) and presented in column 4, and
viscosities u, are computed from (38) by using Figure 5 and
three different values for the real viscosity increase e*, namely,
0.5 X 10~* and 24 X 107* km™'. These data are presented
graphically in Figures 6, 7, and 8. Comparison is made with
the theoretical model of Weertman (Figure 2), which is also
depicted in these figures. Now, it is fairly well accepted
{Jacobs, 1956] that the temperature T in the upper mantle is
close to the melting temperature Ty, so that in the region
where most of the flow occurs, 7/T = 1. Hence we anticipate
that the isostatic recovery data ought to correspond most
closely with Weertman’s line for T/T, = 1. But it should be
borne in mind in making such a comparison that Weertman's
rheological model can only be regarded as predicting actual
values to within perhaps an order of magnitude.

Consider first the data for ¢* = 0 shown in Figure 6. The two
major data sets have a characteristic shape that is quite consis-
tent with the shape of the theoretical lines. They do, however,
appear consistent with a rather low value of T/Ty. Now when
a small value of ¢* = 5 X 10~* km~" is introduced in Figure 7,
the Bonneville data become more consistent with the rest, and
the data correspond with a more acceptable and higher value
of T/Ty. This value is indicated as about 0.85 but in the light
of the above comment on the accuracy of the theory may be
regarded as being of the order of unity. However, further in-
crease of ¢* to 24 X 10~* km~" leads to more widely scattered
data and lack of compatibility with the theory.

Thus the analysis of the isostatic recovery data presented
here appears to yield the most consistent results and to be in
closest agreement with the Weertman theory when the real in-
crease of viscosity with depth'is rather small and of a mag-
nitude represented by an exponential function of 5 X 107,
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Fig. 8. A comparison between Weertman’s rheological model for

the mantle and data derived from the isostatic recovery information,
with the assumption that the real increase of viscosity with depth is
given by €* = 24 X 107* km™*.
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where z is the depth in kilometers. This variation is shown in
Figure 1 and is now consistent with the more recent analyses of
viscosity variation in' the mantle discussed in the introduction.

Finally, by way of a further check on the validity of the pres-
ent analysis we should also compare the data of Table 1 with
the predicted linear (or near-linear) variation of the relaxation
time Tr with time ¢ suggested at the end of the previous sec-
tion. This comparison is effected in Figure 9, where the Fen-
noscandian data of Heiskanen and Vening Meinesz [1958] are
in very fair agreement with the predicted linear variation. The
Laurentide data are much poorer in this regard and indeed are
more suggestive of a constant 7. The comparison is, however,
more difficult to evaluate precisely, since Andrews [1970] com-
putes time from the moment of deglaciation, which can vary
significantly from location to location. As far as Figures 6, 7,
and 8 are concerned, it should, however, be noted that a
hypothetical change in the observational data at the later
times, which would increase the relaxation times to a value of
about 8000 years in concert with that expected on the basis of
the theory, would actually improve the agreement between the
Laurentide and the other data by increasing the subsequent
viscosities and decreasing the strain rates.

CONCLUSIONS

This paper has demonstrated that the increase of viscosity
with depth within the earth’s mantle predicted by previous
analyses' of isostatic recovery, such as the analysis of
McConnell [1968], is most probably an artifice caused
by the decrease of strain rate with depth inherent in
such flows. It is shown that the strain rates are sufficiently large
for dislocation glide to be the flow process rather than diffu-
sion creep. Then accepting Weertman’s [1970] theory that the
viscosity under these circumstances decreases with increasing
strain rate, one must distinguish between the real variation of
viscosity with depth and an apparent increase due to decreas-
ing strain rate in isostatic recovery flows. A hydrodynamic
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analysis of such a flow is present in the section on isostatic
recovery flow in mantle of nonuniform viscosity and in the sec-
tion on strain rates and isostatic recovery flows and is used to
reexamine some isostatic recovery data in this new light.
Observations on the Fennoscandian and Laurentide ice sheets
and pluvial Lake Bonneville are converted to strain rates and
viscosities at a reference point and compared with Weertman’s
[1970] rheological model for the mantle. Though the
numerical accuracy of Weertman’s rheological model is
somewhat limited, the observational data appear to be most
self-consistent and to agree most closely with the theory when
the real increase of viscosity is an exponential function with an
argument of the order of 5 X 1074z, where z is the depth in
kilometers. Such an increase of viscosity with depth is much
smaller than previous suggestions based on what is now
claimed to be an erroneous interpretation of the isostatic
recovery data by McConnell [1968] and others (order of 6 X
1073z). In general, the analysis and this real variation of
viscosity with depth appear to be consistent with Weertman’s
[1970] model of the mantle and to provide some verification of
such a model.

Addendum. Following completion of this manuscript Post
and Griggs [1973] published a paper in which isostatic recovery
in a non-Newtonian mantle was discussed in terms of gross
strain rates and stresses characterizing the flow. Their conclu-
sion based on evaluation of Fennoscandian data suggests a
value of the non-Newtonian index n close to 3, which is in
agreement with character of Weertman’s dislocation glide and
therefore with one of the general conclusions of the present

paper.
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