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WAVE PATTERNS ON THE SURFACE OF HYDRODYNAMIC CAVITIES

by

C. Bremnen
Ship Hydrodynamics Laboratory, N.P.L

In experiments on cavities behind various axisymmetric headforms, a pattern
of waves or ripples with crests parallel to the separation line was observed on
the cavity surface just downstream of separation. A theoretical analysis suggests
that this pattern results from amplified instabilities in the separated_lamiﬁar
boundary layer on the cavity surface.



1+  INTRODUCTION

This paper reports an investigation into the stability and transition of the

boundary layer flow on the surface of hydrodynamic cavities., The latter part is

devoted to a study of the wave patterns observed on the interface in the neighbour-

hood of transition. However this theoretical investigation grew out of a wider
qualitative study of the surface appearance of cavities, discussion of which makes

up sections 2 and 3.

The experiments which were carried out in the No. 2 water tunnel of Ship
Division, N.P.L. employed various rotationally symmetric shapes of headform supported
on the axis of the tumnel by a sting and strut system described in earlier papers
(Brennen (1968a and 1968b)). Despite this limitation to axisymmetric flows, some of
the findings are expected to be qualitatively applicable to more general types of
cavity flow,

In order to "freeze" the action in such flows it is necessary to photograph
with an exposure of the order of microseconds; the equipment employed in the present
investigation gave a flash of some 10+30usecs. The experimental arrangement
included provision for ventilating the cavities with measured flow rates of air and
for measuring the cavity pressure as described in the earlier papers cited above.

The normal tunnel equipment was used for measurement of tunnel pressure, velocity

(0%5ft/sec) and temperature. The cavitation number and other data relevaﬁt to each

photograph could thus be computed. Five different headforms were employed:

(a) a 3 in diameter sphere (plates 2 and 3)

(b) a 3 in diameter sphere cut off along a plane through the latitudinal line 68
degrees from the theoretical front stagnation point (referred to as the "cut-
away" sphere) (plates 5 and 6).

(¢) a 14/ in diameter hemispherical head placed on the end of the sting which was
of the same diameter -(plate 7). |

(d) an ogival shaped head of axial length 3% in and base diameter 2.34 in (plates
1 and )4), whose shape corresponded to that of a theoretical semi-infinite
"pody™" creéted by a particular axial source distribution so that a surface
pressure distribution could be calculated.

(e) a 3in diameter disc set normal to the stream (plate 8).

2., SURFACE APPEARANCE OF CAVITIES
For each of the five headforms photographs of both natural and ventilated

cavities were taken at a series of tunnel velocities, UT’

taking roughly its lowest operational value in all cases. It was apparent not only
in the photographs but also to the naked eye that the appearance of the cavity

the tunnel pressure

surface was markedly different depending on whether the cavity was or was not
filled with the turbulent froth of bublles and water associated with the
re-entrant jet. Although clearly there were intermediate states of incomplete

filling the observed characteristics of the extreme cases will be described first.
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Plates 1 and 2 represent exambles of therformer type, referred to as being partially
developed and confined almost>exclusiveiy to the natural cavity flows. Ventilation
seemed to produce éither a train of bubbles ffom the exit holes or a fully developed
cavity flow (as defined below) with virtually no intermediate state. The following
obpervations seemed generally applicable to the "filled" cavities:

(i) The ogive and the cut-away sphere, headforms with a sharp, separating edge,
produced "filled" cavities typified by plate 1. The characteristic gap of
clear water between the base of the headform and the cavity is a somewhat
surprising feature. In other photographs the gap may not have extended
right to the centre of the base but always appeared near its periphery.

The irregularities of the surface of the cavity do seem on examination to
contain a characteristic frequency or wavelength which may be associated
with a vortex shedding frequency from the sharp trailing edge of the head-
form (these frequencies are considerably larger than those discussed in the
later part of the paper).

_ (ii) Under the same conditions the two spheres with no sharp "separating" edge
producedpartially developed cavities which were much less steady (plate 2
being a typicai example) and could be adequately described as being in an
advanced state of incipient cavitation.

For convenience in the context of this paper a fully developed cavity is
defined as one in which the flow separates (in the cavitation sense) along a well
defined line on the surface of the headform to produce a cavity which is not filled
with bubbles. The filling effect of the re-entrant jet decreases with increasing
cavity length. It was incidentally observed that the "strength" and benetration of
the jet within a natural cavity was noticeably greafer than for a ventilated cavity
under identical conditions of tumnel velocity and cavity length. This may be | _
" associated with the different mass rates of vapour and gas entrainment into the wake
as diécussed in an earlier paper (Brennen (1968b)). Whenever the jet impinged.on
the cavity wall the latter became rough, unsteady and opaque as in the bottom left-
hand corner of plate 3.

Attention will now be focused exclusively on the nature of cavity surfaces
which are unaffected by such interference. The singular appearance of the inter-
face just downstream of separation was first noted in photographs of the 3 in
sphere, plate 3 beinglé fypical example., Immediately following separation the
surface is smooth and giagsy. Downstream of this a system of waves with crests
running perpendiculaf to fhe direction of flow appears to be imposed on the clear
surface. Moving with the fluid these wavés presumeably groﬁ_in amplitude until
they break up to fdfm the rough or turbulent surface which persists along the
length of the cavity. The haked eye could defect the two regions of smooth and
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turbulent surface though not the intervening wave pattern. Also visible in the
case of the 3 in sphere were the longitudinal striations which especially near
separation, tended to disturb the described pattern (see plate 3). These
striations were caused by small drops of water (from condensation or the spray of
the re-entrant jet) being trapped in the very thin cavity just after separation.
The drops and associated striations continually moved downwards under the influence
of gravity. No such thin cavity region occurs with the cutaway sphere or ogive and
hence as can be seen from plates 4 and 5, there are no striations. Similar, but
fixed, striations on the cavity surface may however be caused if there were any
irregularities in the headform at or near separation (Gadd and Grant (1965)).

3, FURTHER OBSERVATIONS OF THE WAVE PATTERNS

The most plausible explanation of the appearance of the wave patterns lies in

the nature and behaviour of the boundary layer on the wetted surface up to separation
and following separation where it becomes a free surface boundary layer. Comparison
of theory and experiment in section 6 seems to confirm that the waves are the
amplified result of a selected frequency instability of the elassical Tollmein
Schlicting type in the boundary layer. The question arises as to whether the
koriginal instability and therefore the determination of the frequency which is
amﬁlified occurs in the laminar boundary layer before or after separation. The
theoretical considerations of the following sections suggest that the instability
follows separation though clearly the neccessary "noise" required to excite it

may find its source in headform surface roughness, very small amplitude instability.
in the attached boundary layer or other imperfections in the flow.

The boundary layer‘on the wetted surface of the 3 in sphere evidently remains
laminar even at the highest velocity (45 ft/sec) or a Reynolds number based on
tunmel velocity, UT, and sphere diameter, D, of about 9.5 x 10°, In non-
cavitating flow past a sphere the boundary layer becomes turbulent and its separation
shifts to a position downstream of the equatorial line above a Reynolds number of
about 2.5 x 10°, Clearly, the effect of the cavigy and the associated early
separation is to maintain a wholly laminar boundary layer on the wetted surface to
well abové this figure.

Fully developed cavities could be created at tunnel speeds as low as 10ft/sec
by using the ventilation available. Provided a fully developed cavity could be
established, whether it was ventilated or natural made no apparent difference to
thg wave pattern phenomenon at a particular tunnel velocity, UT. In fact the
wavelength, A, and the width of the smooth region seemed unaffected by cavity
or tunnel pressure and varied only very slightly with cavitation number, o,
within the relevant range (approx. 0.1 < o < 0.4); however both lengthssubstantially

increased with decreasing tumnel velocity, UT. Apart from the minor differences
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outlined below, the same remarks apply to the wave patterns found with the ogive,
cut-away sphers and 1,8 in sphere (plates 4 to 7).

Transition to turbulence occured on the surface of cavities behind the ogive
(plate 4) at all the tunnel speeds investigated. However with the 3 in and cut-
away spheres the point of break up of the wave pattern moved downstream as UT
was decreased to about 14 ft/sec, below which velocity this transition ceased to
occur and the waves persisted along the length of the cavity as in plate 6. It may
be observed in this figure that the wave crests become progressively more
inclined to the vertical (or back face of the cutaway sphere) with increasing distance
from separation. This was due to the slight variation of cavity surface velocity witk
vertical elevation or dynamic water head, the cavity pressure being uniform. If
Uw denotes the mean wave crest velocity then the rate of increase of the inclination
(at the centre of the side of the cavity) with horizontal position, d(tan6)/dX,
should be g/U;. Measurements from plate 6 of the inclination, +tan6, are plotted
against distance from separation, X, 1in figure 1. The fluid velocity on the
interface will asymptote from zero at separation to Ufff;E or 12.8 ft/sec (the
theoretical potential flow velocity of the free streamline). The slope of the full
Line of figure 1 indicates a wave crest velocity of 12.6 f£t/sec, virtually
identical with the fluid velocity. The dotted line is a tentative continuation
assuming that the original infinitesmal disturbance has a vertical crest line
at separation; such a curve would be consistent with Uw increasing from its sepa-
ration value to UT VT3S by the time the disturbance had reached finite amplitude
proportions.

High speed cine films (~4000 frames/sec) were taken of the wave patterns in
flows similar to those of‘plates 3, 5 and 6. A study of successive frames
confirmed that to within the order of accuracy of measurement, the crest velocity
of the finite amplitude waves was equal in all cases to what potential flow theory
would predict for the fluid velocity on the interface, namely UTVT:Ei

In the case of the 1,/¢ in sphere full transition ceased to occur below
about about 17 ft/sec (plate 7). The wave patterns were not quite so
remarkably regular as in the earlier cases possibly due either to the relatively
larger wavelength or to the disturbance caused by the ventilation air which is
emitted radially rather than in the downstream direction of the other headforms.

But the last headform, the 3 in disc, gave completely clear cavities (as
in plate 8) at all the possible tunnel velocities with no sign of a wave pattern.

Some tests were carried out to determine whether by artifically increasing the
noise level in the boundary layer of the disc an instability could be excited.
Plates 9 and 10 were the results of two such attempts, all of which were
inconclusive since frequencies of vortex shedding from the disturbers (a row

of pegs in plate 9; a square section ring in plate 10) may be reflected in the
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free surface, However, the case of the disc is further discussed in section 6
following the theoretical study of the stability of a separated free surface boundary
layer.

The measurements from the photographs of the wavelength, A, of the finite
amplitude waves are plotted non-dimensionally in figure 2, D being the diameter
of the sphere or of the base of the ogive and ‘U‘I‘ the tunnel velocity (thus
UTD/v is a conventional Reynolds number)., The propagation velocity of the waves
has been seen to be virtually equal to Ufffﬁ? and hence the frequency of the
disturbance generating the waves could be computed in each case (see section 6).
The distance from separation to the break up of the wave pattern or appearance of
turbulence, X4, is plotted in figure 3. Although this measurement, especially in
the case of the ogive, was somewhat arbitrary a study of the profile of the
surface enabled a fair estimate to be made.

4, THEORY OF THE INSTABILITY OF THE INTFRFACIAL BOUNDARY LAYER

A number of simplifications are required to provide a mathematical model,

amenable to theoretical computation, of the boundary layer flow through and following

separation. Since the boundary layer thickness is minute compared with both the

distance of the separatibn point from the axis and the longitudinal radius of

curvature of the cavity surface and since in all but the case of the disc headform

the flow in this region is not far from parallel with the axis it seemed that a
reasonable approximate mathematical model would be the planar flow of figﬁre Le Tt

| was further assumed that the momentum thickness, &z, of the interfacial boundary

layer remained unaltered after separation. Then the following notation is used

to describe the mean flow:

X,Y physical coordinates shown in figure 4, the origin of X,Y being the

separation point.
T. . time. v UT
X = =, y = =, t=-2- Nondimensional coordinates.
62 62 62

Uw,u,UC physical velocities; of the uniform stream, at a point in the layer
and on the line y = 0.
= (U_ - u)/Uw
The function w (x) = (U -U)/U . Then w =1 at separation and
(¢ - J c o (¢
tends to zero downstream
A half-breadth of the boundary layer, i.e. ¥ = B, w = %
b The function b(x) = B/S, .
Since the tangential stress is taken to be zero on the free streamline,
Y = 0, the flow model will then be identical to that for half the flow in the wake
of a thin flat plate set parallel to a uniform stream.,
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The stability of the flow within the boundary layer will be investigated
following conventional linearized procedure. To study the stability at a particular
x position, the velocity distribution at that position is considered as describing
a mean flow which is invariant in the x direction with a perturbation stream

function, V¥, of the form:

v o= #(y) exp [i ag (x-ct)]

where ag = the dimensionless wave number of the disturbance, @ . 02 ,
2 2
being the physical wave number = XE
c = ¢c_+ 1 ec,
r i

¢, = mnon dimensional propagation velogity based on U°°

c, = a measure of the rate of amplification of the disturbance.
Mso By = U . 82/v where v is the kinematic viscosity.

2 ;

Then ¢ must satisfy the Orr-Sommerfeld equatioﬂ

u 2% u -i *¢  20%3%¢p .
(2o ) te)-oe () o (- v

Ug U a62R62 ay? dy?

Since the form of the velocity distribﬁtion-function, %— s ’changes with

position x and with Reynolds number R6 the required solufion would involve
a knowledge of that velocity distribution (Goldstein‘s (1953) detailed analysis in
the wake of a flat plate-could be employed) and the computatlon and tabulation
through equation [ﬂ] of the eigenvélues in thé fdrm; say, of cs and cf plotted
~ against a6 for every x position for the required series of Reynolds number.

But only the theoretical, inviscia solutlon,and a slight modification of it have

been attempted here. Moreover the velocity dlstr;butlon has been assumed to take

L ey

— = & , eee [2]

the Gaussian form:

which leads to considerable simplification but is only,\in fact, applicable in a
viscous solution sufficiently far downstream of separation (Goldstein (1933)).

Substituting into equation [1] ana re-organizing:

(E——k)(‘ﬁ" —'agqb) -(v_v_> ¢ = ;_1_?% (¢"”-2 @2 ¢ vl @) e [
c 5 |

where:
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k (1--c)/wc = k +1k,
aB = b (162 ’ soe D—I-:I

"3

y Y w
and dashes denote differentiation with respect to < - ) or < —') . Since =
b B c

varies from 1 to zero across the shear layer it is simpler to work with (3]

. « R
b wc 55

rather than [ﬁ] whose eigenvalues depend upon the particular value of We

Boundary conditions required for the solution of the eigenvalue problem are:

ﬁy‘ = 1 Sets the scale of ¢
ﬁ;_o = The condition of zero shear stress or vorticity on the

free surface in linearized theory.
ﬁ;=m + o o) - 0 The usual condition taken to apply at infinity
(Rosenhead (1966)).
For the inviscid solution the right hand side of equation (3] was replaced
by zero and numerical integrations, using the Runge-Kutta procedure, were
performed along a contour in the complex plane of y (avoiding possible
singularities at the critical point) in order to compute the eigenvalues. Ogs kf
and ki. The results are shown by the full lines in figure 5. Using a
Gaussian distribution with equation [1], Sato and Kuriki (1961) computed inviscid
eigenvalués for the case w, = 0,692 in conmnection with the flow in the wake of
a flat plate. Converting their results for ¢ +to values of k wusing w, o= 0.692
yields the broken lines in figure 5. There would seem to be marked disagreement in
the results for ki at émaller aB, :
space which Sato and Kuriki had available combined with their use of the "c~
equation", [1], rather than the "k-equation", [3].
Using an approximation to the Gaussian distribution, McKoen (1955) performed
neutral stability (i.e. ky = 0) computations on equation [3] for RY P4 o but

neglecting the ¢''''"term. But as mentioned above a non-infinite Reynolds number

which may be due to the limited computer

would also alter the form of the distribution [2]. An approximate estimate of
the former of these two effects can be obtained by retaining the right hand side
of [3] except for the difficult ¢"''term and solving for a number of values of
Rﬁ. The range of R§ that needs to be considered is not unduly large since from

equation [2] and the definition of momentum thickness

- ... [5]

Thus from the last of equations ] it is,eésily seen that R% depends mainly on

R62 and only to a limited extent on position x which governs LA Values of
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ki obtained for the particular case RE = 50 are plotted in figure 5, the kr
line being virtually indistinguishable from the inviscid result.
5. GROWTH OF THE DISTURBANCE IN THE SEPARATED LAYER -

The frequency of the disturbance, f, and a non-dimensional frequency, Y,

are given by
62 aB
Y=27Ef'a—=a62'cr=£-[1'kr'wc] , ,..,v[6]
In the time dependent eigenvalue. solution of the last section the disturbance grows
in amplitude according to exp (a6 cit). But the wave crests move downstream with
2
speed Cr” so the transformation x = crt relates time to position and in the
actual flow where wave amplitudes are functions only of position, the amplitude
grows like exp (a6 cs x/cr). If A denotes the general amplitude and A' the
2

spatial rate of amplification then

1 %A A a. c, a R
_ 6 i B c i .. [7

A x A c b [1 -k, wc]
At a particular x position the frequency, vy, or wave number, Ons which gives
the maximum rate of amplification will be given from equation Eﬂ by the solution
of

4 o2t B ____ % - R ... (8]

Then the results of figure 5 enable the values of y and ag for maximum
amplification to be calculated for various values of w, and for aA/aaB = 0.
Ml so shown in figure 6 are the Reynolds number modified results for R, = 50 and
the frequencies of neutral stability, A' = 0, the computation of whic;,
required the use of the functions b(wc) and Rﬁ(wc) and the relation [5]. The
dimensionless velocity deficit on the free surface, W, starts with a value of
unity at separation and asymptotes to zero with increasing distance from separation.
In the present context it is convenient to use the variable w, to give some
indication of position, x, on the free surface. Typically it requires a distance
of several hundred (or R62) momentum thicknesses to reduce v, to %. o

As in other problems of boundary layer instability one frequency is preferred
and amplified to the virtual exclusion of all others. Since the growth of
amplitude i1s exponential it is clear that dominance of a particular frequency is
1ikely to be increased as the disturbance is convected downstream. If the noise

in the boundary layer up to and.at separation (wc =1) were white (i.e.
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BA/BaB = 0) then, from figure 6, a frequency, ¥, in the range 0.266 - 0.290

would clearly achieve initial dominance at large Reynolds numbers. This disturbance

would then be amplified as it moved downstream (decreasing wc) until neutral

stability was reached, following a horizontal line in figure 6. If by that time

the disturbance reached finite amplitude proportions the waves would thereafter tend

to be damped, providing that break up into turbulence did not occur before that

point, Non-linear or second order effects due to the finite amplitudes will have a

quantitative though not qualitative influence on these later behaviour patterns.
Similarly a frequency in the range 0.256 - 0.277 is likely for R62 = 50

according to the Reynolds number modified solution. These ranges of ¥ are shown

in figure 7 in which experimental frequencies, discussed below, are plotted

against R,

6o INTEGRiTED AMPLIFICATION

In order to obtain some estimate of the total amplification/undergone by the

disturbance to reach finite amplitude proportions and turbulent break-up it is
necegsary to integrate equation [i]. If for a given frequency, ¥, AS and A
denote the amplitudes of the noise at separation and of the disturbance at

position x then:

’ A X 2 « k. o W
1n< - ) [ B 5Ty ... [
A b . ¥
S

Through equations [5] and [6] b, op and k, are known functions of 'wc for
the given frequency, ¥. To perform the integral requires then a knowledge of
the function wc(x) which has, as yet, been umneccessary. Goldstein's (1933)

result can be re-written as
1 5
W, = z°+-  where z = ————= z_ - ’ ees [10]

and Xxg¢, the virtual origin of the separated layer, will be given by w, o= 1,

x = 0. By virtue of this relation, the choice of Reynolds number will have a
dominant effect on the integral [9]. This dependence will clearly overshadow the
deviation of the functions b(wc), aB(wc) and ‘ki(wc) from their inviscid form
_to their form for finite Réz' Thus as a first approximation at least the
inviscid form of these functions was used in conjunction with equation E1Q] to

compute 1n %— as a function of x for particular frequencies and Reynolds
s .

numbers. In flgure 8, a graph of x position against R .’ the 1lines of constant

in ( %— > for partlcular frequencies were plotted from these calculations. It
]

has however to be noted that non-linearity due to the finite amplitudes may have a

significant effect on these results.
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Te COMPARTSON OF THEORY AND EXPERIMENT
In order that the experimental results for the various headforms may be cor-

.related and compared with theory some estimate of the momentum thickness at
separation, 0z, 1is clearly required for each of the axisymmetric headforms. For
this purpose the integral method of Rott and Crabtree (1952) was used in conjunction
with theoretical wetted surface pressure distributions for the sphere and disc
obtained in a previous paper (Brennen (1968a)) and for the ogive from the source
distribution from which that headform was designed. Then
Dy
S = I [--
UT
where D is the maximum diameter of the body and I = 0.29, 0.061 and 0.746 for
the sphere, disc and ogive respectively. But as was shown in the paper just cited
the actual separation point in the case of the sphere is some distance downstream of
that predicted by theory. In order to allow for the effect of this on. I the
pressure distribution was extended by a constant préssure between the two sepdration
positions. The modified valuesfor I were 0.30 for the cutaway sphere, 0.31 for
the 3 in sphere and 0,34 for the 11/3‘in sphere.
Thus &, and R62 corresponding to each point pf figures 2 and 3 were
calculated and values of vy (computed through the definition Dﬁ] where f 1is
found as indicated at the end of section 3) and gi plotted in figures 7 and 8
respectively.
‘Results for experimentally observed frequencies in the wake of a thin flat
plate are shown in figure.7. Those of Hollingdale (1940) and Taneda (1958) in

which the fluid is water have been non-dimensionalized using the formula,

82 = 0,664 /%E « Sato and Kuriki's (1961) results (in air) for ap ¢ at
T ' :
wc = 0,692 have been converted using equation Dﬂ since their measured velocity

distribution at that point is virtually Gaussian.
All the results seem to indicate an asymptotic inviscid solution very close
to the range predicted by theory. However the Reynolds number modification of

sections 4 and 5 is clearly insufficient. Although some doubt must persist due to

the neglect of the ¢'"'"tom it is suggested that the influence of finmite R62
on the function g— is probably more important than its effect on the R.H.S. of
equation [i]. Thecvelocity distribution will change from near~Blasius some

distance upstream to near-Gaussian some distance downstream of separation. As the
Reynolds number is reduced, the results of Goldstein, Hollingdale and others
suggest that the distribution at and shortly after separation tends furfher toward
the fonﬁer type and thué the instability frequency is correspondingly reduced
towards that for a Blasius distribution, for which the theoretical neutral stability

curve due to Lin (1945) is shown in figure 7.
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. The flat plate results in which the scatter on both "mean" lines is about
* 0.02 in y 1lie somewhat above those from the present experiments. The results
for the spherical headforms may be affected by the axisymmetric divergence of the
interface and the corresponding reduction in 8, with distance from separation.

The theory does not suggest the existence of a critical Reynolds number
below which all frequencies are stable. The absence of finite amplitude waves
in the case of the disc (whose renge of Ry is shown in figure 7) does not
preclude the existence of unstable frequencies in that range. It seems likely from
an extrapolation of the results for the other headforms to the low R62 of the disc
experiments that any disturbances present there would have low frequencies and
corresponding low amplification rates. Accordingly the much larger axisymmetric
divergence and longitudinal curvature of the interface in this case probably
prevent sufficient growth to produce finite amplitude waves before the neutral
stability position is reached (see below).

When the disturbances reach finite amplitude proportions not only will
linearized theory become less accurate but the waves will also be subject to the
effects of surface tension and the centrifugal acceleration due to the longitudinal
curvature of the interface. A pafallel may thus be drawn with gravity/capillary
waves on a horizontal free surface. Turbulence may first occur when the
amplitude reaches a critical size and the waves "break" in the conventional manner.
Despite the innacuracies of measurement figure 8 would suggest that for each
headform break up occurs very roughly along a line of constant total amplification
indicating that if the noise level in the attached boundary layer (As) were
roughly independent of 362’ the waves would break on reaching a critical
amplitude,

However below a particular value of R62 (given by the neutral stability point
of lines such as A4,B,C,D) the necessary amplification is not acheived and the waves
continue without break up. Surface tension and acceleration may constrain
amplitude growth to a certain extent so that the neutral stability position may
be upstream of that predicted by theory.

8.  CONCLUDING REMARKS

This paper continues the author's series of papers dealing with effects of the

boundary layer on cavitating flows. The effect on the position of separation was
discussed in an earlier paper (Bremnen (1968a)). In another previous paper
(Brennen (1968b)) the existence of a turbulent boundary layer on the surface of the
cavity was shown to increase dramatically the expected and actual partial pressure
of air in the cavity when the water contains dissolved air, resulting in a decrease

in drag on the headform.
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- The main eoncern of the present paper is to describe and account for the
ripples or waves observed on the cavity surface just downstream of separation.
Stability theory applied to the separated and initially laminar boundary layer
aggests that the waves are the finite amplitude result of excited instabilities in
this layer. Thus the measured frequencies are compatible with those obtained in
the theory where the selected frequency is that which has the maximum spatial
rate of amplification at or immediately following separation. Under some conditions
the waves break up yielding a turbulent interfacial layer and the points at which
this occurs for a particular headform appear to lie close to a line of constant
total amplification. Under other conditions the point of neutral stability is
reached before sufficient amplification for break up has been achieved and the
waves continue along the length of the cavity. With one of the headforms, the disc,
no wave patterns were observed; some aftempt to.explain this is made in section 7.
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F1G.3. VARIATION OF DISTANCE TO WAVE BREAK UP WITH TUNNEL VELOCITY, Us
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‘Plate 1. Ogive. U, =30 fps.

Natural cavity.

Plate 2. 3in.Sphere. U 20 fps.

Natural cavity.

Plate 3. 3in. Sphere. U.=35 fps. Plate 4. Ogive. U,=25 fps.
Natural cavity. Ventilated cavity,

Plate 5. Cut-away Sphere. Plate 6. Cut-away Sphere.
Ventilated. U,=20 fps. Ventilated. Ur=12fps.



Piate 7. 1iin. Sphere. Us=15fps.

Ventilated cavity.

Plate 8. Disc. Up=35 fps.

Ventilated cavity.

Plate 9. Disc with row of pegs Plate 10. Disc with ring on
on face. Uy=30 fps. face. U =30 fps.
Ventilated cavity. Ventilated cavity.
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