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ABSTRACT

This thesis develops a method of solving
axisymmetric cavity flow problems using a relaxation or

numerical technique.

Chapter 1 contains a general review of the
phenomenon of cavitation in fluilds. Special reference 1is
théen made to fully developed cavities in an Euler or
ideal fluld for both plane and axisymmetric flow. The
baslc theorems and equations are presented , with the
various types of mathematical model which have been
suggested. Details of the fundamental feature of this
type of flow , namely the phenomenon of flow separation ,
are given. At the conclusion of the chapter the analytic
methods of solution of plane cavitating flow and , in
particular , those using the Riabouchinsky model , are
outlined. The numerical results of a pertinant example
of this type of flow are included in Appendix A with some

additional comments on the phenomenon of choked cavity

flow.

Chapter 2 provides a brief account of the
previous approaches to the problem of axlsymmetric
cavitating flow. These 1include ; empirical results ;
theories based on source-sink and vortex sheet
distributions ; theories based on correlation with the
corresponding plane flow solutions ; previous applications

of relaxation methods.



IX

Chapter 3 develops the basic equations for
axisymmetric cavity flow in the transformed d),v/ plane
in which 1t i1s proposed to solve for the dependent

variable f (equal to r®

» Where r is the radial varilable
in the physical plane) . The equatlons prove to be of
the non-linear elliptic type. Relations for the
boundary conditions , and certain other relevant physical
quantities , are then evolved in terms of the derivatives
of . . The determinacy of the problem in this plane
requires careful investigation. Special reference is
made to two important phenomena ; (i) that of the limiting
condition of choked flow , for which certaln important
relations are developed and (ii) that of the two distinct
types of separation in cavity flow. The derivation of
expansions describing the singular behaviour of the flow
in that region of the transformed plane is given in each

case.

Chapter 4 describes the adaptation of the
results of chapter 3 to provide a numerical or relaxation
method of solving axisymmetric cavity flows. The finite
difference forms of the field equation and boundary
conditions in the (P,V’ rlane are first derived. Thelr
application 1s then discussed with special attention
being pald to the separation point and to the free
streamline , the treatment of which provides the crux of
the problem. Detalls are then given of the treatment of
the_singular points , a subject which has commanded
little attention in the literature for the case of non-
linear partial differential equations. Finally the

aprlication of the methods developed is summarized.



Chapter 5 presents the results obtained by
the author ,both for the convergence of the methods and
for the resulting cavity flows. Comparison is made
with previous results s with the corresponding plane
flow solutions and with experiment. Special reference
is made to the behaviour of cafity flows near the
choked flow condition , results which have an added
significance in view of the fact that most experiments
are carried out in the restricted environment of a
water tunnel. In the final sectlon some analysis of

the errors 1s glven.
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CHAPTER 1

1.1 INTRCDUCTION.

The phenomenon of cavitation was first glven
publicity durlng the sea trials of H.M.S.Daring in 1885.
Tt was noticed that in the region of the propellor blades,
“cavities were being formed in the water...... and these
were the source of the great waste of power and other
difficulties which were encountere&ﬁ This was, 1n the main,
due to the fact that the vessel had been equipped with a
new type of steam turblne engine giving higher blade
veloclties than had been previously reached. 0Only by
increasing the blade area by about half as much agaln did
the designers find 1t possible to approach the design
speed of the craft. Not long after this incident 1t was
found that the lnstability and collapse of these cavities
on a particular part of the blade was the cause of con-
siderable pitting and erosion in that region. Thus
cavitation showed 1tself initially as a particularly
harmful effect.

Since that time much research has gone into
the phenomenon of cavitation , which could be
defined as the formation of the vapour phase of a liquid
that has been subjected to reduced pressures at more or
less constant temperatures. This definition would include
ordinary boiling and in fact the processes of bolling and
cavitation have , as will be seen later , many things in
common. As well as the vapour of the liguld , cavities

may also contailn gas which may have been introduced elther



artificially or because the liquid contained absorbed gas.
It 1s therefore not neccessarily true that the pressure
wlthin the cavity i1s the vapour pressure of the liquid at
the operating temperature. |

The object of thls chapter 1s to describe in brief
gome of the factors known to 1nfluence cavitation , to
give outlines of prevlous approaches to the problem and
further , to isolate and deflne the particular problem
whose solution 1s the maln aim of thils thesis.
[ The terms ”cavity“ and “bubble are interchangeable in
this thesis both referring to the vapour or gas filled

regions. |

1.2 NOTATION,TERMINOLOGY,AND GENERAL CHARACTERISTICS OF
CAVITATING FLOWS.

1.2.1 Notation.
The basic quantities used in describing cavitating
flows are listed below. A complete nomenclature may be

found at the end of this thesis.

jo) Pressure

Py Vapour pressure

P Density,usually assumed constant 1n time
and space

q Fluid velocity magnitude

As a subscript to denote values in or on

the surface of the cavity

As a subscript to denote values at =z

reference point,taken as the polnt at infinity

for & uniform stream



n

[1.1] Q = (Pe, = 2 )/ %/;. q;" sthe cavitation number.

/
[1.2] Co = (p - pw)//I%IOQZ sthe pressure coefficient.

The number Q proves to be a fundamental parameter
in cavitating flows. As has been mentioned before p,
will be ecual to p, only if all gas has been excluded
from the liquid and cavity. Surface tension and other
factors such as the presence of thermal gradients may
also prevent p, from being equal to py. If gas 1is present
then p, will be the sum of p, and the partial pressure of
that gas in the cavity. From the above definitions,[1.1]
and [1.2], we can say that on the ligquid/vapour interface

where p=p, 5 Cp = - Q .

1.2,2 An Example.

In order to define some of the terms used 1n
referring to cavitating flows,we shall now take a particular
example and describe what happens in practice as we increase
the velocity of the flow while maintaining p, and p, at
constant values. From equation [1.1] this is equivalent to
decreasing the cavitation number. Since this theslis will
be mainly concerned with the cavitation around bodles in
a uniform stream we will take the flow of water past a
cylinder as our illustration.

For Q > 1.5 , at normal temperatures, the cylinder
has a completly liquid wake of turbulent form. As Q 1s
decreased below about 1.2 ,tiny bubbles begin to form in
the water at a point such as A (Fig. 1,1) near the surface of

the cylinder. These bubbles then travel into the wake and
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are convected away downstream.(Fig.1.1) This phenomenon,
known as 1inciplient cavitation , is very similar to nucleate
boiling. It requires the growth of tiny nuclel in this
region on the surface of the body into observéble bubbles.
The value of Q at which thls begins to happen , Q;, 1is
known as the incipient cavitation number. Pue to the
near impossibility of measuring the pressure within these
nucleate bubbles, p, 1s always taken as belng equal to

py Wwhen describing incipient cavitation,whether dissolved
gas 1s present in the liquid or not. It is the sudden
collapse of these bubbles,when convected to regions of
higher pressure , that is thought to cause the erosion of
the body in the area of collapse. Both chemical and
physical theories have been put forward to try to explain
this damage. The actual process is likely to be explained
in a complex combination of the two. Most physical
theories are based on the factor of the release of energy
due to bubble collapse.

At further reduction of Q these bubbles fill the
whole wake,which then takes the appearance of a reasonably
well defined region of white foam behlnd the cylinder
(Fig. 1.2). This is termed partial cavitation and
is an intermediate state. By lowering Q still further we
find that the bubbles in thls region of foam combine to
form one large , reasonably steady bubble behind the
cylinder. This stage is called full cavitation and the
bubble known as a fully developed cavity. The surface
of the cavity 1is still opague and bubbly and the rear end
remains very foamy and turbulent. (Fig. 1.3)

A further change takes place as we reduce Q to

about 0.6. The cavity surface seems instantaneously to
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'become completely transparent and smooth for the greater part
of 1ts length. The end however remalns turbulent. This

change has been observed by Gadd and Grant (Ref. 15). The
actual value at which this occurs may be depeﬁdent on the
experimental set up. Although cavities for Q below

this value seem to the naked eye to have this very
steady,glassy appearance,high~speed photographs,with

an exposure of a few microseconds,revezl a serrated

but still transparent surface in this reglon.

As we reduce @ fully developed cavities grow in
breadth and length and the coefficlent of drag falls.
Approximate power relationships were noticed for these
variations,principally by Relchardt. (Ref. 34) These
relations are
[A] For planar flow around,for example, an infinitely long

cylinder :
B sthe maximum height of the cavity above

the plane of symmetry ol
L ythe half-length of the cavity

[B] For axlsymmetric flow around ,for example,a sphere :

B ,the maximum radius of the cavity oL Q-ﬁ

-1
L ,the half-length of the cavity 4 Q

[C] For both planar and axisymmetric flow :

Cpsthe coefficient of drag on the body ol T+ Q

1.2.3 Further effects.

Another effect which has been observed in
fully developed cavities is that of the re-entrant

jet. This jet of fluld seems to emerge from the closure



reglon of the cavity,to be directed into the cavity and
towards the body. Thlis phenomenon can be taken into
account when setting up mathematical models of the flow.
(See section 1.4.5) Other points which we shéll refer to
are the “separation point;’ and the“stagnation pointga.
The stagnation points are , as usual , the points of zero
velocity relative to the body. The separation points
are the points at which the flow separates from the body
surface. The area of the body surface which is in
contact with the liquid is known as the wetted surface ;
that is to say the part of the body surface upstream of
the separation points.

For Q below 0.2 cavities may become very
largeyand indeed it will be shown later that for flows
in a straight walled channel there will be a minimum
positive § which can be reached. In theory,for this value
of @ the cavities become infinitely long , and ,as the width
of the channel tends to infinity,this minimum value of ¢
tends to zero.

These then are the general characteristics of
silmple cavitating flows. Usually cavitation occurs
in practice 1n more complex flows,such as that around
a revolving propellor blade in water,but these flows
are so complex as to have,so far,resisted everything
but an empirical approach. It wlll therefore be more
advantageous to concentrate our attention here on the
cavitating flow around simple bodies such as cylinders,
discs and spheres. These are the bodies most frequently
used 1n experiments to measure the drags,sizes and
other effects of cavity flows in water tunnels. There

1s , therefore , some experimental data with which we can



compare,for these simple bodles,theoretical and numerical

results.

1.3 CAVITATION RESEARCH.

1.3.1 General.

The researchyboth theoretical and practical,whlch
has been done in cavitation ,can be divided roughly into
two categories. The first has been concerned with the
phenomenon of incipient cavitation,how and when it 1is
initiatedy,and with the effects of the liquid and surface
properties on the inception and growth of the minute
bubbles. These researchers are concerned with the damage
caused by the sudden collapse of the bubbles and therefore,
in some applications , with the prevention of thelr
appearance ; hence the term “cavitation suppressioﬁs.

The other category is involved with fully developed
cavities,thelr shape,drag and consequent wake. The theoretical
research 1n this category,for the most part,assumes the flow
of the llquid to be 1dealized with a smooth free streamline
interface and a definite and unique separation point. A
considerable number of two dimensional plane flows of this
typre have now been solved by what 1s known as the“hodograpﬁw
method. These will be discussed in section 1.5 .

Thls thesis is concerned with the second category,
but in order to glve a more complete plicture 1t wlll be
useful,first,to deal briefly with incipient cavitation and

the effects of fluld propertles upon it.
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1.3.2  Incipient Cavitation.

As pointed out in section 1.2.2,when we reduce
the cavitation number of the flow past a body in a stream,
there comes a point at which minute bubbles are formed
1n the regions of reduced pressure near the surface of the
body. The cavitation number at which this occurs is known
as the 1nclpient cavitation number or index,denoted
by Q,« Generally, 1t 1s assumed that this effect 1s due to
the fact that,under these condltions,microscopic nuclel,
ever present in the stream,are able to grow at a rate fast
enough to make thelr presence felt or seen before being
convected downstream to regions of hlgher pressure. Van
der Walle (Ref. 44) made a detalled analytilc approach to
thls problem,in which he showed that an initially stable
nucleus,presumeably of undissolved gas,wlll not grow
rapidly as 1t moves in the dilrectlcn of a negative pressure
gradient until C, is less than =-Q; by an amount 4/37 where
q is a parameter dlrectly proportional to bubble si:ze.

Up to the point,C,=-Q; sthe growth of the bubble
wlll depend upon the diffuslon of any absorbed gas present
but beyond it will be limlted only by heat conductlion or
dynamic effects as the bubble fills with vapour. In most
experiments,the time for which the bubble 1s in the regime
Ce< =-Q; 1s much less than the typlcal time for gas diffusion
and much greater than the typical time for heat diffusion.
Hence the rapid growth after the point Cp= -Q;. Many other
factors may influence the rate of growth § dissolved and
undissolved gas content,pressure gradient forces on the
bubble,viscosity,surface tension and surface roughness

are some factors which command consideration. Sllverleaf



11

(Ref. 40) glves a good account of these lines of research.
The effect of total gas content has been studied analytically
by van der Walle (Ref. 44) and Holl (Ref. 21) and
experimentally by Ripken and Killen (Ref. 37)‘and
Silverleaf and Berry (Ref. 41) among, others. These
authors seem to agree that Q; lncreases with total
alr content. Ripken and Killen also found that Q; was
slgnificantly increased by a reductlion in surface tension.
Thermal effets due to the latent heat of vapourlsation
and the consequent temperature gradlents are dlscussed by
van der Walle and Silverleaf. The former concludes that
these effects are only important when the latent heat is
large compared with that of water at normal temperatures,
since heat diffusion 1s much more rapid than gas
diffusion.

Holl and van der Walle have studied the effect
of the Reynold% number,Re,of the flow. Here it appears
the effect varies according to the shape of the body
orywhat amounts to the same thing,the shape of the
pressure distribution. For long,smooth bodies such
as hydrofoils the bubbles when formed tend to travel
parallel to the surface of the body in thelr initial
movement. In this case increasing Re tends to decrease Q.
But for the flow around a bluff body such as a disc,
cavitation occurs in the separated flow away from the
bodys,and Q; markedly increases with Re. The effect of the
boundary layer wlll thus have to be taken into account in
- considering the viscous effects on Q;.

This then is the form which research into incipient
cavitation has taken. Although most of what has been done

concerns only this initial stage of cavitation,the effects
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could probably be extended with only slight modification

to the flow in the region prior to and at separation for
fully developed cavities. In actual flows of this type
nucleate bubbles still form in this region,buﬁ it is
probable that they have very little effect on the cavity

as a wholeythough they may influence the position of the
separation point. Indeed as Silverleaf (Ref. 40) points
out,1t 1s probable that the relative effects of viscosity,
surface tension,etc.,as concerning Qband Incipient cavitation
are very different from their effects for fully developed
cavities. Most research,to date,shows that these ”scale
effects“ are very small for fully developed cavitation

in water at normal temperatures. It is therefore reasonable
to consider initially the cavities in an “ideaiﬁ fluid

(see next section) and to consider afterwards the effects

and differences involved in having a real fluid.

1.4 FULLY DEVELOPED CAVITY FLOWS.

1.4.1 Basic Eguations.

As with most other cases of fluid flows,the complete
solution would be extremely complex,but can be simplified
considerably by discounting some of the less significant
properties of the fluid. So it is here in cavitating
flow where theoretical solution is only possible by
idealizing the fluid and the flow ; we define an 1ideal
flow as one which is inviscid,incompressible and irrotational.

The assumption that the fluid is inviscid and

incompressible means that we can apply Eulers equation
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of motion :

[1.3]

where @ is the gravitational potential. Also,by definition,
the flow is irrotational if it has a veloclity potential
function, q)(x,y,z,t),such that

[1.4] u=3 , v ='§£ ., w = ¥
4 AKX Y 3z

or @

[1.5] q

il

vy
Hence, 1f the flow 1s incompressible :
a
[1.6] V(p:o
Such flows are known as potential flows. Combining [1.3]
and [1.4] 1t can easily be shown that a homogeneous,

potential flow must satisfy the Bernoulli equation :

(1.7] p+ 1,090 + pdg+ pG = P(t)
YN0 et p
where P(t) is dependent only on time. Further,if the
flow is steady , 8g = O ,and therefore :
ot
[1.8] p+ 1 qu + pG = Constant in time and space
2

If we assume gravitational forces to be zero,then we have

[1.9] D + % P q© = Constant in time and space

More rigorous treatment and proof of these baslc
equations is glven in most standard texts.(See References

5,6,30 and 48 for example.)

1.4.2 Basic Theorems.
From the assumptions of the steady,irrotational

flow of an ideal liquid we can draw a number of 1lmportant
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conclusions. The first , and most important , deduction is
the fact that from [1.9],since the pressure on the interface
or free streamline 1is constant and equal to p.,then the
velocity magnitude of the free streamline is cbnstant.
By equation [1.9] and definition [1.1]
[1.10] g /) = 1+Q

There are a number of other important properties
which can be deduced from these simple equations. Birkhoff
and Zarantonello (Ref. 6) set out these properties in terms
" of theorems,their corollaries and proofs,so it will suffice

simply to state them here along with some observations.

[A] In any irrotational Euler flow of an ideal fluid
the point of minimum pressure occurs on the
boundary. Kirchhoff (Ref. 23) first showed this,
by taking the Laplacian of [1.7]. This glives the
result that ¥V p ¢ 0. Thus,in an ideal fluid,
cavitation must first occur on the boundary and
P, be the minimum pressure in the flow fleld.

On the other hand this result is not neccessarily
true in non-irrotational flow,as demonstrated by

the phenomenon of “Vortex cavitatioﬂ“ »in which
cavitation occurs in the region of reduced pressure
at the centre of a vortex. Viscous effects may
also prevent this theorem from belng true. In actual
flows past a cylinder the polint of minimum pressure
occurs on the surface of the cylinder Jjust upstream
from separation.

[B] From [A] it follows that since p, { P,» Q » O .

a’

The following are true of the steady,irrotational
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Fuler flow of an ideal liguid,ignoring the gravitational

forces.

[C] Cavities must be convex. Since p, 1s the minimum
pressure,q must be the maximum velocity occuring
in the flow by virtue of equation [1.9]. ‘Hence the
velocity gradient perpendicular to the lnterface
and towards the cavity must be positive. But it is
easlly shown that the centre of curvature of a
streamline at any point 1s on the same side of the
streamline as that to which the velocity gradient
is directed at that point. Therefore the free

streamline must be convex , viewed from the fluid.

[D] Because the velocity,qc,is constant the cavity cannot
have a staghation point at the rear end , since this
would involve a point of different,namely zero,

velocity.

1.4.3 Plane and Axisymmetric flows.

Cavitating flows around two basic types of body in a
uniform stream have been consldered in the literature.

Plane flows are defined as those which are uniform, in
one cartesian direction,say 0z, perpendicular to the direction
of the uniform stream,Ox. For example the flow past an
infinitely long cylinder whose axis is set perpendicular to
the direction of the uniform stream. All other surfaces,
such as a channel wall , must obviously have the same property,
so that every Xx,y, plane is ildentical and a point in the
flow completely described by the two co-ordinates x,y.

Axisymmetric flows are defined as those that are
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axlsymmetric about an axis,0x, parallel to the direction of
the uniform stream. TFor example the flow past a disc set
normal to the stream. All other boundaries must again
be identical in every x,r plane where r is the radial
direction measured perpendiculzr to 0Ox. A point in the
flow 1s therefore completely defined by the two co=-ordinates
Xy &

In steady ideal plane flows we define the stream
function,V’,such that :

[1.11] M = u = W

. ¥X - %

[1.12] W = v = - W
¥y ¥X

From these equations it follows that both ¢7and Y obey
" the Laplace equation. i.e.

2 2
[1.13] Vg= o [1.14] Vy = o

Then 1t 1s easily shown that 3Y = ¢ where s 1s
¥s

measured along a streamline,that is in the direction of fluid
velocity at any point. Thus ¥ 1is constant on each streamline
and the difference in the numerical value of ¥ on two
streamlines is a measure of the volume rate of flow/unit
width between them.

In steady 1ideal axlisymmetric flow Stokes® stream function,

Y ,is glven by :

[1.15] W = u = 1w
¥X r dr

[1.16] AQ' = v = - 1

: r r 33X

Here agailn it is easily shown (Ref. 30 , p.432)
that ¥ is constant on a streamline. The equations

corresponding to [1.13] and [1.14] are :
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[1.17] 3 o+ Y0+ 10 = o
»x? Ir* r dr

[1.18] BVo+ ¥V - 1 W = 0
3X* dIr? r dr

Thus in this case, although.(P obeys Lapiaces
equation, ¥ does not.

In elther case a knowledge of the values of @ or
¥/ at every point in the flow will provide a complete
solution to that flow problem. This entails solving
one of the differential eguations [1.13],[1.14] or
[1.17],01.18] within the appropriate boundary conditions
for that problem.

1.4.4  Boundary Conditions.

Comment is required here on the terminology
used in referring to types of boundary condition. In
order to solve a second order differential equation of
the types exemplified by equations [1.13]1,[1.14],[1.17]
and [1.18],1t 1s neccessary to impose a condition for
the dependent variable,be it(P,q’ or any other,on every
part of the boundary. Three types will be referred
to in this thesis.

[A] The Dirichlet boundary condition for which the
value of the dependent variable is known at every
point. This,therefore,is the condition on a
“fixed” boundary,body or wall for a fluid flow
in the physical plane.

'[B] The Neumann boundary condition for which the normal

derivative of the variable is known. This normally
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meansy,in fluid flow,the physical plane,that one
component of the velocity is known on this boundary.
[c] A complex boundary condition which consists of an
identity connecting some or all of the vériable,its
tangential and normal derivatives. It will be
seen later that the condition of constant velocity

on a boundary leads to such a condition.

A problem in which different types of condition hold

on different parts of the boundary is termed a “mixe£,
boundary condition problem. Should there be only two
parts with different types of condition , the problem

'3 . »
becomes simply mixed .

1.4.5 Mathematical Models of Cavity Closure.

It was pointed out in section 1.2.2 that actual
cavities exhibit considerable turbulence at their
downstream end. Thus if we are to make an attempt at
mathematical solution,in terms of a potential flow,
we must idealize this region considerably. In fact we
must assume the cavity to have,everywhere,a steady,smooth
surface. From [C] of the section 1.4.2,the cavity must be
convex at every point and this would imply a closure of
the form sketched in figure 1.5,which would neccessarily
mean a stagnation point at the point A. But this would
give 1In turn,a point of zero veloclty on the free streamline
which,as pointed out in [D] , is incompatible with the

condition of constant cavity pressure.
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MATHEMATICAL MODELS OF CAVITY CLOSURE
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It is worth noting at this point,that experimental
pressure measurements at intervals along the length of
a cavlity show a marked rise as the closure region is
approached. (See Ref. 10)

A number of mathematical models have been designed
to avold or surmount the dilemma detailed above. 0One such
model involves the introduction of a singularity at A
(figure 1.5) in such a way that the velocity along the free
streamline remained constant. There would be no Justification
for such a singularity ,in terms of real flows,but the
main difficulty with this model i1s the fact that it
introduces a new variable to the solution of the flow,
namely the value of the strength of the singularity. The
type of singularity can be imagined as a double“rolling-
uﬁnof the end of the free surface.

A different type of model,the cusp-ended cavity
is given in Figure 1.6. Here we introduce two cusps BA and
CA whose curvature 1s concave but whose presence disposes
of the stagnation point. Such a model,however,means that
P, 1s not the minimum pressure encountered in the flow by
the converse of [A] of section 1.4.2. The question also
arises as to how the cusps are“matchegwinto the flow.

A somewhat similar model was desighed by
Riabouchinsky (Ref. 36) and is shown in figure 1.7. He
suggested the use of an "imagé“ plate ,BC,in such a way
that the flow was symmetric about the plane EF. This has
the advantage of halving the size of the flow field to be
solved and dispenses with the unknowns of the first two
models. A more complex problem would be the non-symmetric
Riabouchinsky flow where the image plate is reduced in

slze to approach the actual flow.
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Thelr observation of the re~entrant Jet led
gilbarg and Rock (Ref. 17) to the fourth model. Figure 1.8
shows the mathematical re-entrant jet model they designed,
talkdng into account this jet of ligquid coming into the
cavity from the closure point. The rear stagnation point
in this model thus occurs away from the interface at =z
point such as A. A notable feature of this model is that
the cavity 1s not only entirely convex but that g  can be
constant without leading to the original difficulty. However
this model involves a permanent and continuous removal of
liquid from the flow. The Jjet 1s assumed to continue
through the body to an upstream infinity , giving a
doubly covered region of flow. Both these properties
are unrealistic. In practical experiments the Jjet
seems to break up and the remains to be sprinkled onto the
main cavity wall,although for small cavities the Jet
may actually impinge on the rear of the body. Nevertheless
the re-entrant jet model is perhaps more realistic than
the other models,though more complex to deal with than
Riabouchinsk&%.

Further models have-been suggested,among them the
parallel streamline model of figure 1.9, in which g is
considered constant up to the point of maximum diameter
or breadth and the free streamlines to be parallel to the
axis of symmetry beyond this point. The pressure on the
latter part therefore rises asymptotically to a uniform
stream value. Gadd (Ref. 14) compares the validity of
these models for a flat plate set normal to a uniform stream
and introduces a further “converging streamlinev model.

Since,for most purposes,the interest lies in the
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upstream half of the flow,these artificial models do

not,as might be imagined,so drastically alter the results
required. In plane flows,where exact solution for simple
bodies 1s possible,the indication is that for iarge cavities
(or small Q) the two most significant models,Riabouchinsky
and the re-entrant Jet,glve results very close to those

of experiment,for the drag on the body and main dimensions
of the cavity. As § is increased above about 0.6 ,the
results begin to diverge. (See Refs. 14,6 and 48.)

Figure 1.10 shows a mathematical model which
contravenes the condition of convexity completely and
ﬁhich could only occur in practice at physically
unrealistic negative cavitation numbers. However it
avolds the presence of a rear stagnation point and has
been used by Lighthlill (Ref. 29} and Southwell and
Vaisey (Ref. 43). The latter use a relaxation
technique for their solution of the plane flow case
and their results will be referred to later (section 2.5).

All these models are applicable to both plane

and axisymmetric flows.

1.4.6 Separation Points.

When the flow past a body separates from that
surface it will obviously do so along a line which is
a closed contour on the surface of the body,providing
this is finite. Where the body is infinite this
contour may go off to infinity,but must nevertheless
be closed through the point at infinity. In both plane

and axisymmetric flow this contour appears as two points
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1n,respectively,the longitudinal and axial planes. These
points are referred to as the “separation point§5 since
they completely define the contour in both cases. 1In
axisymmetric flow one point 1is sufficient. l

In the flow of a viscous fluid,the points of separation
in cavity flow, as in non-cavity flow, will be determined
by boundary layer theory knowing the pressure distribution
just outside the layer. But in the flow of an ideal fluid
geparation is assumed to take place at the point Cp = -Q.
It is therefore a necessary condition in determining the
points of flow separation for an ldeal fluid that , at all
o%her points on the wetted surface , 1 > Cp > =@ , unity
being the value of Cp at the stagnhation point and therefore

1ts maximum value. This condition can be proved by

assuming that there are poilnts at which Cp < -Q. Then
since Cp = 1 at the stagnhatlon point there must be some
other point at which Cp = -Q. But this is the condition

for separation and thus the flow would separate at this
polnt. With some irregular shapes of body there may be
what is known as “flow re-attachmengn,in which the flow
after separation lmpinges again on the body and thus
gives another region of wetted surface. Nevertheless
the identity 1 > Cp > -Q must stlll hold on all
portions of wetted surface. There may also be more
than one stagnation point. If s 1s the distance measured
along the surface of the body then a typical Cp(s) curve
would be that of figure 1.11.

Another important conclusion can be reached using
property [C] of section 1.4.2. This is that the

curvature of the free streamline must always be convex,
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viewed from the fluid. If such a curvature is defined
as positive the radius of curvature of the free streamline
at the separation point,R, ,must lie within the limits:

0< 1 < 1

Res Res

bwhere Rgg 18 the radius of curvature of the body at
separation. If this were not true and Rgg > Res
then the solution would be unreal,since this would mean
that thé free streamline would cut into the body.

A special case of separation occurs when there is
a sharp projecting corner on the body. The flow must
separate at this point,since to negotiate the corner would
entail an Infinite veloclty and therefore a point
Cp = =0 which violates our first condition. This type
of separation, exemplified by the separation from a disc,
is termed abrupt . Since 1n this case Ry =0 , Regg
could also be zero, and in fact this 1s the case in both
plane and axisymmetric flow as is shown by Armstrong
(Ref. 2). He also shows that there will be an infinite
pressure gradlent on the body at an abrupt separation
point.

Separation which occurs at a point at which the
curvature of the body is finite 1s termed smooth separation.
As has been previously indicated this will only occur if
the curvature of the body 1s everywhere finite on the
wetted surface. (Milne Thomson, Ref. 30 , p.302 refers
to smooth separation as proper cavitation ). It has
been shown [ArmstrongsRef. 2] that in the case of smooth
separation:

Rgs = Res

and thus the radius of curvature and the seccnd derivatives
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such as .§!L ’ jﬁﬁ are continuous through a point of
yre dr*

smooth separation. (Ref. 48 ,p.435 for the plane case and
Ref. 2 [for both plane and axisymmetric) Thus the
appropriate Cp(s) functions in the two distinet methods
of separation would have the forms sketched in figures
1.12 and 1.13.

The results obtained by Armstrong and refered to
here will be dealt with in greater detail in subsequent
sections. [1.5.6 for planar and 3.4 for axisymmetric

flow. ]

1.5 SOLUTION OF IDEAL PLANE FLOWS BY THE HODOGRAPH METHOD.

1.5.1 Complex Varlable.
In an ideal plane flow,a point in the physical plane
1s completely defined by the complex variable, z = x + iy .
If we define a complex velocity potential, w, such that
W o= (p +1iV¥
then it 1s easily seen,since eqguations [1.11],[1.12] are the

Cauchy-Riemann conditions for z to be single valued in

W e
[1.18] aw =% = ¥ + 1¥ = u-iv = qe"‘e
dz X ¥X

where S is therefore the conjJugate of the complex velocity,

u + iv . From the equation [1.13]

-1
[1.19] z = \ $ dw and _@g\ = q
az
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It is also useful to introduce the complex variable ¥

where

Y=48 + 10

L = 1In (qg /q)

AO = The angle between the directions of g and Ut

Thus in uniform stream problems when |, = 1n(U/q) we have:

T
[1.20] e = u.§ = U a4z
dw
and
-y
[1.21] z o= U.e dw

1.5.2 Conformal Mapping.

Figure 1.14 represents a general plane case of an
infinitely long cavity flow. The outer boundaries D, E,
and D; E; may be extended to infinity to give the flow
in an infinite uniform stream. Flgure 1.15 represents
the corresponding w-plane. On the body surface,AOAg Z
and © are known functions and w is required in order to
find the pressure and velocity distributions , whereas
on the free surfaces,ACe and A Co w and §, are known
but z and hence the shape of the cavity is to be found.

The requlred solution is therefore of the form
w = £{z) giving the required results on the free and
fixed surfaces. This type of problem is among those more
generally termed, mixed boundary condition problems.
Here we have two types of boundary condition;
Q or =z specified on the fixed boundaries, DyEe,A0A, DLE., .
Normally the problem is symmetric about the
stagnation streamline B,0 in which case only one

half of the flow need be considered. Be O
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then becomes a boundary of this type.

f or q and therefore 3@ 1s speclfled on the free
dS

boundaries AICL and AC,

In the case of symmetry about the stagnation streamllne,
¥ = 0 , the w-plane becomes that of figure 1.16.
This‘type of problem 1s known as a simply mixed boundary
condition problem slnce there is only one boundary region
of each type,B, and D, being the same point, the point
at infinity.

Thus conformal mapping suggests itself as an iImplicit
part of plane flow and the basic principle of solutlon
is to transform the flow into a plane for which the solution
is known. For this we introduce a convenient complex
variable t swhere the solution 1s known in the t-plane
and where we can find mapping relations between this
plane and both the z and w planes. Then knowing w(t)
and T(t) we can find by elimination the function T (w).
The solution will then follow by substitution in and

integration of equation [1.21] and give the required z(w).

1.5.3 Solution of Simply Mixed boundary condition problems.

A vast number of problems in plane flow have been
solved by the method outlined above, and much has been
written on the peculiar t-planes and substitutions
involved in each particular type. [See for example
Refs. 18 and 48 among others]. We will concern
ourselves here only with the problems of cavitating plane

flows in a uniform stream. It was shown in the last
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section that, provided the uniform stream is either
infinite in the y-direction or bounded by ”fixedf surfaces
and provided i1t is symmetric about the stagnation
streamline, the problem becomes one with simpl& mixed
boundary conditions. Figures 1.17a and 1.17b give two
examples of problems of this type.

It 1s worth noting at this point that if the
uniform stream were 1n fact a free Jet, such that
FpE, in figures 1.17a , 1.17b were free streamlines,then
1.17a would remain simply mixed but 1.17b would become
doubly mixed since there would now be two separated
~sections of free boundary. Doubly mixed boundary condition
problems will not be dealt with here. Woods (Ref. 48)
deals with this more complex class of problems.

Most texts (e.g. Ref. 6 ) give full details of
the solutions of simply mixed boundary condition problems,
so it will suffice here merely to give the outlines
- of the types of solution with the results we shall need.

It is evident that the w-plane in all problems of
this type will be polygonal since all boundaries,
providing that none of them are porous, will lie on
lines of constant ¥ . Thus 1t will be relatively simple
to transform this plane to a t-plane in which the solution
is known. The major part of the problem therefore lies in
finding ¥ (t) if we are to proceed as indicated above.
This step may only be possible using numerical technigues
but can be effected analytically in some simple cases.
By far the most useful result in all this type of work
1s the Schwarz-Christoffel mapping theorem. Proofs

of this result can be found in most standard texts.
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Simply Mixed Boundary Condition Problems
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It states that i1f the boundaries in the z-plane are
polygonal, the corners or discontinuities in © having

the values O, at the points (p =(pn where n=1, 2, 3, «...N

then : N - 53
T
[1.22] dz = K,]T (w = @)
dw n=1

where K is a constant of integration which can be found
providing two corresponding points in the z and w planes
are known.

Woods (Ref. 48) gives a more general form of this
theorem which can be applied to curved boundaries in
the z~plane. This form is :

¥ 0

[1.23] dz = K.exp } - lg In(w - ¢ ) alO ()]
S dw N e

When the boundaries are polygonal the integral degenerates
to glve the sum involving the discontinuities in E) in
equation [1.22]. The consequence of this theorem is that
we need only to find O((p) on the boundaries in the z-plane
to effect solution.

Woods (Ref. 48, page 2U49) shows that the first
step in a simply mixed boundary problem 1s to map T into
% = ¥ + iﬂ (Figure 1.18) in such a way that the interval
in which @ 1s known 1s mapped onto N? =0, —w0w< § <@ and
tﬁe interval in which ﬂ, is known 1s mapped onto 7 ==Eé,

-0 Y < - Using Schwarz-Christoffel, this is done by:
+o0

[1.24] Y R)= [G(X)To]cosech(x—i) + [R(K)T%]Sech(x—ﬁ) a¥

1
w
On integrating by parts a more useful form of this equation

can be found:



[1.25] Y(§) =V, + %S gank' (e 3 ) d [6(¥)y.]
+ 2 %*” tan' (e¥°Y) 4 RACHMY
n, T

-” .
All that 1s required to complete the theory therefore

1s the S(w) relation for the particular w-plane. Woods
(Ref. U48,page 250) gives examples of these &(w)
relations whilch,as anticipated above,turn out cuite

simple.

1.5.4 General Riabouchinsky flow in a channel.

Since the major part of this thesis is concerned
with axisymmetric Riabouchinsky flows, it will be
useful to deal in greater detail with the corresponding
plane flows. The general Riabouchinsky flow in a
dhannel is shown in figure 1.20a and the particular flow
around a flat plate in figure 1.20b. In both cases
we know that (jLLTg is constant since 7 ==% is the free

streamline on which the velocity is constant. Equation

[1.25] then becomes: +a0
el V) = o+ 2 banh [exp(¥ - §)]alB(¥), ]
where @ (¥ ) is the equatior; for © on the rfixed

10
boundary. The w-plane of figure 1.20c¢ is mapped into

this S -plane (figure 1.20d4) by

[1.27] coth(}) = - coth[mpo] tanh [“., w]
2h “2h

where q% is as shown in figure 1.20c and h is the value
of ¥ on the channel wall.

To simplify the solution Woods introduces a further
variable 4 = § + 1¢ such that
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Riabouchinsky Flows.
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[1.28] coth § = 1[1 + x]
2l
[N.B. The notation here is different from that used by
Woods. It is altered so that ‘% always relates to the
same plane in which ﬂ’= ‘“//2 i1s the free streamline and
n? = 0 , the solid boundary]. The % -plane then assumes
the form shown in figure 1.20e and from [1.26],[1.28] is

related to the 7V -plane by :

[1.29] V(%) = f, +10 + 1\ m|1-%%} a6 (})
T, L2
where ﬂ,s, Gs are the values of Sl. s O at the separation

point. The point upstream at infinity maps onto :t = %o s
so that from [1.27] and [1.28]

[1.30] %, = tann g@
h

At this point we put g = U , 8 = 0 and 1’(8,) = T(-S,) = 0

and by substitution in [1.29] , taking the real part of

the integral : !
[1.31] = 1 m | $-%, 1 a8y
oo g | n]deg] s
Pi—'
= 1| I 3+%iz ab($)
T T+
Hence ) -
n 3-3,.1+§\ al) = o
L TEE, TR,
Then , since q‘t/ U = 1+ = e_&‘
+)
[1.32] g = expl -1 S 1n 3-§: \ adb (Pt - 1
| T, T3¢

Equations [1.29] and [1.32] represent the solution of the
probiem.

However , 1n order to solve a particular problem
wWhere the function s(@) , the equation of the wetted
surface ( where s 1s measured along that surface ) , 1is

known , an iterative procedure of the following type
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is required. This may consist of the following sequence

of operations

[1] A guess 1s made for the distribution g (¢) s denoted
by q,(@).

[2] From the equation s = S af , we find s|(¢) and
d

O, ().

[3] Thus equation [1.27] and [1.28] give 9,(%)

(4] Then substituting this in [1.29] , taking the real
part of that equation , q,(%) and therefore q, (%)

results.

[5] Using s =\ d@ af we get s,(3) and therefore 6,(%).
d§{ aq

The steps [3],[4] and [5] are then repeated until the
process converges. The final value of Q will be found

from the equation [1.32].

1.5.5 Riabouchinsky Flow past a Normal Plate in a Channel.

A relevant example of the last section 1s the
Riabouchinsky flow past a flat plate in a channel. This
1s the simplest example since on the wetted surface
@ =‘W/2 and the solution does not require an iterative
procedure. Woods (Ref. U48,p. 480) solves this as an
example of the general type , whereas Birkhoff and
Zarantonello (Ref. 6,p. 115) treat it as a particular
case of'U-shapeg\obstacles s Where the ”U“ is in this

case CBED of figure 1.21.

For the flat plate , since there are discontinuities
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of /2 1in O 2t B and E, [1.29] and [1.31] become

(1.331 Y (8) = L+ 11% + 1 1nf1-35 |+ 1 in{1+%5
2 2 2 -3, 2 2t 5,
z 2
(1.38] Mo = 1 m{ 3 -3
E T-5e
where i;%‘are the values of § at B and E , the stagnation
polnts. Thus L
Y
e = U =

.dz e&°.t1 -’Gtﬁt ]
dw S:- 1

Woods then integrates this using the substitution

X = k sn(u,k)
1T + dn(u,k)

where , therefore

%L _ 1 - kl
! 1 k!
ns u = - ns u, tanh 'WW
Zh
ksnu, = tanh ﬂ@& = 2%,
h 1-%%;

The solution is then given by Woods as

[1.35] z= HU |- 2u + k ln[cs u - ¢S u;]+ 2dc u;“ku,q;iK’)
2ng snu, cnu kes u + Cs U,

the origins of z and u belng the point J of figure 1.21.
The result given by Birkhoff and Zarantonello

(Ref.6,p.117,eaqn. (32)) differs essentially from this in
the sign of the term upon which the logarithm acts. As a
result of the computations of Appendix A the author con-
cluded that the version given by Woods was correct.

From equation [1.35] and equation [1.34] the
following identities are falrly easlly obtained :

[1.36] q = o)’
dn u, - k'

[1.37] % = 5&2{%‘sn u, - dec uaZw(u,i]

(4
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[1.38]
( ! K’ 2 ] -\,
c = 27T Tuedc Up + Kde qu£uJ - K'sn u + k nc uatan(k SC U,p)
H ﬂk%L 2K
[1.39]
B = 2 Ui}uodc u, + Kdc U%Z£u) - K'Wsn u, + k' ne u, tan(sc U, )

H ﬂk%L 2K

[1.40] (ﬂﬁh{ ){ u,dc u, - K'K sn u, + K'de uOZq(uoﬁ

[In all these equations the elliptic functions are as
given in Ref. 48, Chapter 4 ]
The case H = @ requires special treatment. Here the
results of references 6 and 48 are identical. The results
glven by Woods (Ref. 48) contain the parameter k and q% s

the latter not appearing in any of the dimensionless ratios.
l

[1.4.1]1 Q@ = 2k
T K
[1.42] T = 2@ (E - Kk’“)
k’q6
[(1.43) ¢ = 24, (E' - ¥+ k’z)
R
[1.44] B = _E_QQ(E' - Kk 4+ k')
k‘q°
2 ' 2
[1.45] oy = 2 (g\[_ E - Xk
TI\F - KK + k*
When § is small these can be approximated by
[1.46] L = 16 1
C T+rw @
[1.47] B = 8 1
C ¥ Q
[1.48] Cp = off (1 + Q)
T ¥

Computations based on these formulae are

carried out in Appendix A .
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1.5.6 Separation in Plane Flow.

In section 1.4.6 we quoted some results given by
Armstrong (Ref. 2) for the nature of the flow in the
neighbourhood of a separation point. His results
for the axisymmetric flow case are discussed in section
3.4 where they are developed to suilt the particular
requlirements of this thesis. But,since Armstrong concludes
that the nature of the flow in the region of abrupt or
smooth separation is independent of whether the flow is
planar or axisymmetric , it will be useful to give a
brief ocubtline of the results cbtalined for ths plane case.
[Armstrongs notation and sign convention have been
altered here for the sake of uniformity. ]

He introduces a complex varizble t where

w o= 1 tz
2

so that t is real on the free streamline and imaginary
on the wetted surface , the origin being taken at the
separation point and the x axls as tangential to the
e 7

streamline at this point. A more useful form of 1

(section 1.5.1) in this application is ¥* where

T* = log (.9.2.) + 1 8
Q

This means that on the free streamline where t is real,

Y* is purely imaginary, since g = g » and that T*= O

<
at the origin. Armstrong therefore proposes that
The general relation between 4* and t ,in the neighbourhood

of the origin where t 1s small, wlll be

[1.49 ] - Y* = iZ a, £
n=p
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Here the coefficlents &4 are real and p is a
non-zero positive integer. Also using the technique

of complex variable , we have

az = q.c
aw ¢
Thus 7*
[1.50] dz = q_-t.e
at ¢

He then considers two cases; p = 1 and p = 2, and shows

that the former corresponds to abrupt , the latter to

smooth separation. Putting € = It], he shows that:
For = 1 On the free streamline where t =€ ,
_dl = a’le + D( 6")
dx
[1.51a] | -
dax*®
On the wetted surface where t = - i€ ,
3
dy = -~ =g, + O0(€)
dx
[1.51p] '
¢y = 2a, + 0(€ )
dx*

From equations [1.51] we see that the curvature of the free
streamline tends to infinity as € - O . But this point

of infinite curvature does not constitute a “corner’

since the slope , from the equations for dy ,is continuous
dx

through the origin. It can also be seen that p = 1 leads

to an infinite velocity gradient on the wetted surface at

the origin. Thus p = 1 gives the case of abrupt separation.
For p =2 0On the free streamline,
2 3 73
% = a,€ + aj€ + 0(¢€)
[1.52a]
3 —_
'y = 2a, + o( & )

dx?*
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On the wetted surface,

%X = - aae’ + o(e")
X
[1.52b] .
%__X = 2 ag + o( e ).
X

This , therefore , corresponds to smooth separation since

de (and hence the curvature) is continuous through the

dx*
origin and,as Armstrong also shows, the velocity
gradient approaches zero on the wetted surface as ¢ > C.
It also follows from [1.52a] and [1.52b] that the radlus
of curvature of both the wetted surface and the free
streamline at the origin is 1/2a,.

Woods (Ref. 48 ,p. 435) arrives at similar
results for smooth separation by a slightly different
approach. He quotes the results as conditions for

the correct positioning of a smooth separation point.
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CHAPTER 2

2.1 OUTLINE OF PREVIOUS APPROACHES TO THZ SOLUTION OF

AXTSYMMETRIC CAVITY FLOWS.

The object of this thesis is the develop-
ment of a relaxation technique for the numerical solution
of axisymmetric cavity flows. This technique will take
as 1ts starting point a2 method suggested by Woods (Ref. 46)
for the solution of flows in axlsymmetric ducts.

However , before this method is developed , an
outline of previous approaches to the problem of axisymmetric
cavity flow will be given. This type of flow is of
considerable practical importance and , in the absence of
exact solutions , numerous efforts have been made at
useful approximations. These previous approaches can be
split very rcughly into four types which will be dealt
with in turn in the following sections.

[A] At an early stage in the consideration of this
problem the idea of simulating cavity flows by
means of distributed sources and sinks was concelved.
Initially axial distributions were used and various
authors have successively improved the method with
other distributions.

[B] Using the exact sclutlions for the corresponding plane
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flows a number of authors have developed methods for
their adaption to the axisymmetric case.

[c] Relaxation methods for the solution of fluid flows
have been developed for application in flbws with

free surfaces.

An excellent review of these methods , and

those for planar flow , is given by Gilbarg (Ref. 16).

2.2 EMPIRICAL RESULTS.
2.2.1 Flow on the wetted surface. The drag of the body.

Reichardt (Ref. 34) , in his experiments on bodies
of revclutlion, noticed the linear dependence of the coefficlent
of drag, Cy , on the cavitation number. Thus he put
forward an approximate equation for the drag of a body
In cavitating flow:
[2.1] Cp (@) = (1 +q) Cp (0)
where Cy(0) 1s the drag on the same body under similar
conditions,but at zero cavitation number.
We can relate the coefficient of drag to the equation

for Cy in terms of y or r for 2 body of given shape and known

polnt of separation. In the case of a plane flow
[2.2] C3 (@) =) (a+ ) aw
Wetted
Surface

where Y 1s the maximum y ordinate of the body surface.

In the axisymmetric case:
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[2.3] Cp (Q) = (@ + Cp) 2r dr
r‘ﬂnl

Wetted

Surface

where Twsy 185 the maximum radius of the body. " Reichardt
gurmised that for bodies with a fixed separation point,

his result was due to the similarity of the (Ce -1) against
y curves for different values of § and a given profile ;
that these were reducible to a single typical curve

by adjustment in the (Cp - 1) scale, so that all

C

curves of 1

- 1) against y were identical.
1T+ 9 -

Then putting

[2.4] §Cp - é; = - 1 + f(y)

we get, in plane flow

[2.5] Cp = (1 + Q) & féy} dy

w5,
and in axisymmetric flow

[2.6] Cy = (1 + Q) g f(r) 2r dr
rl

ws, "nax

The integral is now independent of Q and hence leads to
equation [2.1] in each case.

In the case of flows with smooth separation the
¥y scale must also be reduced since y, may vary with @ .

Assuming that the curve of Ce = 1 against y is the

1T + G A
same in each case, then
[2.7] Co ZME (1 4+q) |\ £ .z)_gx
%B) Y
w5,
[2.8] Cyp Anem. (1 + Q) £ r\ 2r dr
' Ts T ay
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Due to the variation of y, we would expect equation [2.1]

to be less accurate in the case of smooth separation if

the basic premise of reduclbility is reasonably correct.
Equation [2.1] has been shown to be remarkably

gecurate for plane and axisymmetric flow in both

experiment and theory. The reader 1s referred to Waid

(Ref. 45) for experiments on plane flows j Reichardt

(Ref. 34) , Eisenberg and Pond (Ref. 10) and Hsu and Perry

(Ref. 19) for experiments on axisymmetric flow 3 the

exact and approximate relations given in section 1.5.5 ;

the numercus theoretical results obtained for axisymmetric

flow which are outlined in the following sections and

to the graphs of section. 5.4 . However ,

as has been anticipated , it 1s more accurate in the case

of flows with abrupt separation as is demonstrated by a

comparison of the results of sections 5.4.1 and 5.4.3 .

2.2.2 The Main dimensions of the Cavity.

The notation used when referring to the main
dimensions of a cavity is defined in figure 2.1. The
author defines the half-length , L , as the axial distance
from the front stagnation point to the point of maximum
radius of the cavity. Reichardt (Ref. 34) , from his
experimental results for bodies of revolution , deduced
the following empirical relations for the half-length and
maximum radius of the cavities.

= (g + 0.008) §Cp
(0,066 + 1.70 G) 0%

[2.9]

ol



Y &4

4o

FIGURE 2.1
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[2.10] B = (_9_:3\)/1
: : C 8]

His experiments were carried out in the range of 4 between
0 and ©.1 and the empirical relations are thus. designed

for this range. They do , however , demonstrate the
 power relations of sectlon 1.2.2 5 the approximate formulae
of section 1.5.5 confirm the power relations for the

plane case. It has therefore become fairly normal when

plotting results for the dimensions of a cavity to plot

C and (QY against & in the axisymmetric case and

T B

(CY’ and C against Q for the plane case since these curves
T B

should be , very roughly , straight lines through the

origin.

2.3 THEORIES BASED ON SOURCE-SINK DISTRIBUTIONS.
2.3.1 Axial Distributions.

The first attempt to be made at simulating
axisymmetric cavity flow by setting up "Rankine“ bodies
using source-sink distributions was made by Reichardt
and Munzner (Ref. 35) . The solution of the flow in an
infinite medlium due to a point source , strength M , at
the point x = x, , y = 0 namely,

¢ - M

[x - x, )"+ r* J*

2.1 -
Y’ M [- 1+ X = Xa ]
[(x - x, F+r*]3

Provides the basis of all these methods. Relchardt and

Munzner used five different axial asymmetriec line
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distributions and by adjusting the five parameters
governing the relative strengths of each distribution
produced Rankine flows in which the pressure on the line
Y = 0 was fairly constant over the major parf of' the
body surface ;3 that is to say except for the surface close
to the stagnation point. Since the distributions were
all asymmetric , theirs was essentially = Riabouchinsky
type flow. However thilis method only produced head
shapes of a small aspect ratio. The equation of the
Rankine body surface 1s a Fredholm integral of the first
Kind : &

[2.12] m(t) dt 1
(X - tF + ril% z
where the axial source strength / unit length 1s a function

il

of x , m(x); that function is limited to the interval »
agxghb.

Methods of solution of this integral equation
and others , such as that glven by a doublet distribution ,
under condltions to slmulate cavity flows have been
further developed by Landweber (Ref. 26) , Munk (Ref. 31)

and Armstrong and Tadman (Ref. 3) among others.

2.3.2 Theories based on Vortex Sheet Distributions.

Since the distributions of the last section
are analytic off the axls they cannot simulate the
Singularity at the separation polnt which is a very
Important feature of cavity flows , especially those

with abrupt separation. To overcome this other types of
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distributed singularity have been used. Of these,
distributed source rings have been employed but , more
profitably s a4 number of authors have used vortex sheets
to make up the body surface and free streamliné. The body
and cavity are considered to be replaced by a mass of
liquid completely at rest. Then the only singularities
in the flow are the doublet at infinity , producing the
infinite uniform stream , and the vortex sheet along the
closed stream surface which produces the velocity difference
across that surface. The strength / unit arc length of
the vortex sheet at any point 1s then equal to the velocity
of the flow on , and external to , the sheet at that point
since the internal vslocity is zero. The reader 1s
referred to Landweber (Ref. 26) and Armstrong and Dunham
(Ref. 1) among others. We will denote the strength /
unit arc length , therefore , by the function q(s). The
key to the method is the fact that the solution of the
flow due to a single vortex ring , of strength g ds , is
known. [For the actual equations , see Ref. 1 ] Then
the flow due to the vortex sheet g {s) can be found by
superposition of its elements to give the solution in the
form of an integral for any of ? 3 V s worv.

The value of the function g 1s known on part
of the vortex sheet ( the free streamline ) and the function
x(s) or r(s) on the rest (the wetted surface). Thus it is
required to find q (s) on the wetted surface and x(s) or
r{s) on the free streamline.

Two approaches have been made to the iterative
Numerical solution of the integral equations obtalned by

this method.  Armstrong and Dunham (Ref. 1) alternately
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recalculated the distributions q(s) and x(s) for the flow
past a disc , taking as thelr starting point the velocity
distribution , g (s) , on the wetted surface of the
corresponding planar flow past a flat plate. ‘Landweber
(Ref. 26) employs a slightly different method which only
requlres the repeated recalculation of the single function,
q(s). The results of Armstrong and Dunham provide a
useful comparison to the results of this thesis.

One limitatlion of these methods 13 that they
only produce results for the cavitating flows in an
infinite stream. Also , the computation required 1s
considerable.

Using this type of method , Levinson (Ref. 28)
determined the approximate shape of the infinite cavity

at Q = 0 as x » % ,

2.4 THEORIES BASED ON PLANE FLOW SOLUTIONS.

2.4.1 Velocity Distributions.

Several authors have calculated approximate
values for the coefficient of drag on axisymmetric bodies
using the analytie velocity distributions on the surface
of the corresponding planar body-. Since the two
distributions , for plane and axisymmetric profiles , will
have the same end conditions it is reasonable to assume
that they will not differ widely in between. Thus , for
& disc and flat plate ,

(CP)\' =1 2 K)CF) = 0 (CP).., 1 = =0 , (ECP) = = 00
. 2x0 W e, % W e,
s

3
%
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1n both cases.

Plesset and Shaffer (Ref. 33) caleculated Cy
for cones using the velocity distributions on wedges with
the same vertex angle and at the same cavitatibn number.
Their results and those for other authors mentioned
1n this section are presented in section 5.4.1 .

Plesset and Shaffef% results appear in comparison with
others to be best for the disc (180°cone) and poorest for
cones of small vertex angle and low Q.

Fisher (Ref. 11) refined this method by
suggesting that =z better approximation to the velocity
distribution 1n the axisymmetric case at Q@ = Qz 1s the
distribution of the plane flow at Q = Q3 where the uniform
stream velocity of the former is ﬂ72 times that of the
latter. He bases this assumption on the fact that the
velocity distributions for the Dirichlet flows around a
flat plate and a disc are identical when U, = TWUuy/2.

Thus putting

1+ Q, = gi (1 + Q3)
Fisher obtained better agreement with other computed results.
Armstrong and Dunham (Ref. 1) suggest yet
another correspondence relation in connection with their

work , outlined in section 2.3.2 =

2.4.2  The Perturbation Method of Garabedian.

Garabedian (Ref. 13) has devised an ingenious
method for the solution of the axisymmetric problem using
the results of its plane flow equivalent. In order to

draw a parallel between the two he considers the concept
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of the flow in € + 2 dimensions where ¢ = O glves the
planar equations and € = 1 the axisymmetric. Thus equations

[1.14] and [1.18] become

[2.13] >y + ’y - e = o0
-S;(-{ \yl ¥ Ay

The flow is denoted by Jl (¢) and 1ts boundary as T, (¢)
and T,(e) s belng the fixed and free parts respectively.
The condition on the free streamline becomes

[2.14] ¥ = 0

1 ¥

vé¢ 3¥n
Now Garabedian proposes that the solution is a regular
function of € , convergent for Re(€) > -1 and thus the
stream functlion can be written as
[2.15] ¥ (x,y36) = %(x,y) + e Y(xy) +€ ¥ixy) + .
He shows that by expansion in the wvariable , § s Where

[2.16] S = ¢ (thus € = 1 , § = 1/3)
¥ o

convergence can be produced in the entire region of

Re(€) > -1. From equation [2.15] it is clear that

?;(x,y) 1s the known solution of the two dimensional

problem and 1t remains to estimate the perturbations, yﬁ
From [2.15] these terms satisfy the recurrence

relation

[2.17] E“VL = 1 ‘B\FL—l

At this point Garabedian introduces the function U; = %
. ye

which he considers more convenient than V@ . However
for ¥, the boundary condition on Tyais

\h’ = 0
and that on T, after some considerable calculation and the

substitution € = O becomes
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Wi + ROS"; = Bg
an

where R(e) 1s the curvature of T,(¢) and B; are known
expressions involving only earlier coefficients of Vgﬂn
Thus all the solutions for ¥ are given progressively as
solutlons of linear mixed boundary value problems starting
inltially with % .

Garabedian gives considerable detail of this
method of solution for infinite cavities (Q = 0) with
special reference to the coefficlent of drag behind a
disc. In this case he estimates
[2.18] Cp = 0.8798 - 0.14838% - 0.02818 ¢
in which 0.8798 is the value of (Cplg,, for the flat plate.
(See Appendix A.) Thus for & = 1/3 ,the axisymmetric
case , he finds
[2.19] (Colg, = 0©.8272
and estimates his error at less than 1/2 per cent.

This method , however , proves to be much
less accurate in the case of finlte cavities (Q > 0) and

Garabedian devises a different method of successive

approximation to be used by itself or along with the

rerturbation method. From this method he derives the
value of Cp = 0.865 for Q= C.22. He concludes
T+ 8

however that these results are less accurate than those
for @ = 0. The computation involved in either case is

considerable.
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2.5 RELAXATION METHODS.

Relaxation methods , a general outline of
which 1s glven , appropriately , in section 4.1.1 , were
first developed for the solution of elliptic partial
differential equations by Southwell (Ref. 42 among others).
Southwell and Vaisey (Ref. 43) have also succeeded in the
solution of certain flows with free surfaces. Without
exception their solutions were carried out in the physical
plane and therefore involved an unknown boundary shape
with 1irregular stars (Ref. 12).

Southwell and Valsey mzke a distinction between
"stable and "unstablé& free streamline problems of which
the cavity problem is the unstable type. They employ a
method simllar to that mentioned in section 4.3.5 of
successlve fixed boundary solutions interspersed with
free streamline boundary adjustments according to the
condition required on that boundary. The latter
adjustments , since thelr methods were designed for desk
calculators , would seem to have been based on physical
reasoning , any other method apparently giving divergence
for unstable free surfaces. Using this method they
solve such prcblems as the axisymmetric Borde mouthpiece
and a free Jet falling through an orifice.

At the conclusion of that work they solve
one axlisymmetric cavity problem though this is of the
unréalistic s cusped cavity behind a sphere. (See section
1.4.5 and figure 1.10 .) Thls would appear , in the
authors eiperience » 4 much simpler solution than that
of the Riabouchinsky flow.

Brunauer (Ref. 9) has also used a relaxatlon

technique for the solution of one cavity behind a disc.
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The author , unfortunately , found consilderable difficulty

in obtalining detalls of thls method. His result (section

5.4.1 ) is teken from Armstrong and Dunham (Ref. 1).
Birkhoff and Zarantcnello (Ref. 6) also

mention some unpublished work by Young and Varga.
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CHAPTER 3

3.1 APPLICATION OF WOODS METHOD TO AXISYMMETRIC CAVITY FLOW.

2.1.1 Basic Eguations.
Woods (Ref. 4€) suggests that,if relaxation methods
are to be applied to the solution of axisymmetrié flows,
then instead of dealing with the problem in the x,r »lane
where bcundaries are not only curved but also,in the case
of cavity flow,must be free to move,it would be much more
convenient to use the transformed ¢)¥’plane where boundaries
are polygonal. This involves interchanging the roles of
the dependent and independent variables in the ecuations of

section 1.4.32 ,the basic equations of idezl and steady

axisymmetric flow. These were

[3.1] W o= w = a1
X ryr

[3.2] = v = - 13
T r }x

In order to find the inverted differentials., Woods

evaluétes the Jacobian of & and W with respect to x and

r :
A((M)f = W - W
(X, IX ¥ AT X
= u(ru) - v(-vr)
[3.3] = rg?

Then the differentials in the ¢)W plane become



[3.4] dxo o= 1 W
Y ro® v
dx = - _1 3
oY rq* 3r
e = - 1 W = 1 3 =y
d 7C* 33X 2% Y7 c*
dro= 1M = 1 oar o=y
W rq* ¥x 2% Yy q* 2

- k3 A .
where £ = r . Hence in the ¢,V’plane the ecuations

corresponding to [3.1] and [3.2] zre

[3.5] ¥x = .r Jdr
¥ d

[3.6] ix = - 1)
1'% r b¢

Then the eguations corresponding to the equations for ¢>and

¥ in the x,r rlane(equetions [1.17] and [1.18] of section 1.4.3)
namely the equetlions which x and r must obey in the @,V’plane
are found by differentiating equations [3.5] and [3.6].

Equating the cross-differentials we get

13.7] Al b___w] T r_a__x;] - o
Wi 2 Y2

[3.8] PR b___x] + __b__[rzzs] = 0
WLT W T2 WY

L.

Since the object is to solve for either x or r in the
@,\f plane,;of the two equations [3.7] and [3.8] , [3.7] is
obviously preferable containing as it does only one dependent
variable,r. Thus we choose to solve ecuation [3.7] to find
r as a functiocn of @ and Y’ . Equaticn [3.7] can in fact
be simplified by the introduction of the variable f = r?

80 that it becomes

[3.9] o3[ Bf] + ¥r = «©
Wt o

or - ¥ (in r) + ¥ = ©
W dy*

This is the equation we prorose to solve. Having found r

as a function of'@ and ¥ , x will then follow.
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dx = 3z df + x4y
Y7 o
[3.10] - dx = 1 af - 1_dfay
- 2 W Y

using ecuations [3.4]. Relations for the velocibies u,v,sc

wlll also follow frem [3.11,[3.2]1 and [3.4]

= 3 - 2 2
[3.11] v o= %?.%% = (U ; v?) %%
[3.12] u = ¢* F = (U+ v?) ¥
2 )y 2 MY
Therefore
qQ* = Ut o+ vt

i

N ¥ Y

gr 13f + c 3f
(%) # (%)
Hence the equatlon for the velocity, ¢ ,is :

[3.13] o= .1(&: + é__f.)'
qr f bw 1'%

From the above eqguations Tfor u and v we can find the
angle,(9,which the vector o makes with the axis of symmetry.
[3.14] tan @ = ¥/

The velocities u and v then follow since u = ¢ cos @ and

<
il

q ainQ .

A relation connecting the second derivatives of the
Xsr and Q ,W planes will also prove useful. From [3.1]
and [3.2] we already know that the following relations hold

in the x,r plane.

Ry T 1 I R o R
rooyx* AIXIY r2ar r o
[3.15] 2
r ¥ = ¥y = - - r2¢
dx3 VXY dr ar*

These equaticns are simply a fuller versicn of those
stated in section 1.4.3 for axisymmetric flow. In

t
perticular we shall need a2n expression for 3 f in terms

yy?
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‘of the second derivatives of ecuations (3.15]. This
involves taking & further Jacoblan,but since only one
derivative 1s required it is simpler to start from first

principles. ‘By considering the changes in lé in both the
é

x,r and @ ,V planes and also the changes in x and r in the

{ ,Y plane we find :

al ¥\ = 3 [ar)a + kY Ag) ay
(W) W(W) ¢ w(aw
Also

d(}_;f._’) _L(ﬁ)dx + _g__)__>dr
W AX \ WY

r
dx af +)x ay _L(.az) ¥ Ll:d¢>+9_r:d‘#,_5__(§£
bQ A'g x

Comparing the first and third of these egueticns and

I

Il

equating the coefficients of 4V

[3.16] ¥r = dx bf) o+ e ) (c)f')
Iy WY X

But from [3.#4]
o= 2 W = 2 (_b_w_)‘+_>_¢1‘
Y q* ¥X X T
Then the pzartizl derivatives of df with respect tc x and

W

r become after simplification :

2z} = (v - u) ¥ - euv _f_(Q_]
VX (3V) t L x> X
) (bf‘) . [(v’ -u) ) - 2uy __h:_(_'l__}

2
q

Qlmno

it

v\ ¥xar YTt

Substituting these expressions in [3.16] and for 3¥x and ¥r

from [3.4] we findg :

> yx* IXAT QI

371 Vo= 2 |t - @+ But - @) VY - o Y
W T

T
This expression for ¥ £ can of course be rephrased 1n terms
_ T

of the other second deriveatives in the x,r plane by using
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equations [3.15].

3.1.2 Description of the Problem.

| Before any attempt is made to apply numerical or
relaxation techniques té axisymmetric cavitating flows
all the boundary conditions and determinate parameters
must be specified. In this and the next section we will
discuss appropriate boundary conditions and the determinacy
of a particular problem.

The author decided that the simplest model which
would prove useful would be that of a Riabouchinsky flow
in a straight channel or tube. As has been previously
mentioned in section 1.4.5 ,one advantage of the Riabouchinsky
model is that it halves the size of the flow field to
be solved,the flow being symmetric about the line BC of
figure 3.1. This is particularly desirable in relaxation
methocs in which the field has to be covered with a mesh
or net,the value of the dependent variable belng estimated
at the intersection polints.

The figure 3.1 represents the flow field of such a
problem in the x,r plane. Since the flow i1s symmetric
about the line BC in the Riabouchinsky model the boundéry
condition on this line will be that all streamlines
intersect it orthogonally. Thus v = 0 at &1l
points cn BC and BC is in fact a line(P= constant. The
curved line CD represents the free streamline or cavity
wall whose position is unknown and the boundary condition

on which is one of constant velocity. DE is the wetted
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gurface on which 9 is known as & function of x and r,

D being the sépafation point and E the stagnhation point.
Dn.the axis of the flow,EF,and the channel wall,AB, r is
constant,being zero on the fcrmer. The lines AB and
'FEDC must also be streamlines on which Y = constant,the
constant being zero cn FEDC.

In order to use relaxation methods,the field must
be finite and boundary conditions specified on every
boundary. Thus,although the actual upstream condition
of the flow depicted in figure 3.1 is that the flow
tends to a uniform stream as x tends to -e ,a condition
will have ﬁo be found on a line such as AF at a finite
value of x,s50 that the field to be solved will be finite
and enclosed Dby the bcocundary ABCDEF. The simplest
approximation on this boundary would assume uniform
stream values ,the position of AF belng adjusted so that
any further movement of it in the direction of x = ~w
made no appreciable difference in the required results.
However a more complex but more accurate condition will
be introduced in section 3.3.2.

As to the choice of body profile,it was decided
to use two différent types in the calculationsjone which
exhibited abrupt separation and one with smooth separation.
The obvious choices Were a disc and a sphere since these
gave simple boundary conditions on DE and experimental
data existed for both. The solution for the Dirichlet
flow around each in an infinite stream is also known
and these solutions proved very useful when attempt was

made tc treat the singularity =zt the stagnation point.



3.1.3 Boundary conditions in the transformed plane.

It is easily seen that the corresponding ¢,V’plane

a3

to the x,r plane of fi e 3.1 ,given the conditions that

.

@ is constant on AF and BC ,is as shown in figure 3.2.
In this plane the boundary conditions outlined in

section 3.1.2 become :

AB The channel wall is a strezmline on which ¥=constant
and f = constant = r:.
BC The condition on the line of symmetry is v = 0. By

ecuation [3.11] this leads to }f = O 3§ a Neumann
Y
boundary condition since 3¥f 1is the normal gradient.
3

CD The Thus

et

]
1
@
0]
U

G"
(")
w
=

—l
.

2
q = constant = U (1 + 0
From equation [3.13] this becomes,in terms of the
normal and tangential gradients of € =

2 ' 2

[3.18] 1 ﬁ‘_) + ‘el = 4
£ \bp 1 TS T )
where 3f 1s now the normal gradient and 3f the
Y o

tangential gradient. This is therefore a complex

boundary condition.

g

;

The body surface. For a given profile; @ will be
specified as a function of £ , @ (f). Therefore,by.
virtue of ecuation [3.14] , the boundary condition

becomes :

Here the normal =nd tangential gradients are as for
CD. We have , then , a complex boundary condition on

DE.
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For a disc this boundary condition kecomes,since
0 = e,
[3.20] VP = 0, F£#0
| v
This is equivalent to assuming u = U by eguation [3.12].

The singular point,f = O,the stagnation point,will
require speci:zl treatment (sections 3.3.3 and 4.4).

For a sphere,given the radius,R,we lknow that on the

wetted surface

cos® =5T’/R s tan® =SR‘—£‘/$§

and therefore the condition becomes

[3.21] HSR’_—f = )f
oY bw
EF The axis of symmetry : £ = U,and ¥ = O.
FA A more elaborate ccndition for this dboundary will

be given in section 3.3.2 ,but a simpler condition
used in the rough solutions,is to zassume uniform
stream condlitlons. The stream will of course be
vtniform only at ¢ = -2 . We wlll assume thet on
a particular streamline the value of £ > £, as

w > -0 , Then since the stream is uniform at

§ =-= z
(bawﬁ)& ) (%5')(“ :

- 00
Then by equations [3.9] and [3.4]

(ﬁ) = 0 and ()_2) = 2u = 2
qu’:.” | Y Pe-eo q® U
And thus:

[3.21a] V = %,U.fU

since ¢’ is taken as zero on the axis. Thus the

simple'approximate boundary conditicn for FA would

assume f to be linear with ?’on this boundary and if
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fH is glven, f 1is khown at 211 points on it.

'.I£ is wortvh noting at this »polnt that one thing which rwust
be bornelin mind when dealing with Stokes stream functicn,
Y ,is that its dimensions,unlike “hose of'¢,?’in rlanar
f£low . and ¢ in exisymmetric flow,azre veloclbty X (distance)z
instead of velocity X distance for the other functions.

In axisymmetric flow V’/¢ is therefore nct dimensioniess,

but has the dimension cf distance.

3.1.4 Considerations of Determinacy.

-

Pigure 3.3 depicts a cavity fiow about & disc in a

.straight welled tube. In such a flcw the position and
shape of the free boundary CD is uniquely determined by
the two dimensionless varzmeters & and H/EB sdroviding that
the boundary AF on which the flow i1s uniform is at an infinite
distance upstream. Then the flow is uniguely determined
by the choice of two zcalessa disvance and a velocity
scale. If ,orn the other hand,the boundzry A7 is at a
finite distance upstream,and “he boundary condition given
on it,then the positicn of CD is uniquely determined by the
specification of the rarameters G , H/rS sand the
dimensionless parameter Ll'/rS . Thus,given the conditicn
on AF,the flow,in terms of dimensionless guantities,is
completely detesrmined by fixing the three parameters :
r2.22] re/E 5, Ly /H , G

Then,in order to finé the solution to the case

L, =0 ,the obfect will be to increase the value of the
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parameter oy /H until any “urther increase has no
significant effect on the position of CD in the solution
for fixed values of ry/Hd and Q.

| It - follows that the prcblem in the
transformed plane (figure 3.4) will be unicuely determined
for all dimensionless guantities by three parameters
one of which will have the same functicn and effect
as L} /H in the x,r plane. All the guantities which
could oe specified are shown in figure 3.4. The quantity
QL will be analogous <o L 1n the x,r plane,so %that
the dimensionless rarameter @_/¢5 can be used In the
same way as L, /E. It will also be convenient tc rebain
Q as one of ths parameters to be specified in the (P,lf
plane. We are therelore left with cnly one other
dimensioniess quantlty to specify in order to make the
solution uniguely determined for al’l dimensionless
quantities. This third perameter will clearly have
to include some function of the position of the channel
wall,say‘ﬁior fy . Various forms cculd be used but the
author found the parameter”ﬂ: /'Q;fﬂ the most easily
applicable. Therefore,fcr a given ovoundary conditicn

on AF,specifying the thrse parameters

[3.23] ¢ [ A ]1 v
0. F
0

(SR
wlll unicuely determine ths value of f/fH at any point

)

I w/%;,q/“h) in the ¢,W rlane. The coeffidient cf pressure
Cp,Will also be unlquely determined at any pcint.

One of the most Impcrtant facts to emerge from this
Investigation *s tha% the cquantity ¢p is nct included
- 1n the varsmeters [3.23]. Therefore,if [3.23] are

Sbecifiec, the boundary 3C must be free to move in the @



72

direction while, of course, remaining an equipotential.
On the other hand one of [3.23], say 4, could be left
unspecified and $k/fs used as a parsmeter , but the author
round [3-23] ‘the most convenient system. The way in which
the position of this floating boundary 1s determined in the
solution cannot be discussed until the nature of the flow
on the free streamline and, in particular, at the
separation point has been more fully investigated. (See
sections 4.3.5 , L.3.6 , L.3.7 .)

Besides the parameters [3.22] or [3.23] we are of
course free to choose both a length and a velocity scale
in a particular problem. It is convenlent to have numerical
values of f at any point in the solubtion and so a
numerical value could be assigned to fy for the
purposes of computation. But it will be noticed that
the quantity (%/(Psf,,, )L in the second of parameters
[3.23] has the dimension (1/f). It will prove more
convenient if the distance scale is set by assigning
a numerical value to this quantity rather than f,.

Thus we set

o
P Ty

and to avoid confusion this quantity X is held fixed

e
I

throughout the complete set of solutions. Then in & .
particular problem the value of the second parameter
glves a numerical value for fy ,and therefore numerical
values of f throughout the field. Alternatively we
could ,by retaining the same value of X,find a complete
Set of solutions by varylng the quantities

A
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Every different set of these rarameters
defines a different problem,provided ,in gvery case, X
takes the same numerical value. It is not

neccessary tc set a velocity scale.

3.2 RELATIONS IN THE @,q,PLANE FCR PHYSICAL QUANTITIES

IN THE x,r PLANE.

3.2.1 General.

Certain propertiss of the flow at a point in the

Xsr plane will be required either as results or for purposes

of computation as functicns cf the variables at the
corresponding point in the @,\P plane. For example
a relation giving the radius of curvature of a stream-
line in the x,r plane will be needed in terms of the
derivatives in the | ,V¥ plane. It will therefore be
most convenient to develop all such relatlons in one
section so that reference can be made to them later
without digression. Some of these relations, for
velocity direction and magnitude , have slready been

found in section 3.1.1.



e
'3,2.2 The exact solutions for the Dirichlet flows around
| a sphere and a disc.

These are classic results lnvolving particular sclutiocns
of the Léplaqe eqgquavion in three dimensions. The ideal
steady flow solution for & sphere in an infinifte uniform
stream 1s & result quoted in mcét standard texts (e.g.
Milne~Thomson,Ref.30,p.443) and is equivalent to the flow
due to a doublet in an infinlte stream. The solution

is @
)

W’ = -Uf} 1 - R
2 (r2 XT)%

(P (15534. X‘)gi]

where x is measured from the centre of the sphere whose

[3.24]

i
@
]
S\
+

radius is R.

The solution for the flow ¢f an infinite uniform
stream arcund an infinitely thin disc is not so well
known but 1s given by Lamb (Ref. 25 ,p.144) as a
special case of the moticn due to a planetary ellipsoid
moving with velocity U parallel to its axis 1n an
Infinite mass of liquid. Adjusting the solutions for

w ,W to give the flow of an infinite stream past

a disc set normal to the stream we get:

I

@ g%g wo (14 { tan' $ ]

¢

wWwhere C 1s the radius of the disc and M ,S are

[3.258]

I

uct (1= p2 )08+ (1 + § )een § )
s
glven by:

[3.252] C'%'/w L
| c(1-/\c)‘(1+%‘)

bo
i

L
2

=
i
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} # being measured from the centre of the disc, which
- golncides with both the front and rear stagnation points
since thé disp 1s infinitesmelly thin.

In this solution, since the flow negotiates the
180°.corner et the edge of the disc, the velocity at this
point 1s infinite.

Given the co-ordinates ({ ,¥ ) of a point in the @ ¥
plane in either of these flows we can then calculate the

position (xs7) of the point in the vrhysical plane.

3.2.3 The radius of curvaturs of a streamline.

In the physical plane the radius of curvature of a
line through a point is given by:

[3.26] 1 = -46
R d s

where s 1s measured along that line and O is the
direction of its tangent that any point. If the line is

a streamline, ¥ = constant s then we can say that

[3.27] 1 = - Yg ¥ = - g ¥

W w Ty

where g i1s the velocity magnitude at the point under

consideration. But from equation [3.14] we know that,

¥f
[3.28] tan O = K
3 f
oY
and hence
T4 & R F g of
[3.29] sec‘@__B_Q_=— ) + W - M W
Y] oTE 3f T a7 f'i(_g_g)"
14 W o
From [3.28] we also find that
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l z A
£ [ + PES
secz@ = (?E) (3@) = 4 —
& (_@_f_ )z g )_ﬁ 2
v (%)

using the equztion [3.13],for the velocity magnitude.

Then eliminating sec*®@ from [3.29] and substituting
the resultant equation for %% in [3.27] we obtain an
expression for the radius of curvature of z streamline in

terms of the derivatives of £ in the @ ,V’ plane.

\

[3.30] 1= -

bf(b"‘f -

3.2.4 The radius of curvature of a free streamline.

The above result,for the curvature of any stream-
1ine,can'be simplified if that streamline is free .

Consider again the expression for the velocity magnitude

[3.31] b= 1 _>_£) . z_r:)
q* T\ oY

Since the velccity,q,is constant orn the free streamline
1t 1s therefore invariant in the direction @ on this Iline.
Therefore,differentiating with respect %o @ :

23 ¥F - 1 _b_g)s + 2)¥f VFf
TR 2\ M YPAY

This provides us with a relation for ths second order cross

il
c

differential, ¥'f ,at a point on the free streamline

Moy _
ar 2 2
(3.322] vr = 30 1 }i) - 2 3 f
SPav 2F3F | T\ ¢
¥y

Substituting this in equation [3.30] we find after
L
2

simplification by using [3.31] and setting ¢ = U (1 + Q)
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[3.33] iIo= - Uullite| s - 1 .5_2)
R 2 f alpz 2\ g
Y

Thié can be revwritten in the form :

. 1 2
- vl {efme 4 Ml.li)
L 37T 2T\ 3¢

bz.
Wy v

It

[3.34! 1

It is alsc useful to have relations for u and v on
the free streamline. Since u = ¢ cosB , v=oa sin.@ 3
from ecuations [3.13] and [3.14] it follows that on the

free streamline:

Par U (1 + @) b
u = = ) L
Z z KL
(3.3 SRS Ut (1 +9)
v = ¢ = + 2
i or% BT

Cne important conclusion can be drawn from thesec
equations regarding the signs which the derivatives for
f should take on the frze streamline. Since, 1in =2
physically realistic solution, both u and v must be
positive on free streamline section of tThe vcundary, CD,
of figure 3.171. this means that 1n the solution in the

Q > ¥ plane both the tangential and normal gradlents
of £ must be positive tc glve a realistic solution.

l.e. 0On the boundary CD of filgure 3.2

L 50
Rl
ooy 0
Y
At the point C where v = U,then YFo= O .

K7
__NQW connlder the radius of curvature. We have already
Stipulated (section 1.4.2) that a solution is only real-

1stic 1f this is such that the free surface is everywhere



_ éOhVeX, viewed from the fluid. The sign in the initisl
.equétion for R,[2.26],hzs been carefully selected so that
such a cﬁrvatpre is positive; 1if 8 is falling with s it
glves 2 positive value for R. Therefore in equation [3.34]

the radius of curvature calculated from the derivatives of

f must be positive. Hence on the free stréamline
2
f Yinf + 1 [ o
Yk 28\

But lg ,We have already shown,must be positive. Therefore
oY

at any point on the free streamline,using the basic

2
>
45}

field equation [3.9]
k)
£ ¥lnf -

YR

‘

\Y

£ 0
And .
) ﬂ > 0
W
T
Cleadly ¥f£ and ¥1ln £ can only be egual to zero when

W dg*
Vf = 0 3 that is tc say 2t the point C of filgures 3.1, 3.2.

s— 2

3.2.5  Properties of the flow cn the wetted surface.

On the wetted surface , since we kncw 9 =240 (f) we
can find from equations [3.13] and [3.14] the velocities
U and v as functions of f and its derivatives in the

¢ , ¥ plane.

Using [3.14] we found (section 3.1.3) that the

boundary condition on a fixed surface was :

[3.36] fl/‘_\;_f_tan[Q(f)] - 3f
Y W

i
~
-
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i Then,frcm the solution,usihg [3.13) and u = g cos@ 3
L v = q sin@ ,we cén find g, u, v, at any point. In
'particulaf :

For a disc we found (section 3.1.3), eguation [3.36]

reduced to :

2i£ = 0
0y
Hence ecuation [3.13] gives:
[3.371] 4 = 1/
q? SNY’
and thus
u = O
[3.37al N
v = q = gfz/{Lg
L

For a sphere we found (section 3.1.3) ,equation [3.36]

gave:

¥ (R

W Ry

Thus substituting in [3.13] we get

4 = ) B
q? W,/ T
Therefore _
L L 5
[3.38] g = 2r°* = 20 (R-f)
R »f R (o F
W (5)

[

(R*- £)/ % , 1t is easily

Il

and since tan

shown that:

u =qcosl® = or (R - r)

R* (ﬁ)

9

[3.38a] -
v =q sin@ = 20 (R*- f)

Ta)
°¢
From these results we can find an expression for

The coefficient of pressure at any point and hence,

by equation [2.3] of section 2.2.1, the coefficient
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of drag of the body.
From the'definition of the coefficient of pressure
‘ 1tlis easily shown (by Bernoullfs theorem applied t¢ the
infinite stream) :
1-Cp = /U
and hehce
For the disc using equation [3.37]

[3.39] Co = 1 = ‘4

For the sphere using ecuation [3.38]

[3.4c] C, = 1 - A4r(R"- r)

Then the coefficient of drag in both cases is found by

integration , using equation [2.3]

(3.41] Cy

il

(9 + Cg) arf
fM

Wetted
Surface

where fy 1s the sqguare of the maximum radius of the

2
bodys C in the disc, R? in the sphere.

3.3 NATURE OF THE FLOW IN THE REGION OF SPECIAL POINTS.
3.3.1 On the line of symmetry.

Some important conclusions can be reached by con-
Sldering the flow over the line of symmetry of the

Riabouchinsky flow ;

2
”

BC of figures 3.1 and 3.2. The
Streamlines are all perpendicular to this line so that

in section 3.1.3 we drew.the conclusion that the
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—t

poundary condition on this line was:

LE

X

But the point C also lies on the free streamline and

therefore,using equation [3.13] at this point:
k2
4 = AT = !
,},_z b\’l . U‘\]‘[‘Q,S

w
J=
o
[
i
o id
<ir
N
o
i

RS
W,

The radius of curvature of any streamline {equation[3.30])

N
-

provides further information. Substituting ¥3f = 0 in
Y
that equation we find the radius of curvature of the

streamline at any point on this line of symmetry.

d
or using the field ecguation [3.9
3

[3.43]

s

oo

w\
Zl
o
<

Y]

We shall bhase the conclusions of this section on two

o
n
2]

umptions, both physically reasonable:

—
—
—

That on the line BC of figure 3.1 ,the velocity u is
always positive. That 1s to say everywhere in the
same dirsction as the uniform stream velocity.

[2]  That the radius of curvature of the streamline through

any point on BC is8 either positive or zero Since the

curvature a2t C is positive and that at B 1s zero this
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no

If these assumptions are accepted then from esquations [3.12]
and [3.43] then we can say that at every point on BC :
o> o
3
X"i‘; > O
W
And since (P is constant on BC we can write
2
e o= F(W , FM¥ 3 0
e
where F (¥) = 0 at B.
Integrating : v
R 0
At the point C , where ¥ = 0 , by ecuation [3.42] we find
Ay. Then integrating again: VIR
(fonge = 2 Yo+ oA+ F(Y)ata¥
0 Yo
And hence,eliminating Ay using the values of £ at A and B
We \P
fg = 2 (¥)g + £, + 7 o(y) ay ay
U $1+0
0
But (¥)g = (VY), and by virtue of equation [3.21a]
(vy), =_%Ufh = %Ufs since  fyg = f, = fg =

Substituting for Y, we get :

[3.43] Lo |1 = __] = ., + A
T+ 0
where Vo oY
A = F(Y) day a¥
o Yo

But since F(Y) > 0 for all points, B nust always

have s positive value. When the curvature of the free

Streamline takes its lowest possible value of zero, then
by virtue of our second assumption and the fact that

[ F(¥)q] = 0, F(¥)

In this limiting case :

is everywhere zero and

£



[3.44] £, = 1o '

i N T+ q

and since-ﬂ 1s pcsitive this must be the maximum value of

z

' 3
fo /fe - Since £, = B, fg= E Ty »

- %
[3.44a] Q@) = (I ]
d)rax _ T+ Q
The conclusion to be drawn frcom this 1s that for a given
cavitation number,9,and a given channel radius, H, there
1s a maximum cavity radius, B, which can be achieved by any
variation of C.
Since 3/C will be some function of @ we
can restate this by saying that for 2 given blcckage ratio,
E/C 4, there will be a minimum cavitation number which can be
achleved. If <She cavity pressure remains constant this
in turn is equivalent To saylng that there is a maximum
velccity which can be reached in the cavitating flow
around a disc in & circular channel. This phenenomenon is
known as ”choked flow“. When B/H takes this maximun value
we have showr: that the curvature of the free streamline at
the point of maximum diameter of the cavity is zero.
Although it cannot easily be proved from the above derivation
the concliuzicn cculd be drawn that in this caée the cavity
is infinite in length.
A similar result can be cbtained for the equivalent
Planar flow around a flat »late in a channel. “n this

case the limiting result 1s:

[3.4Lp] (3) - 1= 1
My

T T+ G
The assumpticn of infinite length in a choked
flow leads to the conclusion cf & uniform stream around

 the cavity far downstresm of the body. Thus Tthe coefficlent
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momentum conslderations. These glve the choked f£low
1imits for Cp» as follows

3.

[3.4he]

[3.44a]

[Nl
D

If the valu o)

. N o
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the conclusion
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the sign of the
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i
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result though

The naturs of the limi

: (Co)ee. = (4) (140)" - 1]
&
~ J =
2 v
flow 3 (Cp),, = (g) (1+0)% = 1
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©3,3.2  An improved upstream boundary condition.

In.section 3.1.3'we stated that a simple approximete
poundary condition which could be applied on the boundary FA
of figures 3.1 and 3.2 would assume uniform stream
conditions on this boundary. Since this is only trues exactly
at (P = ~o (figure 3.2) or L, = (figure 3.1) we
stated that the object would be to increase L, /E,or the
equivalent QJQﬂ of section 3.1.4 , until no eppreciable
change in the regulred results took place. This may recgulre
qulte a large secftion of the rlow upstream of the disc
~to be taken into acccunt. A mcre refined toundary condition
would reduce the size of this section of the flow to gilve the
same accuracy in the results. Tols may be obvained by
considering the Dirichlet flow around a sphere or disc
(section 3.2.2). A strezamline will have a limlting
upstreanm vélue of £ which will be the uniform stream value,
dencted by £y . We will denote the diffesrence vatween the
value of 2 zt any point on the streamline and f by a ,where

a = £ = fu
As shown in sectior 3.1.3 the ¥ value on the streamline
wlll pe:

[3.45] v = U £,

1
2

Eliminating x from the equation for the Dirichlet flow around

. a sphers in an infinite uniform stream (equations [3.24])

we getf: _
[3.46] ((0) - 2 (1 - Y R - fl
U 1T = 2¥ /U )

Then substitubting for ¥ from [3.45] end for £ = a + £y
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Then if we assume that we zre ccnsidering points sufficlently
" par upstream so that terms Of{(a/fy) are negligible

compared with terms O(1) or higher this becomes:

2 . %
(_@) = R -,
U a=
or
[3.47]

Sl

RACRU)

This is therefore an apovroximate ecuation for a = f - £,
in terms of @ fcr a streamline in the region upstream frcm
the sphere where a/f'u is small compered with unity.

The equations for a disc (equaticns[3.25]) cannot be
treated as simply since it is impossible to reach an exact

equation for kP in terms of ¥ and £ ,of the type [3.46].

But using the ecquations [3.25] and [3.25a] we can find in

this case:
£ = c‘“(1~;)(1+%’)
[3.48] Po= 2Y = 200 (1 - @IS+ (14§ Yean'$ ]
T T
Hence
[3.49) a = =% §* Jtan (1/§)
Ty 4 )

+ (1 +

+ (1 + ¢ Jtan™§

p convenlently being eliminated. By inspection of equations
[3.25] [3.28a] we can see that -1 < P < 1 since other~

wise r would be imaginary. Thus as x = @ , % > 0 .

Now expanding the taﬁ'(1/§) term of equaticn [3.49] we get
after simplification :

+ 1 d + « e v s e

1
& '.?'-
T, T T (1+3= tan
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por & >> 1 thils becomes (pubting tan™§ = %/2 , and taking
s1mply the first term in the numerator series) :

. 501 & = - 2 >> 1
(3.5 : o P

Also for i >> 1 we can write the first of equations [3.25]

as -

1l
™

RS

Eliminating 3 between this and equation [3.48] we find

(LP_)Z= ¢ [1 - T r,

20 T + (T + % 7%an"% ]
go that for S >> 1 this becomes:

CEE

Substituting for S from eguation [3.50] and rearranging
we .find:
[3.51] a = 2 3

a &/ . 1
7, / 3«“{;) + f.,]

where S >> 1 , or from equation [3.50] , a/fy << 1 .

-

Comparing equebion [3.47] for the sphere with equation
[3.51] for the disc we see that they are exactly the same
provided

o= ¢
31

Due to this similarity we can conclude with reasonable
accuracy that approximate upstream solution for any

axlsymmetric body in an infinite uniform stream is:

4

Where D is some typiczal length of the body and k is a

Ty

[3.52] a = (kDf / -
a

Constant for 21l sizes cof body.
We could therefore adapt this formula to glve us a

better upstream boundary ccondition. But first a term will
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pe inserted to take account of the fact that the stream is
.pot infinite but enclosed in a straight walled channel,in
order thét a ls zero everywhere on this boundary. It will

pe assumed that in this case equation [3.52] becomes

3
-53] a = X (ICD) / 2 3’;

[3.534 7, ey [1%9 + fu]

wheré X = X(fy) so that X(fy) = ©.

Now consider one of the streamlines cutting AF of
figure 3.5. The value of £ at = -e will be f, as
pefore. Since the origin of ¢ in the equation [3.47] is
the front stagnation point we shall take E,the stagnation
polnt of the body,as the origin of ¢ . Then the value of a
at the point H on AF will be

3
an = X(£,) (kD) /1y 1
F, / _Q.v)+ £y
U
(R being negative. Also at a point K on the streamline

where ¢ = ¢b +-ﬁ¢ the value of a is given by

ak = X(fu) (kD)‘s//[(_(&__%_M_)‘ . fu‘ss?.

=
L

v

Hence 3
[3.54] an = (e te] + =,
ED g\ o+ £y
%)

Thus we eliminate the awkard typical length D and the
function X(fu) which , belng dependent only on f, ; therefore
takes the same value aﬁ the points H and K.

| This equation,[3.54],can then be applied at any point
on the boundary AF, the value of a = f - f, .and therefore

T being dependent on the value of a or £ at a vpoint on the
leame streamline within the field ,where the distance between

these points is DO . Alternatively we could consider
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%

p* = D.[X(£y)]° where D* is the effective typical length of
j.the body at a particular point on AF. Thus the effective
typlcal length,D%,is zero on the streemline AB. This line
AB 1s Thus eculvalent to the line ab infinity in the
infinite strezm case.

Although this boundery condition is still
en approximation it is certainly better than the original

assumptlon of uniform stream flow over AF.

3.3.2 The nature of the flow cn the axis and at the

stagnation poilnt.

Since the baslc equation [3.G] contains f in the
denominator when written in the non-leogarithric form,we
must consider what happens to the derivatives near the
axis £ = 0. Since

13 = dInr = 2v
£ o Y7 rq?

and bocth v and r are zerc on the axls the question arises

as to how the functions 3¥1n £ and ﬁ;g_g ( and therefore
Y 3¢

Eiﬁ ) behave in the neighbourhood of the axis. If these
1
derivetives were infinite on the axis,and it is our purpose
here to show that they are not, then a very difficult
sltuation would arise since the axis would then be in effect
3 line of singularity. Intuitively , of course , we could
' guSSs that this 1s not the case since there i1s nc indication
that the rlow is in any way ill-behaved on the axis.

The author could,however,find no way of proving this

€Xcept by assuming that the behaviour of these derivatives in
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the general case did not differ,in type,to thelr behaviour in
the case of the Dirichlet flows. For the Dirichlet flow
around a sphere [equations [3.24], section 3.2.2] it can easily

" pe shown that on the axis

£
Yin £ = 3R°(R - x)
3 UL(R - x)3 - R3]*
and
¥in £ = 6?(R-;ﬂ“hﬁ+—2m-xf]
“"gf?" U*T(R -~ x)¥ = R ¥
= - ¥r
W2

where X 1s now measured from the front stagnaticn point and
is positive downstream. Beoth these derivatives are
therefore finite on the axis,oroviding x # U. As x = 0

(1.e as we approach the stagnation point) both ¥1ln £ and
W

j]g;g tend to + w0 . As x » - @ Doth derivatives tend
w*r

to zerc. Hence in this case the only upstream singularity
on the axis is at the stagnation point , x = C. It is
reasonable to assume that this is true fcor all axisymmetric
flows since &t o great distance upstream, the actual shape
of the body will have little effect on the flow. We shall
also assume that both derivatives tend to infinity as
X > 0 for all blunt nosed bodies.

The results given above are also useful in determining
the type of singularity at the stagnation point. Using the

assumption ocutlined above we can say that on the axis 3

£ = 0
v = 0
u = g = (O 8 X O



92

if = yroo=

] >

W= 2 = 2 > 00 as x > (

W u q > 2/U as x > =~oo
Yin £ = _v = finite(x70) > 4+%®  as x> U
"W_ rq"' - O as X % =
Yin £ = - ¥Vf = finite(x#0) > 4+ a5 x> 0O
—SW{— WY - 0] as X * =~ eo

making use cf equations [2.4].

When investigating the tehaviour on the wetted surfacse
side of the stagnation point (E.in figure 3.2) we shall
again make use of the Dirichlet flow solution for the
two particular profiles, the disc and the sphere.

For the sphere , rearranging the second of equations [2.24] so

that both x and ¢ are zero at the front stagnation point
“ and then substituting fcr variable x from the equation of

* the wetted surface x(r) , we find:
z

© [3.55a] £ = L4ry - 4¢ on the wetted surface.
5U cu?
Thus
yvo= im o 8y
Y] 3U ou*
[3.55b] .
3L o= - 8
W su*

Assuming that the limits of these functions as we
‘approach the stagnation point are the same 1n the case of
cavitating flow and using equations [3.38] and [3.21],

We can say that the behaviour of the derivatives in this

region is :

v
¥L = 2f’SR:-f > |UR] as £ » ©
Y ch 3U
Dirichlet
"
¥ o= 2f? > 4 fas £ >0
W R 3T

Dirichlet



£3.55]
'[35 ¥Inf = 2 JR ~ F > o as £ » 0
Y gif=
¥lnf = - Pr > & as £ > 0

A )%

It is interesting to note that the tangent to the
equipotential, @ = 0, atv the stagnation point makes an
angle of tan' (1.5) & 56.2° with the axis in the Dirichlet
golution. In any planar flow of course this Ttangent
always bisects the angle between the tangent to the body
surface. and the tangent to the stagnation streamline at
.the stagnation point. Thus in the equivalent planar flow

0
around a cylinder the angle is 45.

For a disc , using the eguations [3.25] , it can be shown

that on the wetted surface in the Dirichlet flow :

3.56] r o= Weop - ¢
[ 20 WQ'
and
| T T*
[3.56a]

g = - T

Tk A

Thus on the wetted surface side of the stagnation point for

& disc, meking the same zszsumption as for a sphere, we can

say that :
if = 2u = 0
Y q*
3 = 2rv = 2r ATc| as 0
Y7 qg? \% 2U
(3.57] Dirichlet
Yin £ = 2 > % ag -0
Yy v %
YInr = - ¥r > {oo] as £0
W3 2 Pirichlet

The results of this section are summarised in figure 3.6

_Which shows the generzl shape of the curves found if the
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yarious derivatives were plotted against O for ¥ = 0. Az

in figure 3.2 , the point E represents the stagnaticn voint.

3,& SEPARATION.
3.4, General.

The separation point, in general, has been dealt
~with in sectlon 1.4.€ , and for the plane case in
gection 1.5.%. Armstrong (Ref.2) also deals with
the nature of the flow in the region of a separation
point in axisyrmetric flow and his msthod and results
will be cutlined here and further developed to sult cur
purposes.

Thne method is essentizlly the same as for
plane flow (section 1.5.5) although the powerful com-
pPlex variable methods cannct be used. Flgure 3.7a
and 3.7b show the notaticn used in this and the fcllowing
two sections. The coordinates {s,n) are chosen with
the crigin at the separation point, the s-axis being
tangential to the body streamline. DE represents the
wetted surface and DC the free streamline. As in the
bPlane case, & transformed plane b, , ta 18 used where
DE transforms into the axis , t; = C , and DC into t, = O.
A perturbation velocity potential, w, is defined such that

w o= - ¢ + s

Where the frees streamline velocity 1s taken as unity and
the origins or ¢ end W are at D. Tt is then assumed,

rollOWing the example of plane flow, that the three functions
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g,n and W can be written in the feorm :

0 oo
E' E YK
S = 7 K S.a)h el %3
1=0 = () il
'[3.'58] Joo o L]" L
$S i
YT STi= e b :fc’l
R
0o e
S5 i
voo= L"ﬁﬁ‘ O L.
J=0 k=0 L‘l U‘E

[In the fcllowing sections we will use similar expansions
for @, W and a perturbation streamfunction , w* =¥ + n ,
with coefficients Yjg 5 Zyk and WXy respectively. ]

We will denote the velccity in the n direction by v*¥ and

‘that in the s direction by 1 + u*. Thus

uF o= - dw
s
[3.59]
vE o= - W
on
- Then if 0 represents the operator ) s Armstrong
' d (tlltz_}
,;shows that
. u* = f (n,w) / 0 {s,n)
. [3.60] ’ ’
v = f(w,s) / G {s,n)
Ang
[3.611 M(s,nn‘(a___u* +_§_\_/*)
ds on

= Q(S:l’l)m[ﬁ(n,w),n] - N [B(W,B),S]]
- NMo,u) 010(s,m)onl + D (w,8) B [B(s5m),s]]

Now , by definition of the positioning of the axes
80me of the first coefficients in the expansions [3.53] are

“known:

(&

[3.62]  wy = Ny = S = Sg = Ny = Ng

#Md S and Sy, can be set egual to +1 and -

Pespectively,since this only involves fixing the scales



98

“of t, and tg . Then , applying the resultant expansions,
© ghe Jacoolan cf transformaticn becomes

L Lt 2 3

3.631 - D (sam) = Wy (Sh% - Spaty) + O(FY)

whefe ty, ta are convergent in socme regicn tf + t: =t .
Thus i (s,n) is 2(¢*) and since u* and v* vanish at the
origin both 0 (n,w) and 0 (iw,s) must be 0(t).  Thus:
[3.64] Wi = Wg = Wy = Wy = Wy = 0O

The equation of continuity can be written as

[3.65] du* + Yv¥ +  {(1+u*)sin B + v*cos = O
32 Y e T+ 5 sing, + n cosbg

Due to the above orders of magnitude,this becomes

[3.66] Yur + dvd = - sinb + O(t )
hEs] an

Then substituting this in equation [3.61] , Armstrong finds
13.671 QO (s,n) (V[0 {n,w),n) - OLB{w,s),s]]
- QN (n,w)B[0(syn)on] + B(w,s)[0(s,n),s]
= - sinf [h(s,n)]3 + ot
This is clearly a form of the equation of continuity zand
1s thus the condition that the perturbation rotential,
W, shall cescribe the flow in the neighbourhood of the
origin,the separation polnt.
3y substitution of the series [2.58] into this
equation and equating the coefficients of like power terms
Armstrong finds a set of simultaneous ecuations in the
coefficients S&& ’ N&h and WAJt' He then investigates
Particular sclutions of these ecguavions , the number of
unknowns being larger than the number of sguations.
| However thils requires some lengthy simple
algebra and since the stream function must also be
: investigated in our anrlicaticn , the author designed

'@ 8llghtly different approach glving , in addition , This



99

fl'mction. The algebra woﬁld seem to be reduced by

- this method.

- 3.4.2 Alternative Procedure.

This alternative procedure involves the use of

the basic equations of axisymmetric flow :

W o= 1M
f ] X T dr
- [3.68
. W= -1
¥s r 3x
By definition we have
Wy = - Y + S,k
51’“ 3 k )1
[3.69] Y
M= Tkt Vi
: From figure 3.7a
', 5 = r* cos @ + x sin@
; n = x cos@ - =r* sinb

“where r* = v - 1. Substituting for x and r in [3.68] and

simplifying

(1+ssin9$ - n cos @ ) _Bj‘_) = =Y

33 In

(1+ssin(9$—ncoses)_b_(9_ =

on s

Substituting for the four derivatives as follows
Woo- W1 e - 1
ds 3ty 0(s,n) V&, 35, 0(ssn) 3%,

(and three similar equetions) we get finally :

(1 + s .Sin@s- n cos@) 3 dn - ¥ bn] = ¥

_b—EI TE:. at:.s-E\ _S-EI bt'c.
13.70] Y '
(1 + s sin@s—ncoses)&é_g—_tqw = ¥ dn

These two equations thus form the condition which was

<
=
ar

n

pure

o o
~

& o
S cr

|
|

o/
ot
»~
o/
ot

‘Pl"eviously the property of [3.67]. They are much simpler
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tﬁaﬂ that equation and the.substitution of the series [3.58]
fihvolves less algebrz in order to obtaln the relations
which must hold between the coefficients of those series.

' Besldes the lower power coefficient relations
[3.62] and [3.64] , used by Armstrong , we will clearly have
(3711 Zio = 0 s Zok = O
gince t,ty = C 1s the body streamline.

Now substituting the expansions [3.58] in [3.7¢]
and equating coefficients of like power terms the following
emerges .

[A] The palrs of identities for the powers (j=0,k=0),
(3=1,k=0) and (j=0,%=1) yield no new information
since each term inveolves & coefficient which.is
zero by virtue of eguation [3.62].

[B] The pairs of equations found by equating the coefificients
of (3=2,k=0),(j=1,k=1) and (j=0,k=2) are , aftsr

substituticn of the informztion of ecuations [3.62]

and [3.71]
Yoo *+ Yoo = O
[3.72] Yoo Ny + 24 = 0
-~ Y., Sy + Y, 0
But since W, = U , using [3.69) these become
Yo = ~You = 1
[3.73] Ny = =Z 4
Sy = Yy

(c] The eight equations for the J+k=3 power terms become

after simplifilcaticn :

2
2 Ny (Sps = Ye3) = Nzo + Ny Ny,
- z
2 (Zyg + N ) = - Ny = NgNy
[2.741] 7 + N = 0

21 )
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Sy - 72 = 0

the other three belng zlready obeyed.

As.mentioned bzfore we are lcoking for a
particular solution of these equations which is compatible
with the problem being considered. The results so far are
“4dentical with those obtained by Armstrong (Ref. 2), and
the same particular solution , namely that for which
Sy =0 Ny = 1 will now be.investigated. We will also
take Wqp= 0 , Or Yo = Sz, , since as Armstrong polnts out
u must be a higher crder guantity than v on the axls tg = O.

Using these two identities equations [3.74] give the

results
Neg = O , Zy + Ny = 0
Spy = Y3 = Nzo s Sg - Ya = - Ny
S = Yig = O s Zig t Ng = - Ng

These are precisely the results given by Armstrong except
that he does not deal with the Z coefficients.

Two separate cases are now considered. The first
will be seen to correspond to abrupt separatiocn , the second

to smooth.

'3.4.3  Abrupt Separation.
Consider the case in which Nzp # O . The

‘Tesultant expansions , [3.58], become

n = tyty, + 0O(t>)
s = H - ti + 9()
2 2

[3.76]
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(03]
~J
[O)\
[
w

2 W
Y = s o+ Mypbtit, - Nwt, + 0(t)
2 8]
_ 2 14
YV =-n - DNt t, + 0(t")
2
These expansions lead to the Tollowing velocity distributions
On the free streamline , t,= O u* = 0{]s])
: L
vE = Ng(2s)® + 0(1sl)
2
L
. ) r z
On_the wetted surface , t,= 0 u¥ = Np(-2s) + 0(lsl)

ve = 0(Isl)

Thus we have an infinite velocity gradient on the
wetted surface as s + C and an infinite radlus of curvature
on the free streamline as s = (. This Then represents
abrupt separation , providing N 30 £ 0 .

wéawill now consider the application of these
results , obtained by Armstrong , tTo our problem of
the abrupt separation from z disc. The object is to find
three expansions for £* = £ - f¢ in terms of @, ¥ and P

-

respectively to describe the behaviour of the function £({,¥)

on the wetted surface , the line = 0 and the free

is to say for the three mesh line

ct
[

streamline. Tha
emanating from the separation point , D , in the ¢, ¥
plane.

Thus , from the expansions [3.76] the bshaviour

of 2 on the wetted surface can be shown to be

= X
[3.77] s = ¢ +Z Py (-9)

3=3
whers P% ars unknown coefficients. Generalizing this
result for rg # 1 and <. a T and putting £* = 28 + 5

the case of the disc 5 [3.77] becomes
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and that on the free streamline

<0 .
. y
(3.811 m(z\ = 2 (¢ + E [0\
£y e \a J Ue

These expansions are used in the manner

describad in sections L.3.7 ang 4.4.5,

3.4.4 Smooth Separation.

In the speclal casge , Ngy= 0, 1t can be shown,

s

1
4
11,

W

using the ecuations [3.69a], that the following expansions
must hold (after generalization) :

On the wetted surface :

2 @7
6
s s “e He - “e
J=2
On the line (p = 0

Ny



2 = N
[3.83] b sfs - 200395 (gﬂ) + C,’_ (éfm + E PS (i 2
10 1 ¢ j=5 »_1_6

On the free streamline : o0
" | N ¢
(3.841 In (£\= 2sin & (@) - [d) «+ . (¢
T fs‘/; \ Y Ce ) a,
J

where CF 0,05, 5P ,P§ sre initizlly all unknown.

It can be scen that these expansions glive the
correct first derivatives and components of velocity
separation point according to [3.35].

Armstrong (Ref. 2) goes Purther to show
rigorously that the special solutlion , Su,= Y., , leads to

the flow at a2 smooth separablion point. For this he finds

a particular solution of the eguations for the coefficients

N

u
given by Jj+k = 4 power terms in section 3.4.1 (or 3.4.2).
Tt is intended to demonstrate here that the
coefficients C¥ , C§ and C§ are also known. This
could , presumably , be shown by the sclution of the
equations for j + k=4 and J + k=25 28 1n section
3.4.2 bput the algebra recuired is immense. A much
simpler procedure will serve our purposes ecually wéll.
If the expansion on the free streamline 1is
considerad in conjunction with Armstrongs result that the
radius of curvature of the free streamline at the separation

point is that of the sphere , then , using the result
o]

[3.34] , 1t fcllows that

an f = - 2
g2 f
on F.3.
and CY¥ = 1
.LS

Equslly , for the wetted surface 1t can be shown that
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CHAPTER 4

L. GENERAL NUMERICAL PROCEDURE.

L.1.1 The Relaxation Mesh.

In this chapter the results of chapter 3 will be
applied to the numerical solution of the axisymmetric
cavity problem by means of finite differences.

The basic principle of the relaxation technique is
that the field is covered with a mesh or net and the
numerical value of The dependent variable estimated at
each of the intersection points. The differential equation
relating the dependent variable with position coordinates
or independent variables is translated , approximately , into
a finite difference equation which relates the value of
the dependent variable at a point with the values at
surrounding points. Then at every intersection point
we adjust or ”relaxé the value, keeping the values at
surrounding points fixed, so that this equation is obeyed
at that point. Working through every point in the field
and then repeating the process, values are continuocusly
relaxed until the finite difference eguation is obeyed
at every point,the values having converged. The
resultant values of the dependent variable at each
intersection point are then taken as an estimation of the
values which would be found were the differential equation
to be solved.

Relaxation methods , first developed by Southwell

(Refs. 42 and 43 ) » are normally used in problems for
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which analytical treatment has not been found or in
which the boundary conditions are so complex as to
render known methods impractical.

Both these limitations are found in the &,,V’
plane described in chapter 3 (figure 3.2). The differential
equation, [3.9], is non-linear and of the second order
elliptic type. This type can only be solved analytically
when one has the very simplest of boundary conditions.

The boundary conditions described in section 3.1.3 are
very complex. The (ﬂ,‘k'plane of figure 3.2 is shown in
figure 4.1 covered wilth a mesh or net. This mesh is
'gradedhin such a way that the regions in which the
flow experiences the most rapid changes are covered by a
much finer mesh than the regions in which it is likely to
change only very slowly and smoothly. Thus in the
neighbourhood of the wetted surface and the free stream-
line the mesh length (i.e. the distance between
the intersection points) is much smaller than that near
the channel wall. Having obtained a solution the
”grading“ is then adjusted according to an error

analysis, to achieve both accuracy and efficiency.

h.1.2 Boundary Conditions - General.

One of the advantages of using the @ ,4’ plane in
a problem such as this is the polygonal shape of the closed
contour of its boundary. The mesh can then easily be laid
80 that the boundaries are lines of the mesh. Thus at

points such as N, P or Z of figure 4.1 the value of the
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aependent variable is known and fixed and intersection
points lying on Dirichlet or fixed boundaries need not
be relaxed.

The equation to be applied at general points'in
the fleld,that 1s to say the finite difference form of
[3.9]s 1s known as the "field equationr. Since the
value of the dependent variable, in this case f, is
unknown on the Neumann or complex boundaries the field
equation will have to be applied on such boundaries. A
simple way of doing this is to place a further line of
mesh points outside the boundary so that every point on
~the boundary is surrounded. The values of f at ”1maginary
points“ are then determined by applying the boundary condition
at the nearby boundary points. The 1lines of ”imaginary
points“are dotted in figure 4.1, being required on the
boundaries BC and CD , though not on the boundary FA ,
the condition there (equation [3.54]) not including
gradlents of £ as such. The boundary DE may also have a

line of imaginary points.

4.1.3  Poilnt Identification.

In order to describe the position of a point in the
fleld a system of identification by subscript is required.
It 1s also useful to have a further system which, defines
the relative position of a point to its neighbours in
general.

[A] The Field System.

This identifles the rosition of a point in the



111

field by the address (J,k). The horizontal mesh lines,

on which ¥ = constant, are numbered from the body
gtreamline outwards, a point on this streamline having

the address (O,k). Thus the imaginary line of points
outside CDE have addresses (—1,k). Since the value orf

f, (the £ value at ! = -< ) on any streamline is of
considerable importance, a further line of points is

placed upstream of, and parallel to the boundary AF.

The value of f at a mesh point on this line, A¥ F¥ of
'figure 4.1 , is the ' value of the intersecting streamline
at that point. The line A* F* 1s not an integral part of
the mesh as such but is used merely to store the f,, values.
The equipotential mesh lines are therefore numbered from
this line so that the f;value on the streamline j = J

is given in (J,0) and the f value of the boundary point
“on FA 1in (J,1).

| Thus the subscripted fbﬂa refers to the f value
at the point (j,k) in the field.

[B] The Local System.

An eabbreviated system is useful when referring,
in general,to the points surrounding a partilcular point.
In this local system the values at the points are
i,denoted by the singly-subscripted f. where p gives the
‘Position of the point relative to the point p = O, the
Polnt under consideration. This system is shown in
figure 4.2. Thus if
' 0 = (§sk)
‘Then :
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1 = (Jokt1) 5, 2 = (J+1,k) , 3 = (Jsk-1) , 4 = (3~1,k)
5 = (JH1,kF1), 6 = (JHl,k=1), 7 = (J=1,k=-1), 8 = (j=1,k+1)
9 = (Jokt2) , 10 = (J+2,k) , 11 = (J,k-2) , 12 = (j-2,k)

Normally s Tthese are the only points to which reference need
be made but others are included in figure 4.2 to take
account of the exceptional cases. This local system is
useful in that the subscripts are considerably shortened
when dealing with general points. It is used in the
manipulation and deductlion of the finite difference forms
of the equations,whereas the field system is used mostly

in the computations or application of these equations.

This particular numbering of points in the local

system has become fairly standard being used for example

in references 32, 39 and 47.

L,1.,4 The Relaxation Mesh. Further Comment.

The notation used in this and the following sections
is
m The mesh length in the ¥ direction.

n The mesh length in the (p direction.

>3

The quantity Vﬁ/¢lfu . This has dimensions

!

(£)* as mentioned in section 3.1.4.

P
MP The operator d
dy®

=4

2
¥p©

From the investigation carried out in section

The operator
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3.1.4 it was found that the specification of the parameters
[3.23] was hecessary and sufficient for a unique solution
in the {/,¥ plane provided that for all solutions took

the same value of Vﬁ/qlf”. We will now discuss how the
particular mesh used 1n this problem was set up using these
parameters. For this purpose reference will be made to
rigure 4.3. It was also shown in section 3.1.4 that the
solution would be found in terms of the dimensionless co-
ordinates W/@k and W/V@ . Thus we would expect every
distance in the & or ¥ directions to be given in terms of
multiples of 4L and V¥, respectively. That is to say, at
any point n = n*¢g s m = m*?ﬁ where n* and m* are dimension-
less parameters defined by The geometry of the mesh.

Thus if it is decided to have P equally spaced
points on the wetted surface (ED of figure 4.3) then the mesh
length, n, between points within that interval, DE, is (ps/P.
Hence every other mesh length in the horizontal direction is
defined by the geometry of the net. If the mesh length is
doubled in the grading at a point such as J, then the
mesh length, n, between points such as L and M is 2 ¢£/P.

In this problem it was decided that the most
convenlent values of P were those which were P = 2? where
p was a positive integer. It is also convenient if, when
at points such as K and N a larger mesh length is allowable,
1t is in fact doubled. Thus n* is always 2% where s 1is
an integer, positive, zero or negative. The last case
rarely arises as the"doubling“ in the Q direction is
applied at the most, three times.

On the other hand it was found that the correct
medium between efficilency and accuracy was achleved by

massive grading in the Y direction. This will be
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demonstrated numerically by the error analysis (section
5.5.2 ) but the same conclusion can be reached simply by
considering the geometry of the physical plane. These
results are anticipated-here. The author found that the
most convenient method of applying this large grading

was to double the mesh length, m ,after each mesh line

except the first, as shown in figure 4.3. i.e. Ir
\"/‘)Q{ - WO)Q?, = A ’Say
Then 3
\V%k - Yk = A
\‘/3,01 - \Va)h = 2A
and for other intervals
(3-1)
[4.1] Yime - Yie = 27 .4
Thus : _
(3-1)
[4.2] Yoo = 2 A for3g>1,
)]
the body streamline belng taken as ¥ = o

It will be found that all the finite difference
equations to be used can be written in a form which includes
only the ratio of m/n. This is true, for example, of the
various forms of the field equation, [4.18], [4.21]. But
we know that, from equation [3.21al], the f, value of any

streamline is directly proportional to its YW value

[4.3] v = U.r,

2
Thus the difference in the fy values for two points is a

measure of the increment, m. i.e.

Yop = Yiw = omp - %[(f")w,h ) (f")s,h}

We shall put
(fu)iﬂ,h - (fu)-hqt = g
But from [4.3] we also have

(4.4] k(/ﬂ = %.fﬂ



Therefore:

[4.5] m; = _:‘_H;_ -8y = Ly
“H

Now we are in a position to write the important ratio

m/n as 1
[)4-61 (_!Z_l) = my = Vi _g_% = X o g3
n&k ng ¢y P n%,
Also
[4.62] (g = 1 s m = i
U Intekvar 2XP U %

]
Hence the importance of the quantity Yﬁ/¢£fﬂ s whose
relevance in section 3.1.4 may have seemed a little

obscure.

L.1.5 The Parameter Specification in the Relaxation Mesh.

Having found the important relation [4.6] in
the last section we are now in a position to discuss how
the complete set of solutions may be obtained. The con-
clusion was reached in section 3.1.4 that by varying

The quantities

[4.7] 0 , = ., a

— H

S

we could get a complete set of unique solutions,provided
the quantity, X ,retained the same value throughout.
Having set up a net for one set of [4.7] and
Solved that particular problem The qguestion arises as to
how a change in one of these parameters effects the
geometry of the net. A change in @ means merely a change

in the boundary condition on DC. If an alteration is made
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in (P,,/@, then the cbvious course i1s to add or substract
some mesh lines and move the boundary AF either up or down-
Stfeam. ‘However if a change 1s to be made in fH then

two courses of action are open to us. We can elther alter
the value of f,on the mesh line AB, thus altering the values
of (fU )5 and g,.b on all the mesh lines, or lines can be
added or substracted from the mesh so that the boundary
streamline now lies on a different mesh line, say A”B”,
dotted in figure 4.3. The latter course is obviously
preferable since it can be arranged so that mesh lines
retain the same values of (£, ),

J
the value of m/n at any point lying in both nets remains

and g; s and therefore

the same , by virtue of equation [4.6]. The f values
on these lines may then be used as a first approximation
to the solution of the new problem.

Also in section 3.1.4 , the conclusion was reached
that the specification of [4.7] demanded that the boundary
BC (figure 4.1) be free to move , the length 4L being
determined as part of the solution to the problem. The
position of BC will therefore change during an iterative
process of solution and may not coincide with a mesh line.
The mesh lines which straddle it are marked in figure 4.1
as B*C* and B' ¢ » although their position may vary
according to the position of BCj; at a given moment in the
1terative process the position of B*(C* 1is described by

k = K and that of BC by

§ an - Qs’c“‘z = C 3
‘Q'nﬁ
Or in other words

¥ ./

¢ = LENGTH C*C / LENGTH C'C
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4.1.6 Useful Approximate Formulae.

It is useful, in order to prevent trylng to find
solutions for sets of parameters for which no realistic
solution exists, to develop some approximate Tormulae.

In doing so we will also find convenient numerical values
to assign to the scale value X in the case of the sphere

and the disc.
(1] On the surface of the disc.

Let us assume that the velocity distribution on
the surface of the disc in the solution will be closely
related to the velocity distribution for the Dirichlet
flow which achieves the velocity, G o at the same
distance rgy from the axis, shown diagrammatically in

figure 4.3a. Then from [3.561, [3.56a], [3.57]

¢ A
® ® U i
) = o - ¢ = 2; = _ep
b¢s [§] 2U* A Uil +9Q
Then eliminating C and solving the quadratic for ry we
find : - L
2
[4.8] r, = 1 1+ (1 + T+ Q})
2X §1 + Q i
= & s Say
X

after substituting for U from [(4.3] and putting X = \H, /(fS f’\_,.
This then is a simple guide to the approximate value of fs
which we would expect given the scale value, X, and the
cavitation number. The author decided that values of

r. 5 fg of the order of unity would be convenlent.

Typical values of A are 35 @ = 0.2 , LA = 1.412 ;

Q=06 , A =1.275 .
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The value of X was, therefore, chosen to be 1.5 throughout
the solutions for the dilsc. Although this would seem
from these rough calculations, to glve values r, below

unlty,X = 1.5 in fact gives values of r. ranging from

apbout 1.1 to 1.2 in the actual solutions.
[2] On the surface of the sphere.

We will follow a similar procedure as that for
the disc. In the Dirichlet flow (eguations [3.24] )
it is easily shown that the velocity, g, at any point
on the surface of the sphere is given by :

[4.9] g = 1.5~Uf"*/ﬁ
Eliminating R from thils and equation [3.55i]we find :
%
*oT “q’/Ef © 4]
U=

We will assume that the velocity distribution on the
wetted surface in the cavitating flow i1s close to that
for the Dirichlet flow past a sphere which achieves the
velocity q, at the same radius, r, (figure 4.3b).  The
radius of the spheres need not be ldentical,though the
free stream veloclties are. Thus putting ¢ = a, s f=q;=q:,

@ = @s in the above eguation and substituting for X

we fing :
r. = 'ﬁ swhere k now becones
X
[4.10] ¥ 3
A = 1 T+ {1 - 401 + g
2 3T+ & 5
Typical values for A are : o= C.2 4, A = 0.795 ;

Q.;‘, - Co6 K} L = 0-608 .
For g > 1.25, k,becomes unreal since the maximum Cp occurs
on the wetted surface in the Dirichlet flow at the point

69 = 0 s wWhere Cp = = 1.25.
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In order that r, was greaﬁer than unity for the
range O < @ < 0.8 the value chosen for X was 0.45. In
the_actual solutions ,this gave typical values of r as
follows 3 Q = 0.6, g % 1.155 Q = 0.2, r, & 1.42.

The parameter, A , used above only varies to a
small degree, increasing as @ decreases in both cases.
It is therefore anticipated that fg will increase slightly
with Q, and that the other two parameters, lﬂ/gﬂs and
fy will have small effects. This is convenient since it
means that the £ values in the region of the disc or
sphere for one solution, can be used to good effect as
a first approximation for & new problem with an altered

set of pafameters.
[3] Upstrean.

Although the value which (| /4, will take, will
ultimately be decided by the process of increasing its
value until further increase has a negligible effect on
the required results, a reasonable value can be found
by considering the nature of the upstream flow. From
the investigation carried out in section 3.3.2, the
conclusion was reached that, for values of a/f; << 1
(equation[3.52]): .

LA P (iﬂat
U
OUn the upstream boundary we substitute (P==¢L and
U= 21X¢k. Since the boundary condition only holds
for a/f, << 1 , in order to find a reasonable value for

Q_/¢L we must have
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The worst case 1s provided when fu is small. The
constant k is of the order of unity and so, for
our choices of X, 1s D, the typical length, in the case
of both the disc and the sphere. Thus we must have :
= 4 >
s

For example:
In the disc, putbing X = 1.5 and /¢, = 12 we find that
the largest value of a/f, will be 1/64 ,approximately.
For the sphere, with X = U.45, (?,,/([?s = U , (a/f, )“;.\\, 1/64.,

Thus for these values (| /{g » a/f, << 1 and these
values are,in fact, very close to those used initially
for QJ@& . It subsequently proved that these
initial values did not require alteration, an increase
in them having very little effect on the results. This

will be demonstrated in the error analysis.(Section 5.5.4)

(4] The Free Streamline.

The potential distance LPF is, as was polnted
out in section 3.1.4 , unknown. In
section 4.3.6 we will discuss how this may be determined
In the process of solution, but from the point of view
of designing the relaxation mesh it 1s useful to have
an idea of the values of (PF /¢’5 which may result.

We know that on any streamline, _bi = (s Where s
s

1s measured along that streamline. Since g is constant on
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the surface of the cavity, the boundary CD of figure 4.1,

then at the point C

g = the distance measured along the surface of the
cavity from the:separation point to the point

of maximum dilameter, C.

Qe A 2X 51 + Q

Thenyhaving some 1dea of the value of S,this

!

exact equation enables us to find the corresponding

value of ¢p/¢L s knowing both X and Q. For example

in the case of the dlsc , Reichardt)s empirical formula
(equation[2.9]) was used to estimate L, the half-length

of the cavity, and this [or, say, (L*+ (B—C)z)%] taken as
an estimate of S. Thus the approximate final position of
the boundary BC is known. This is helpful when setting

up the relaxation net for a particular value of § .

4.2 FINITE DIFFERENCE EQUATIONS.

4.2,1 The Field Equation.

The basls of all the finite difference equations in
This thesis is Taylor)s expansion. For example,the value

of £ at ¥ =Y , @==@|+ n will be related to the value of f
at y=Y, , (0“9. by :

() = L1 +nN + N2 o+ BN+ ... ’l (r)
R 2 E P

This expansion will only hold provided there are no
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gingularities in the interval,
<@ <@ +n

on the equipotential Joining the two points. Care must
pe taken, tTherefore, not to apply a finite difference
equation at a point, where the mesh length ”tentacleg
emanating from that point and used in the difference
equation, cover or touch a singularity unless the presence
of the singularity has been accounted for in that eguation.
Treatment of the singularities is given in section 4.4 .

Since the operator and the variable upon which
it acts are often widely separated it is much more convenient
to use the incorrect suffix notation Nyfb rather than
1ts strict equivalent (N'f )o' Confusion will not arise
from such a substitution and Tthe simplification is
considerable.

In order to translate the field equation,(3.9],

[4.11] ¥In £+ ¥rf = 0
b(pz bY;l.

we could say :

[4.12] 1n(f,) = L1 +nN + N + N+ ....]m f,
2 3

[4.13] 1In(fy) = [1 -nN + fN° - g N +....]1n £y
12 13

[L.14]  (£g) = £1 +ml + M+ e +...;1f0
12 13

[(B.15]  (£4) = L1 -mM + oM - M+ ....]fo
(AN

Using the local system shown in figure 4.4. Adding [4.12]
to [4.13] we find :

1n f\f;) = 2n*(Winr,) + ent(finr,) + ....
i |2 1

But,
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and therefore :

[4.16] n* Q"ln f> = 1In (f. f3> -z ‘2n F(8¥1n 1)
| W /o Cx |=p

p=2

gimilarly from [4.14]1,[4.15] : e

[4.17] m (_‘_of_g) = f,+f, -2r, - Z 'Emze(Mz?f‘ )
W, - |2p

Hence substituting in [4.11] we can say that the equation,

[4.18] o’ In Kfl 3) + £, - 2f, = ©

1s a finite difference approximation to the field eguation.
1f E is the error involved in substituting [4.18] for [4.11]

then from the above analysis it follows that

[(4.19] E = md Z o o (N 1n £,) ¢ 2m o (MTr )
p 1Br
p=2e L s

In other words the error is a function of n,m and the 4th
and higher derivatives of £, at the point O. Thus the
smaller n and m the smaller the error of finite difference
substitution.

Woods (Ref. 46) also gives another form of the
field equation based on the first rather than the second of

[3.9]. That is

(h.20] 2 g)z £1- £, - fo= 3| o+ (£, + £, -27,) = 0O
T F T, T, ¥ Ty ,

This is based on rough approximations and is much less
accurate then [4.18]. It is however useful in one case,
as will be seen in section 4.4.3 , where [4.18] and [4.21]
break down.

The form [4.18] of the field equation can only be
Used,of course, for the particular mesh system shown in
flgure 4.4, Figure 4.5 shows the other mesh system which

1s used. Taking the expansions of the form [4.14], [4.15]
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»—"p. 3 - . 3 . L)
we find M I 1n this case 1s given by:

5.25m M°f, = - 14, + 5£, - £,

Z [+ opaf -l ] g

Thus we can write the field equation as:

i
<

[4.21] 5.25(@)2 1n(_f_‘_f_‘«,) + 165, - 14F, + 50, =Tf

52
n Io

where the error is

[
2 2pa 2
(4.22] E = 5.25m g on’ N 1n £,
)
2D
p=2 =

Lw

+pZLI [5 + 16(-%5’ - 14(_;_5} rEE

Hence, again ,the error is of the order of the fourth
derivative in f. Indeed it is the best policy to make
all the finite difference eqguations to be applied accurate
to the same order. Then the field is "refined to give
greater accuracy where the solution demands 1it. Thus
we will try as far as possible to make all finite difference
equations have errors not lower than the fourth derivatives
in © . The author found this the best medium between an
excessive number of points and excessgive computation for
a single point.

The form [4.18] of the field eguation is,
therefore, used on the lines Jj =1 and J = 2 (figure 4.3)
and the form [4.21] on all lines for J ) 3.

A further complication arises at points in
the regions of the mesh where the mesh length n* 1s doubled.

Thus if we have



< n* ><  n*¥ > < on¥* >

T T 7 T

3 ' 3% 0 1
the value £ in either [4.18] or [4.21] is now taken from the
gsecond polnt to the left of U rather than the first. This
is simpler than involving the point 3* ,the presence of whose
value would not improve the accuracy of the field equation

anyway unless further points are involved.

h,2.2 The First Derivatives.

It 1s also useful to derive rinite difference
formulae for the first derivatives in L. These occur
in the eqguations for the velocitlies and the distance,
X both of which are reguired as results. In order
that these formulae will have errors of not less than the
Uth derivative in f we must introduce the points 9, 10

and 11 (figure 4.4). VWriting

- 2
in fq = t1 + 2nN + gen) N+ 2n 3 + ..] in f
&

and eliminating N®In £, and N 1n £, using L4 12], [L4.13

we find
[4.23a] 6nN1Inf, = 6Inf, - In fq - 2In f5 - 3In £,
o
P P P
..;EE? [6 = 27 - 2(-1) ] £N°1n £,
S
p=4

Similarly writing In £, in terms of 1In ', and eliminating
with [4.12],[4.13] we find:
[k.23p] 6én NiInf = - 06In fy + In £y + 2In £, + 31n T,

ad
..‘ZE:- (6 - 27 - 2(-1f ] "5P1n £
LE

p=h
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carrying out exactly similar procedures with © rather than

1n £ we find

[4.24a] €n N L, = 6ff =~ f£q = 2f, = 3£,
- :igi [6 - 27 - 2(~17 ] n°N°s,
p=4 e
[4.24p] 6o NP, = =~ 6fy + £, + 20, + 3f,

'5_ 6 -2 - 2(-171 () Vg
Lo

The two alternative forms of N 1n £, or N f, are used
according to the situation. For example at a point near
a boundary, say (Jj,1) the forms [4.23a] and [4.24a]

must be used since there 1s no point 11. As mentioned
in section 4.2.1 we cannot go ”through“ a singularity so
that, for example, [4.23b] or [4.24b] must be used at the

point D¥*(figure 4.6b) and [4.23a] or [L4.24a] at the point

Ex¥*,
A further slight complication is provided at

or near points where the mesh length n* is doubled. This

can,however, be overcome by the right choice of type of

equation for Nf, or N In £, . For example the following

shows the combinations chosen when the point U takes

Three different positions in such a region.

<« n¥* y 2n*

T T T . T T T T
Case 1. 7 3 0 1
Case 2. 3 O 1 5
Case 3. 3 0] 1 5

The other gradient of £, 3f , is only required
p

en the boundary, jJ = 0 , in the solution of the field
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problem{ In this case, using figure 4.4 we have

-

f, = LT +o2mM o+ (o)W o+ (en) o+ ‘jf
2 3 ’

" and eliminating between this and [4.14]:

. w

86, - £y~ Tf, = 6mir, + 2d M, + Z (8-2" \mfuf g,

p=4 S
_Then substituting N'ln £, = - M°f, and for N'ln f,
from [4.16] .
(4.25] 6m M £, = 8f - f, - Tf, + 2(g)'1n(_f_*._£,_) - E
_ n ﬂ;
where 0
[4.26] E n)z 20 N 20" ¥ 1n £, Z (8- 2“ Yof 1 £,
p=2 p=4

This, therefore, gives us an equation for 3f (or Mf,) on
thg
the boundaries DE or DC (figure 4.1) in terms of the

values at the points 0, 1, 2, 2 and 1C.

h.2.3 Upstream Boundary Condition.

On the upstream boundary, AF of figure 4.0a,
the value of f is related tc the value of f at a point
wlthin the mesh on the same streamline by equation [3.54].
We, therefore, relax a mesh point on this boundary by

putting, simply . %

-~ T

i jSigz;ig%) +(§f:%] [f&1 - <fu)$]
) ubl

Where the (fU)S values are, as was mentloned in section 4.1.3,

stored in (J,0). Putting U/(ps = 2X thils becomes
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2
2 z

| ((_P_e - n*f) + lLXz(f‘u)-b
[k.27] £y, = (f.,)3 + [f50 - (L )81 A
S

Then in a given solution:fh,, depends simply on the value

of f&Q and the values of the parameter &_/¢% s The scale
X, and the relative mesh length n *.

Unce a solution has been obtained we can test
the parameter (ﬂ/% by calculating from the formula [3.54]
and the values of £j, , fja values for the polnts (3,3),
(j,4) etc. and comparing them with the actual values
obtained. An example of this procedure can be found in

section 5.5.4 .

4.2.4 The Stream Limiting Boundary and the Upstream

Stagnation Streamline.

The values of £ on the channel wall, AB of
figure 4.1, are all fixed at £ = f, 3 the values on the
axls, FE at zero. The relaxation process does not,

therefore, deal with points on these boundaries.

L.2.5 The Wetted Surface Boundary Condition for the Disec.

In section 3.1.3 we found that the boundary
condition on the surface of the disc ([3.20]) was :

o= o
Y

or MLy = O

for a point on ED of figure 4.6b.  From this we have

Yo find a finite difference equation comnecting the
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value of £ at the imaginary point 4 (figure L4.6D1),to
the values at the corresponding points C,1,2 and 3.
Then the value of f is known and can be used in the
rield eguation, [4.18], to be applied at G. This
procedure can be carrlied out in the two stages indicated
or, which is more convenient, fw can be eliminated from
the two equations leaving a special form of the field
equation for this boundary. This form of the field
equation will, therefore,contain only f,,f ,f, and fy.
Thus substituting Mf, = ¢ in equation [4.25]
we find the form to be applied on the wetted surface

boundary in the case of the disc.

[4.28] (gy 1n(f}£§) + bf, - 0.5f, - 3.5, = 0
n
0

where the error is that of [4.26] divided by two.

One unfortunate point that arises here is
that the equation [4.28] clearly cannot be used at the
point E# (figure 4.6b), where £y = O. This is due
to the effect of the presence of the stagnation
singularity at the point 3 which means that equation 4. 16]
is no longer accurate or applicable. The form,
[4.20], of the fleld equation is at least applicable
though could hardly be any more accurate. The
Treatment of the singularity at the stagnation point
(section 4.4.3) includes the process by which this
difficulty is overcome. A special equation must also

be used at the point D* since this is close to the

separation point singularity.(See section &4.4.4 .)
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4,2.6 The Wetted Surface Boundary Condition for the Sphere.

The condition on the boundary DE for the sphere

1s (section 3.1.3. equation [3.21]):

3 (BRY - ) =
W P

This provides a more complex boundary form of the field

equation than that for the disc. The derivative 3f
is first estimated on the boundary. The above condition

then gives a value of 3f at the particular point under

oY

congideration from which the value of fq, or the equivalent

boundary form of the field equation can be obtained.
Clearly this amounts to substituting for Mf, and

Nf, from [4.24a] or [4.24b] and [4.25]. Hence we find

the form of the field equation to be applied on the

wetted surface boundary in the case of the sphere.

[4.29] (m\ ln(f\ £y + br, - 0.5f,, ~ 3.5, - 'm) 6nN T, =0
(n) £ ° ° (n TTE o T,

where , if

onNf, = 6f, - £, - 2f, - 3f, then
0
[4.202] E = (g)l 2n'N'ln f
n 2p
p=2 -
@0
+ 1 E (82" )f M - (g [6-2"-2(-1) ]nP N 1n £
2 I {R* - I, )
p=4
Or if 6nNf, = = 6fy + £, + 2f, + 3f, then the error

1s as [4.29a] except that the last term contains (—n)P
rather than n"

The same comments obviously apply to the use
of equation [4.29] near the singularities D and E
as applied in the case of the disc.

It is relevant at this stage to comment on the
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major difference between the solutions for the disc and
thbse for the sphere , namely the additional unknown

of the direction of flow at separation , G% . This

is 4 of course , covered by the additional condition of
smooth separation in which the second , as well as the
first , derivatives of f are known at the separation.
(See section 3.4.4)

The procedure followed in the solutions was
that 2 guess was made as to the value of 95 . The
problem was then solved using this value ( see sections
4.3.7 [2] and 5.2.7 ) which at any given moment in the
iterative procedure provides the radius of the sphere,
Ry, from the value of f at the separation point , fs 3
as follows (see figure 4.7a)

[4.30a] R = § T

cos B¢
The radius , R , 1s required for use in eguation [4.29]
for the boundary condition on the wetted surface.

The manner in which the correct 0 was found
1s postponed until after the investigations of section
4.3.7 [2] and is contained in sections 5.2.7 with

results in section 5.4.2.

L.2.7 The Free Streamline Boundary Condition.

In section 3.1.3 we found that the condition of
Constant velocity magnitude on the free streamline

became:

L)+ (e

[~%4
e
i
O l =
il
=

S
(o
+
g‘\
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Multiplying through by m° and setting 4m™/U* = (ghf. = (g,)
(from equation [4.5]) we find:
2 2-
[4.30] ’ lﬂmz'(ano) + (mMf,) = *
f\n T+ Q

In this case g, 1s simply the £, value of the j=1
streamline.

On this boundary, as will be seen in section 4.3.6,
a different relaxation procedure is employed to that
used on the boundary DE. For the purposes of this
procedure we have to estimate the "local“ cavitation
number at every point on this boundary. That is
say the value of Q which would make equation [4.30]
hold at the point O given the f values at the points
Oy 15 2, 3, 9, 10, 11 at that particular time in the
relaxation process. This 1local cavitation number,
denoted by the subscripted Qg s must, in the solution
be equal to the chosen @ at every point. From [4.30]
Hhe31] Qh ) 1\ {my* (nNf )g? + {mMf,, )* -
(‘)(f) 0% o,k

£/ \n
e Ok

and mMf, ¢ are calculated using eguations
)

where an%k
[4.24a or b] and [4.25] respectively. The process by
whlch all the Qg  are made to converge to Q i1s described

in section 4.3.5 .

4.2.8 The Boundary of symmetry of the Riabouchinsky flow.

In section 4.1.5 the position of the boundary
BC at a2 given moment in the iterative process was
described by k = K and the fractional mesh length , c.

From section 3.1.3 the condition on this boundary is
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'\ = 0
Y
or (N£)g, = O

This condition will be used to find an expression
for the values of f on B}C' in terms of the values on
the mesh lines B*C*¥ and B**C** and the fraction c.
(Figure 4.7b) Taking an expansion for Nf rather than
f we get ‘

[4.32) Uif%+&n = [N + (cn)Nz + (igf'N§ + ....} (f)¢

Substituting (Nf)wkcn = 0 ,we find the condition
in terms of ¢ and the derivatives at 0. Now eliminating
Nf, and leo from [4.32) using expansions for £, and f4

in terms of the derivatives at 0O we find

[4.33] (2c + 1)f, = lder, + (1 - 2c)f3 + E
had o0
[4.34] B =Z noNT £+ c.2n N5, —2 PN L,
p=2 — =2 p=3 2=

This glves the relation for |, in terms of f,
and 4 » The error term is ,however sof the third order.
An equation for f, can be developed whose error is of
the fourth order by including a further value from the
point 12 but this refinement is unneccessary in this
case. It can be anticipated that the solution is well
behaved in the neighbourhood of this boundary , so that
E is small provided ¢ is of an order not larger than
unity. This 1is acheived by means of straddling the
line of symmetry by the last two equipotential mesh
lines. Thus the condition on this boundary is given by

[4.33] which determines the values at all points on B'c’.
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4.3 THE RELAXATION PROCESS.

4.3.1 The basic method.

If we denote the finite difference form of the
field equation by

[4.35] F(fy 5T, sF5 5T3 sy shig weese) = O

then,as mentioned in section 4.1.1 ,the basic principle

of the relaxation method is to treat each point of the

field in turn , adjusting the value f, at that point so
that [4.35] holds for the present values at 1,2,3,4,12,
ete.. (Figure 4.2) The value at a particular point after

i iterations will be denoted by f;,ff,ff,f:; the final

value after this process has converged by ff,f¥,fF,etc..

There are a number of ways in which the relaxation
process can be carried out :

(1] The method of Jacobil sets the value f?l at a
point using the values fﬁ,ff,ff .» from the last
complete field iteration. The equation to be
obeyed at O 1is therefore
(4.36]  F(eY Leb,ri,et .. ) = 0

o

(2] The Gauss-Seidel method,however,uses the most
recent values obtained at any point. If,for’
example,the point 3 has been treated prior to the
point O then f;H' is used in [4.35] rather than fé .
The condition will therefore depend on the order
in which the points are relaxed. If this order is
3=0,k=1,2,3 ... Nyj=1,k=1,2,3 ... Nyetc. then [4.35]
becomes

Ll

[(4.37]1  B(e," sol,fy e eyt Lo0) = 0

Tn both cases the value which F takes before the
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relaxation of that point is termed the residual , denoted
throughout by Y, or in the other system Y;ﬂzs the process

wlll have converged when the residuals are reduced to zero.

4.3.2 Successive Relaxatlon by Points.

The finite difference forms corresponding to
[4.35] which we shall use are [4.18] and [4.21] ; there
are , in addition , the special forms for use on the
boundaries. These are all non-linear equations and hence
the step involved in finding f;” using [4.36] or [4.37]
15 less simple than in the case of a linear differential
equation. In the latter case it is normally possible
to write [4.36] , say , as
[4.38] £i - F(ed, 08, 00,08 0. )
where the function F' 1s known. This is not possible
with [4.18] or [4.21] in which an iterative process will
be required at each point to solve for fi*!. At this
stage the residuals become an integral part of the
calculations and we will use the simplest method,namely
Newtons,to find the value of fzﬂ which gives a zero
residual. Thus , for example , the method of Jacobi
becomes

Ffy sfr yfasfy «ov ) = (¥,)

- .
Vol = [OF(£y0f1sfasly coer )
2t bfo

and we put,as a first approximzation

orl M 4 .
[4.39] £, = £, o+ (—Yo)// o1t
/ 3T,

<
—
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Since this is an iterative process within an iterative

process,namely the relaxation technique,it 1s normally

sufficient to use Newtong method & single time at a

particular point. Thus the change in value at a

point is calculated as
0 £,

Y/
/ 13Y
at

If , for example , the field equation [4.18]

is being used then

k3
Y, = kr_g) In £, fy + £, + f, - ef,
n i
W = -2 - 2 (my
L, f}(n

An over-relaxation factor can be introduced
to optimise the convergence of the relaxation process.
(See , for example , Ref. 39) Denoted by w , it is
used as follows ‘

[4.40] AT L I /00 N

/2%

/5]
That is to say the value at £ 1is increased by w times
fhe required amount , where W would normally be Jjust
greater than unity. Clearly certain 1limits exist as to
The maximum value of W which can be used though these
limits depend very much on the particular problem. It
will be seen in the next section that W alters the

rate of convergence according to a simple formula.

b.3.3 Convergence.

We will denote the difference between an intermediate

Value of f snd the final value at the szame point by e
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where ,therefore
et = f£' -

But we must finally have

F(LF 0¥ sf5s0% o0 ) = 0O
so that
[4.41] F%ff - ej,ff - ef,fj ~er.... ) = 0
or
[4.41a] F%f?‘~ éj,ff - et,rt - ei ceee ) = 0O

This can be used in conjunction with [4.36] or [4.37] to
give a relation between e;” and e; (see example below) of
the form
[4.42] ie."'l = [E]ie‘l’}
where [El is a matrix whose elements are usually known
for a particular mesh and field arrangement.

Clearly,in order that the process be convergent
the errors ,e,must be consistently reduced. It can be
shown (Ref. 32) that the neccessary condition for this to

be so igs :

[L4.43] (WD) <

max.
where A 1s the eigenvalue of [E] wlth the largest spectral
radius. In fact, |A] 1s a measure of the convergence

of the relaxation process since , from [4.42] it follows

{e“‘§ = x|

Let us take the example of the flield equation [4.18]

that

in a Jacobi iterative procedure. Equation [4.36] becomes

(4. 44 &EY 1n(§§€~) +ort o+ g -ttt =0
n Ay
[+]

Equation [4.41a] becomes

5] (mfan (oel) (Gogh) + [E-ed s el 2(570) = 0
n ST o= oeut
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We shall assume that e/f < 1 at all points. Thus sub-

tracting [4.45] from [4.44] we find

. " 2 . . . .
(446 &2+ 2 .r_n)‘ ~ 1 (m) e + 1 [m) e§ + el + e
Tw \n £:{n \n

Thus we can write [4.42] where the elements of [E]

o
"
¢}

known. Hence the matrix [E] can be set up and its
elgenvalue ,)L, found. Clearly if e/f << 1 then the
elements of [E] do not change significantly during the
relaxation process.

If an over-relaxation factor is used 1t is

easlly seen that equation [4.42] becomes
[4.47] {e“'& (1-w) feft + v [E]{e]
= [F] §<)

where the relevant eigenvalue , A¥, of the matrix [E*]

I

1s therefore given by

[4.48) 1T = L = w (1 =-X)

Thus the convergence of the process on the introduction
of an O0.R.F. (given by L*) can easlly be anticipated
knowing the convergence of the original process (given
by A ). Further investigations are carried out in
section 5.2 4in relation to the actual meshes and

field equations used.

4.3.4 Possible Semi-~direct Method.

By expanding the method of section 4.3.2
1t is possible to suggest a semi-direct method of solution.
The field eguation is applied at every point at which f
1s initially unknown. Thus we have a set of T equations

for T unknowns,where T is the total number of such points.
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In the case of a linear differential equation we therefore
have T simple simultaneous equations , and the direct
method involves the direct solution of these. i.e. If the
equations can be written as

ia} = EM] ifl
then ifl = [M]qial
where gag and [M] are known.

This is not possible where the equations are
non~linear since we cannot write the field equations in
this matrix form. However,the following semi-direct
method is possible.

If the approximate,or  guessed ,values are

substituted in the field equations,we have

F(fy s, ofp 5L oeee ) = Y,
Thensto the first order
Ny, = Nf, 3o + Q£ 3 + 0f X% + ...
of, 31, T,

The required change, 0 Y, ,is of course =-Y,. Thus the
required changes in f, ,f, »f, .... are given by

(- vl = L] {0 oyl
in matrix notation,where the elements of [M] consist of

the derivatives of the type 3Y . Thus

d
-l
0rel = (4] { - vl
This process is then repeated since the elements of [M']

may change,some of the second derivatives , zz s being
yE*

non-zero.

Such a method would,no doubtsbe more convergent
than the successive relaxation by poilnts , but,in practice,
has a number of disadvantages. Consider the storage space

required in a digital computer. The dimension of the
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square matrix [M] i1s equal to the number of points at
which a field equation is applled. Usually if the number
of such points exceeds 70 , storage of the whole of [M]
is impossible,since many other guantities must obviously
be preserved. This matrix must then be lnverted,a
labouriocus,time~-consuming task. However , many of the
elements of'[M] are zero , the matrix having only a few non-
zero diagonals. Fox (Ref. 12) gives methods of carrying
out the i1nversion of such a matrix which save time by
treating only significant non-zero sub-matrices and
vectors. This cuts the labour considerably,though the
storage and time required are still much greater than a

single field relaxation by points.

4.3.5 Investigations on the Free Streamline.

The flow on and in the region of the free
streamline and the separation point clearly constitutes
the crux of the problem. Consilder the following
observations which can be made at this stage
[1]  The position of the boundary,BC,the plane of
symmetry,is unknown 5 it is determined by the
position of the point of maximum radius of the
cavitysa property of the free streamline.

(2] A great deal is known of the flow at the
separation point.

(3]  Intuitively we could say that the position of the
free streamline will depénd considerably on the

flow at separation.
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General though these observations may be,they
do suggest that the lack of knowledge at the point C ,
the point of maximum radius,ought to be complemented by
an excess of knowledge of the flow at separation.

Now consider the field equation for a point on
the free streamline,given by [4.31].
[4.49] ¢ = g - 1

T (.I_I_l) WNEg e+ (0T, )*

%ﬂ Dok

Since this may not be obeyed,except In the final solution

the numerical value of the right-hand side i1s denoted by
Qg refered to as the local cavitation number. The
effective residual at any point is thus 0Q, = Q) - Q .
Also from [4.25] and [4.24 a or b]

GuMfoy = B8f, = £, - Tf, + Q(m) In fi £

il
(O
g
]
H)
-0
1
Y
)
«
i
W
'—b
o

= - 6F + f, + &f, + 3f
Then , if we are to follow the procedure gilven 1n section

4.3.2 at points on this boundary ,20Qy/ 3f, must be

found.
[4.50] gy = -~ (Q,E+?5- 1 _rg)anf‘o (-nNE, 5 £,) + Epgg(q-gs;(;_n)‘)
¥ I, gi &L\n 3 L\n

The ; sign in the middle of thls expression is a result of
the two alternative expressions for nNf, . Irrespective
of this , and given the‘provision that the approximate shape
of the cavity always obeys the basic relations of section
3.2.4 (Mf,> 0 5, Nfg> 0 , N'In £,< 0 providing @< e )s
BGQ&/beinvariably takes a numerically positive value,in

the authors experience. Thus , if at all points on DC

the residuzls are calculated as positive ( i.e. Qg larger

than ¢ at all points) this requires us to put



el = el o (DQg) /
That is to say , in this example , all the f values on the
free streamline would be decreased.

But this is contrary to physical experience.
Normally if the cavitation number is too large , we
would have to increase the size of the cavity to reduce
Q. Thus the use of the normal procedure would seem to be

incorrect on the free streamline.

Consider the other derivative :

-

[4.51] Qg = - (Qg+1) . 2 (g)‘ \'(2 + 1) nNfy_ +_xgl\__/_r;_,_]
L) g2 3 \n £, £,

This,on the other hand,is always negétive s given the

same provision as before. If along the length of the

free streamline the residual at the polnt O is dispersed

by altering | , the direction of movement would seem to

be compatible with physical experience. Clearly one

method would diverge the other,seemingly the latter,would

converge.

This investigation,together with the initial
observations led the author to conclude that one feasible
treatment of the free streamline was as follows. Suppose,
lnitially,that the values of f at the separation point,

k = ky,and the next point, k = kg + 1 , are fixed. Then
if ﬁ @kgi is digpersed by altering f%hga and this
Procedure followed for every point as we move down the

free streamline,we find that fo)K+| is determined by QQK s
k = K %Deing the last point at which Qg can be calculated.
- Hence the position of the centre line,BC,is automatically

determined by this process , since from [4.33] , ¢ can be
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calculated.

Thus,if the value cf ﬁ%%+l can be found by
considerations other than the application of the field
equation , [4.49] , at that point the solution of the
problem acquires feasibllity. The 1nitial observation,
that the lack of knowledge 2t C ought to be complemented
by an excess at D , would seem To be the case. Thus a
major part of the problem lies in an investigation of
the flow at separation , in order to find a method of
determining f%th . This will be carried out in section
L.3.7 for the cases of the disc and the sphere. In
the next section the possibility of such a relation will
be anticipated and the method of sclution adopted by the
author will be developed,based on the method cutlined
above.

However,before the details of such 2 method
are discussed , 1t is relevant to consider it in relation
to the solution of the problem as & whole. Suppose
an initial guess , based on approximate formulae , has
been made for the values of £ at all points on the free
streamline and wetted surface and that the rest of the
field has been filled in with guessed values , possibly
taken from sketched equipotentials and streamlines in
the physical plane. Clearly the Qg values on which
we must base any change of the £ values on that boundary
are those calculated from a Dirichlet solution in which
The boundary values are Xkept fixed. These O values may
bear no relation to those czalculated when all the values
are puessed. A similar situation would arise z=fter any
Change in the boundary values.

For this reason,and from exprerience,the
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author found it neccessary to adopt a procedure which
cohsisted s essentially , of alternately solving a
Dirichlet problem and changing the boundafy values on
CD according to the resultant Qg values. In finite
difference ferms , this amounts to relaxing all points
except those on the boundary CD for a number of iterations,
then relaxing the points on that boundary and repeating
the process. Clearly it is sufficient to iterate in
first operation untilleh values , indicative of the
DQk values which would result were this process to be
repeated to complete convergence , are obtained. This
usually entalls far fewer iterations than the complete
Dirichlet solution.

Southwell and Vaisey (Ref. 43) recommended
and used the latter type of procedure in their solutions
with cusped cavities. (See section 2.5) They do not
seem , however , to have developed any automatic method

of free streamline adjustment such as that given above.

4.3.6 Method of Sclution for the Free Streamline.

Since equation [4.49] is essentially a
function of the first derivatives of £ , it is easily
shown that the value of Qe at a point is more sensitive
to changes in the differences (f, = £,),(f, = £,),(f5 - £,)
etc. than to uniform changes in the magnitudes of the f
values. In fact the alteration in Qg due to a small
€qual change in all the values £, ,f; ,f, ,f; ... at a point

is negligible compared with the alteration in Qg for the
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same change applied only to £, ,say.
With this and the derivatives , [4.50] and

[4.51], in mind , we will examine particular methods of

carrying out the procedure envisaged in the last section.

It will be found that various restrictions and modifications

must be placed on that general method. To simplify the

investigations a situation will be used , in which all the
residuals except one , at the point in question , are zero.

This will give an idea of the behaviour of the particular

process belng envisaged.

(1] Gauss=-Seidel. The first method which willl be
iInvestigated is that in which the newest values are
used at every point. Thus we must set
[4.52] f,;;f,' = f0 - (day) /

/A0
/My,

Now fg, Dbelng altered , this will alter the value of

0 Qg,, as follows ;

S(Q@ihﬂ ) = %f!u—[ » }QQgH

bfhﬂ
= - Mg, - __ Mo
bf’hrl .};@&L_
3%,
Thus
800k ) = - dQwu [
[4.53] 1Q¢ 3w / &
/ éfhi—l

Now , with the aid bf [4.50] and [4.51] , provided

the first derivatives of f at k and kt+!1 are reasonably
close together , it can be seen that the numerical
value of the right hand side of [4.53] is greater than

+1 . Thus the residual Qg is removed to the next point,
k+1 , and ,which is even more unsatisfactory , usually

magnified in the transfer. This method must therefore



be disccunted , in its present form , as unsatisfactory.
Jacobi. On the other hand we could , in the
caleculations for OQk s use only the"oldﬁval ag of £ at
every point. Thus [4.52] will still be applicable
but ﬂgkﬂ willl be unaffected by the resultant changes
in fg., - The residuals are therefore not trans-
ferred and the unsatisfactory magnification of the
Gauss=-Seidel eliminated. This method would work
but the author found it unsatisfactory , in that
after the subsequent Dirichlet solution a residual
equivalent to 0@, invariably appeared as (Qg,, -
But based on this the following,more workable
method was designed.
Overall Downstream Displacement. This methcd
presents 2 satisfactory compromise between [1] and
f21.  The values of (Qgpare caleculated as in [2]
from the "0ld” values of f. But instead of maling
the recuiste change only in fg¢, », 2all the downstream
values are changed by the same amount , ﬁfk,, .
Thus the whole free streamline downstream of tha point
in question is moved bodily to disperse the residual
at that point. This is more simply czrried out by
representing the values on the free streamline by
the recurrence relation

Toer = Y + d%
If,then,the d values are altered according to ﬂQk

we will get the desired effect. Clearly

60 Q& = bﬁQﬁz
bd‘k bfhu

We willl also use Tthe notation

3
(f3 - fD )OEQC = d&«
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(fz. - fo)oik = d‘;!

In designing the procedure for the free
streamline‘it must be borne in mind that the obJject is
to eliminate or successively reduce the residuals which
occur &t the end of the next internal or Dirichlet
solution. The residuals occuring immediately after
the boundary change are relatively unimportant. The
issue will be complicated by the fact that
changes will occur in the internal values , f,,
fpsduring the next internal solutlion and these values
are used in the calculations of the residuals. Clearly
any change in T, or dk at a point will also alter
the resulting values, f,, fj,- Thus equation [4.52]
does not represent a true picture of the required
change in the values and any method of solution
attempted must include or take account of these unknown
factors.

Due to these effects , if ¥0Qw was estimated
vd'y

from [4.51] and the value substituted in

[4.54] ab " = ah ) -l 0o/
([ e b = p- 0o/
/ 1

Chen with =1, the changes in d% which resulted were
found ({see section 5.2.5) to be too large. Thus some
alteration was recuired in the basic method.

Two alternative methods were tried by ths
author. The first involved the use of [4.54] with
the parsmeter ﬁ taking a value less than unity.

The second involved a trial and error
Procedure to find 2z numerical value , o , for the

gradient 3dyx which would serve as follows
BﬁQh '
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i) i

[4.55] () = @) + o1 (P.ng)(0ay)
where , since the gradlent assumed ought to include a
multiplier proportional to the relatlve mesh length, nf ,
we introduce the term n¥% /n¥* = P.n} . (See sectlon
ho1.4 )

The relative merits'of these two methods , and
the reasons for the second , apparently more empirical ,
are discussed in section 5.2.5.

Finally 1t must also be pointed out that,
due to the condition N’ 1n f, < O on the free stream-
line (see section 3.2.4 ) it 1is easily seen that a
physically realistic solution has at every point

Gha < di

provided the relative mesh-lengths nﬁ*l and n; are
the same. - A constraint was Introduced to the
programme sC that this could never fall to be the
case. Naturally the constralnt only came into actlon
during earller iteratlons. Ifyhowever,the constraint
is not included dlvergence occasionally took place
when dy,, became greater than dj, , depending on the

Initial guessed values.

4.3.7 Investigation at the Separation Point.

The aim of this section is to discover whether
and how the value fy,, may be determined without the
application of the boundary field ecuation at that point.
For that purpose the seriles expansions of section 3.4

Were derived. Since,as was polnted out in section h.2.1 ,
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we cannot apply a finite difference form of the field
equaﬁion at the singular separation point itself , this
'question will also be investigated.

It will be assumed that the expansions must
hold in the neighbourhood of the separation point. It
"will also be assumed that the fleld equation , or the
‘pelevant boundary type , can be applied at all points in
this region except the sepsration point itself. This
is not precisely the case since at polnts such as 1,2,

3 (figure 4.8) the presence of the singularity demands
‘modified fleld equations with extra-residuals . (See
sections 4.4.3 to 4.4.6 } But for the purposes of the
following discussion this embellishment can be neglected.
[1] Avrupt Separation from the Disc.

The expansions [3.79],[3.80] and [3.81] must
obviously be truncated at some power in order that
they may be applied. There will also be scme limit
to the number of points at which they can reasonably
be expected to hold. Clearly these two limlits must
be 1nterconnected. Cne major problem which arises
out of this i1s how to determine , say , the range
of points at which the expansions , truncated at a
glven power , can be applied. This problem will
be demonstrated by an example. Suppose,initially,

that the following truncated expansions are to be

used
[4.58] In (f} = 1In (f,) - 2 (-IQ + K, (-_(Q
5 Q
[4.59] r = r, + K, (ﬁ.” .
i)
[4.60] In (f) =1n (£,) + 2 (_ng
foi qc



155-

FIGURE 4.8

a3

ad

O
D

‘Separation
Point.

(8]}

<l



156

Terms with powers equal or greater than 2 have been
neglected. [ In these and all the following expansions
w‘is measured from the separation point , positive

downstream. From section 4.1.4 we can write

(]

Il
5
,_U?T
i
nS
O

Qe
¥ = Tv )i
de T+ Q

where the address of the point is either (0,k) or
(Jskg) -]

- This introduces two new uUnknowns s K, and K, .
Application of [4.58] at points 3 and 7 produces
two eguations which can be solved for Ky and £, ;
[4.59] applied at 2 gives K, 5 [4.60] at 1 finds
£, . Thus neccessary and sufficient conditions for
our purposes are the applications of the relevant
expansions , [4.58],[4.59] or [4.60], at points
7s3s2 and 1. If more points are used the problem
becomes over-determined for our purposes in this
region 3 if less then we cannot achieve our objective.

Alternatively , another term could be included

in the expansions as follows

[4.61) 1n (£) = 1n (£,) - g(- ‘Q) + K3k— [} )’+ A3(- (}l)z
3\ q, Qe ,
[h.62] £ = £, + K, K\_y >‘ + Az(}!_/)

[4.63] 1In (f)

il

it
[
[a]
Hy
S
f
+
e
[T
Y
Qs
S———
+
>
V)
<
N

_ de
Then substituting values from 23,7 and 3 in [4.61]
enables us to solve for K;,Ay and £, 3 from 2 and
6 in [4.62] enables us to solve for K,,A, ;5 from 1
and 5 in [4.63] finds A, and f, .

It is relevant to point out at this stage that
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at least one point must be used in each of the three

directions Since the expansions ensure that the correct

conditions are achleved at the separation point.
'However the procedure outllned above is , of

course , only one of a number of alternatives. In

the second case , for example , we could substitute

for the use of {#.61] at 23 , the use of [4.62] at
22. The process of finding £ 1n any case 1s
clearly equivalent to the application of the partial
differential equation at the separation point ; the
process of finding £ could be imaglined as the
application of the extra information of the flow at
separation.

In the solutions carried out by the author
the second set of expansions and accompanyling
procedure was used , belng ,presumably, more
accurate.

The author could not , however , Justify the
the application of the expansions at the neccessary
and sufflcient number of polnts , except 1n so far
as 1t was neccessary and sufficlient for the solution
of the problem in finlte differences. Comparing
the truncation errors of the expansions with the
truncation errors involved in setting up the ordinary
fleld equation leads nowhere , the serles beling of

different types.

Smooth Separation from the Sphere.
The expansilons [3.85],[3.86] and [3.87] are

truncated as follows
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2 3
[4.64] 1n(f) = In(f,) - 2sinbs (-;_Q)- 1(- 9) + xx (_ ¢
T a,) L\ q,
[4-65] b = fb + 200593 (! + ,l \P)z + K”; i} 51
qc) To \ Qe qc)
[4.66] . 1n(f) =

In(f,) + 2sinbs (_Q -1 “P)zq_ Kt [ ¢ %
< qc) (qc)

There 1s however an additional unknown in this case,

namely the separation angle , 6s~ Suppose that a

guess has been made for 6% . Then the application

of expansion [4.64] at 3 and 7 (refering to figure

L.8) will produce two equations , soluble for Kg

and f,, of [4.66] at 1 and 5 gives K¥ and f, ,and

of [4.65] at 2 and 6 will also produce two equations.

But the last two equations will include only the

unknown K% ,known f values and 0 . Thus eliminating

K% from these two will glve an expression which

will act as a test to our initial guess for G% .

As in the case of the disc , this is only one of a number

of ways in which the neccessary and sufficient number

of equations can be obtained. The same problem of

justification will also be relevant. The procedure

Ziven above was the one employed-in the authors

solutions.

Finally it remains to comment on one minor
modification made to both procedures in the actual
brogramme. In view_of the i1mportance of the dh differences,
dealt with in section 4.3.6 , the procedure in the free
Streamline expansion application is slightly altered.

Instead of regarding f. as being fixed , the value

s
(fy - £, ) is treated as constant. Thus (f, - f,) , or
since (f, - £,)/f, << 1, 1In £, /f, , and K, (or K¥ ) are

the unknowns.
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L. b THE SINGULARITIES.

hoh.o1 General.

At the separation and stagnation points of the
flow all derivatives of T above a certain order become
infinite as indicated in sections 3.4 and 3.3.3 respect-
ively. These are the only singular points in the field
to be solved. In the neighbourhood of these points the
higher derivatives included in the error terms of the
finite difference equations are not insignificant
and the errors may destroy the accuracy of any solution
in this region. Clearly some effort must be made to
modify the equations to be applied in these regions in
order that the difference between the finite difference
solution obtained and the solution of the differential
equation is contained within required limits.

In problems where the differential ecuation is
linear,much has been written on methods of treatment of
singularities. [Southwell(Ref.42),Russell (Ref.39) and
Woods (Ref.47) among others.] The importance of the
condition of linearity lies in the fact that if £ is the
dependent variable in the partial differential equation
then we can write

R + p!

[4.67] r = r
where both fA and f' aiso obey the differential ecuation
when substituted for f.

Then the general method of treatment,given by
Russell (Ref. 39) , is as follows
(1] Identify the type of singularity. A type n is

conventionally one in which the n th derivative of

f is discontinuous.
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{2] Find a suitable analytic functilon,say f/(¢,W),
which has the same type of singularity and which
,aiso satisfies the partial differential equation
and the boundary conditicns in the vicinity of the
singularity. This is arranged so that we can
write [4 67] where fA is well behaved in this
region. The actual functions used in the linear

case do not concern us here so it will suffice to

n
2

say that they are usually of the type r~* or In(r)
where r 1s a radial variable.

[3] Find some special numerical treatment so as to
satisfy the analytical solution near the singularity.
One such method suggested by Woods (Ref. 47) involves
the use of ”extra—residualéﬁ in the neighbourhood of
the singularity ; that is to say corrections to the
standard difference equations in the vicinity of the
singularity so that in this region the equation to
be applied becomes
[4.68] F(f, s£, s, sf5 o= ) = Z ;%
rather than [4.35].

~Russell (Ref. 39) generalizes previcus methods for the
linear case as follows :
let f£** represent the exact solution of the partial
differential equation ;
f‘ be an approximation to £*%*;

r! be the chosen analytic function fl(¢,W);

e* = px - !
P = r - £l
Y represent a differential overator ;

S represent the finite difference egulvalent of d .



Then,in the linear case

D exx o= 380 4 df

¢r = 8§22 + §¢
and since £ 1is well-behaved we may write
dr = §¢?

Thus
4. 691 Yot o= §r o+ (3! -$2)
The term in brackets is therefore the extra-residual
required. This 1s simply the difference between the
analytiorresult, Bf', obtained by differentiating fland
its finite difference equivalent , Sfl,obtained using

¢
f:,ﬂ ,ﬁ;,etc. according to the operator 5 .

4 4 2 The Non~-linear Case.

When the partial differential equation is not
linear a similar method can be applied glven certain
other conditions on £'. We will stipulate that £’
obey the differential ecuation and the boundary conditions
in the neighbourhood of the singularity ass well having
the same type of singularity. Then in general ,using
the notation of the last section

Yeee - e = y*(F)

where FP* is a function of £** and f sand ¥* a differential

operator where , in general, & # 3% Also
1
$ - Sl = gx(r¥)
D g . ; : ¥ oex PO
" being an approximation to F and $* the finite

difference eculvalent of % Subtracting
¥

(4 70] prx = 90 o+ (0 -62") o+ (*F - )

Thus [4 69] is still applicable provided For 1z sufficiently
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well-behaved so ¢

»1o
Taking the partial differential ecuation , [3.9]1,

s the relevant example we have

Y1in £r* + A * = 0
YR N%
and ¥in r’ + e - 0
2 dy?
Thus
y*(F¥*) = _E_ln1+‘ r' + _Qi(f**uf’)
b(pL f%%
and we can say that the method 69] is applicable

. /. . /
provided £' is chosen in such a way that both (f** - © )

W

and {r¥* - £’)/f** ape non-singular in the neighbourhood

N . Y /
of the singularity. This clearly requires that £ very

g
closely resemble the recquired solution £**.

The major problem therefore lies in finding
an analytic function f/ vhose behaviour we know to be
exactly that of £** at the singularity and very close to

1t elsewhere in the region in cuestion.

4.t 3 The Stagnation Point Singularity.

In the case bf this singularity,whether the
flow be around a sphere or a dlsc,one obvious function
must closely resemble the exact solution,namely
Dirichlet flow of the same type. As willl be seen later
the actual Dirichlet solution taken can be adjusted to
fit,2t any stage in the lterative solution,the actual

flow as closely as possible But it will ,of course,



obey the differential scquation,the bcocundary conditicns,

=i

singularity and the Clow at the singularit

exactly - It must be mentioned at this stage That this

|_.'J
‘_l-
I
[¢3]
ct
joN
W
i
|_J-
<

ative,as wvas demonsgtrated in section 3.3-3.

a speclal treatment provided,would make nonsense of the
solution cobtained in this region if not in the rest of
field. The derivation and application of the axtra-
residuals was as follows :

[1] The coordinates ¢/U and Y/U are known at every
point in the mesh. (Ecuations [4.6a] and [4.3]
respectively) Thus we can solve either [3.24]
or [3.25] ,the Dirichlet flows around a sphere

and a disc, provided R (or C) is known. The

!

o

resultant solution,f/ (=r*) would be dependent
only on the additional variable , R (or C) ,
which is initially unknown. For reasons gi
below, it is more convenient to exchange the
variable R (or C) for one of the results,f’
The particular result chosen was that for ths point
E* (figure L4.6b) in both cases.
Thus at any point in the solution the relevant
!

. \ A . o A
analytic function,f ,is that for which I = i

e+ ex and

the variable R {or C) is discarded.

The reason for this interchange becomes
apparent when we consider that it is reculred to
match the Dirichlet and actual solutions only
in the immediate vicinity of the stagnation
point. Thus the converged results may be better

matched in this region by a Dirichlet solution
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4

whose egulvalent R" is different from the actual
radius of the sphere obtained for the cavitating
flow. Clearly this is even more relevant in the
case of the disc.

[2] The second step involves the substitution of the
relevant analytic solution,f/,into the left hand
side of the field equation to be applied at each
point,be it [4 18] , [4 20] or [4 21]. The result
obtained for each point is the extra-residual for
that point, ka. The Zﬁ& values should,of course,
be largest at the polnts lmmediately surrounding
the singularity,tending to the negligible the
further removed (j,k) is from that point. In
fact,the 1limit of the points to which treatment
must be glven is best determined by the condition
that for polnts outside this region the Zbﬁt values
are negligible. (See section 5.5.3 .)

[3] Thus,,knowing ZM“ for all the surrounding points
these values are used as extra-residuals when the
field equation is applied there ;3 that is to say

in the manner of [4.68].

It would be laborious in the extreme to carry
out this process,including the difficult solution of
the Dirichlet flow,every time the value Tfgx altered.
A simpler procedure was found to serve equally well.
Initially,using the approximate formulae of section

4 1 6 a rough estimate of the final value of £ can

E
!

be obtained. Two values of fos close to this are taken

from which two sets of 2 values are calculated. It is

then a simple task to interpolate between these two sets
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according to the value of fx at any stage. . The Z

sets may be altered at some interval if the original
estimate of fEr was 1nsufficiently accurate. This,then,
was the procedure used.

However , special attention besides the
treatment given above , is recquired at the point EF ;
here , as mentioned in sections 4.2.5 and 4.2.6 we
cannot apply the normal form of the field ecuation since
this would involve the logarithm of zero. A number of
approaches could be made to this problem ; the author
decided to apply the alternative , though normally less
accurate form,[4 20)},of the field equation with the

relevant extra-residual. 1i.e In the case of the disc it

becomes
) z
(4 71] -4 (m fo + Uf, - 0.50, - 3.56, =
ny £, + £,

An alternative was to apply the simple
relations which exist in the Dirichlet solution between
the values at E¥ and E**. TFrom section 3.3.3 we have

[4.72] For the Disc & L = 1.foa  +

ol

[4 73] For the Sphere: fa = N PP

€

L}
N —

Obviously an extra-residual is not required in this case.
The latter ecguations were used in the rougher

solutions , since they ﬁroved more stable. In the

final solutions for the sphere the difference between

Tthe values found using the two methods was negligible,

though for the disc it was greater.

Z

=3

¥
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4. 4.4 The Separation Point Singularities.

The expansions used in section 4.3.6 will
form the basis of the analytic function , fl,in the
neighbourhood of the separation point. The extra-
residuals will be seen to be directly proportional,
as a first approximation , to the coefficient of the
first odd half-power term ; that is to say to K,,K,
and K3 in the case of the disc and K¥,K¥ and K§ in the
case of the sphere.

However , unlike the front stagnation point ,
the singularities at the separation point are comparatively
weak. In the case of abrupt we have a type two , and
in the case of smooth separation a type three singularity.
This implies that the range of points at which we must
apply some sort of correction will be smaller than the
eguivalent range for the stagnation point. In fact
it was found that the only corrections which were
neccessary in both cases were those to finite difference
forms of derivatives which included the value at the
separation point , U of figure 4.9

In the following two sections we will dezl
separately with abrupt separation from the disce and
smooth separation from the sphere. The extra-residuals
which will be obtained are those for use with the field
equation or relevant boundary type , though corrections
for other derivatives used in calculating results from
the final field will be reguired. Since , however , the
Procedure is the same in any case 1t will suffice to

deal only with that one example.
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FIGURE 4.9
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4.4 .5 Abrupt Separation from the Disc.

The procedure outlined in section 4.4.71 will
be followed. Refering to figure 4.9 and considering
first the point 3 , from the expansion [4.61] it is Found

that, analytically ,

T 3/ z
nz(bln f) = 3K\ + 2 ASK__I})
0>/, 5 \g, 4,

Normally we used the finite difference approximsation
n‘(a‘ln f‘) = 1In (f,, f‘z)

2 f':.

00 /5 3

But using the expansion [4.061]
3

. FF&) - (22 “2)&(?)1 + 2A3(_13)z

3 4 Qe
[In these equations n/q, and m/q, will be given by the
same identities as in section 4.3.7 ]
Then we find that for thils derivative the extra-residual is

given by

3
n' (Yinf£) - In £, = |3 - (282 - 2)|K,(n\*
‘)q)z f; E Cic
} P

Thus the extra~residual which we will use at the point

3 in the application of the field eguation at that point

will be
3 A

(4. 74] Z, = - 0.078k27I2 KJ(QjS(E)

"

n
No first derivatives are estimated at this point so no

other extra-residuals are reguired. Repeating the process
for the point 1 we find Z, = U since the expansion [4.63]

contains no 1/2 power term. This applies not only to the

second derivative (Yln f) but also to QLQ which must also
b@‘ \ W I

be estimated at this point. At the point 2 the extra-

z-
residual comes from the derivative 3 r rather than 3 1n Ty
W 3*

but otherwise the procedure is similar.
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N
i

4. 751 2 m"(b’f) - (£, + £, - 2£y)
3 b\fﬂ a .

- [% - (252 -2)] Kz(né()i

- 0.07842712 Kz(m )%
4,

If the field equation at the point € includes the value at
the pbint O a slmilar procedure is followed for that point.
It 1s noticeable that the difference between
the two subtracting terms in any of these derivations 1is
only one tenth , approximately , of the size of the terms
themselves. This is indicative of the fact that the
gingularity is much weaker than that at the stagnation

point.

4.4.6  Smooth Separation from the Sphere.

Taking the expansions , [4.641,[4.65] and
- [4.66] , and following the procedure used in the case of
the disc it 1s easlily shown that the extra-residuals for

the second derivatives Cfln f) s (bzf) R (gln f) are
_ o/ b\!"’a’ b(P" |

~ Pespectively :

[4.76] Zy, = n° (btln f‘) - In fofy
| AN &3 .
= (15 - (@3 - 2)] K%t (n \*
& (&,
= C.09314575 K% (n v
)
[4.77] Z, = o G"f) - (£, + £, - 2f,;)
. a\‘,bz

0.09314575 K% (_I’f_l %
)

1l
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4.78] Z, = n*{¥inr - In £y £
' ! ) 3
5
= 0.09314575 K7 (n \*
qc

The two terms within the larger bracket of [4.76]
.glve an ldea of the relative magnitudes of the terms
}esulting from the analytic and finilte difference factors.
;ﬁue to the very weak singularity (type 3) the numerical
yalue of the extra-residual 1s less than 1/30 th of the
3£wo_subtracting terms.
| We must also insert extra-residuals for the first

derivative estimations since at the points 1 and 3 ,

W 1is found using the value at the point 0.

[4-79] n {¥ln f) - _1_ ln_f_'g_ = (23_2- - 2.5) K-)s(- n 55.
Wi 2 1 g

[4.80] n(aln f) - 1infg =-(2§Z - 2.5) k¢ (n

MP | 2 o (qv)

The simple derlvatives are easily found by multiplying

by £, and f, respectively.

4.5 SUMMARY OF OPERATIONS AND SOM=Z REFINEMENTS.

4509 General.

In this sectlon we will summarize the
Operations involved in the internal and externzl
lterations. These terms are used to denote the field
lterations carried out between the boundary changes
ang the boundary changes themselves , respectively.
Mention will also be made of some

Pefinements made to speed the convergence of the processes.
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Whereas , it ié very difficult to anticipate

"the convergence of the method as a whole , some simple
experiments can be carried out to test the convergence
of fhe intefnal procedure when applied to a fixed
boundary value problem. This also enables us to find
an oﬁtimum over-relaxation factor (see section 4.3.3)
which to use in the internal iterations. Some simple
tests carried cut by the author with various nets and

field equations can be found in section 5.2

4.5.2 The Internal Iteration.

It 1s perhaps self-evident that the internal
operation be given as much freedom as possible and yet
still retaln stability and convergence. Thus , for
example it was found perfectly satisfactory to relax
the points on the wetted surface every internal iteration.
It will be convenient to list the seguence of operations
which constituted an internal field iteration :

(1] The points on the wetted surface , up to k = kg ~ 7,
were relaxed with any relevant extra-residuals.

2] The process of solution at the separation point was
carried by the methods indicated in section L.3.7 ,
giving new values of fks and (f&s" - ) and
therefore fhf'

[3] The values of dj ,k=k, +1,k¢ +2 ... K from the last
boundary change were used to create new values on
the free streamline. Thus the free streamline was

moved bodily during each internal iteration

according to the change in f&*‘
)
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[4] The extra-residuals at the stagnation point are
adjusted to conform to the new value of f« .

[5] All other points (ife. points on all lines except
j = 0 ) are relaxed.

As stated above,the object was to relax

as many quantities as possible during each internal

iteration while still retaining stability and convergence.

The values of dL s kK= kg+l,k+2,... K , of course retain

the same value thoughout the internal operation. So also

does ¢ , as it 1s easily seen from equation [4.33] that

it is a function only of qu and d; . Unfortunately

it was found neccessary to carry out a similar process

with a few other , but relatively mincor quantities.

Divergence took place unless these were only treated

"sccasionally. That is to say every five or ten internal

iterations. In this way all were found to converge so

that , merely for convenience , they were relaxed or
changed only at the same time as the external iteration.

The following were the quantities which had to be treated

in this way.

[1] Two alternative procedures were given in section
4.4.3 for the treatment of the point E* (the first
point on the wetted surface downstream of stagnation).
If the first of these , [4.71] , was used and the
polnt relaxed every internal iteration divergence
took place. By retaining the same value at tThils
point and altering only during an external
iteration 1t was found that the value converged
fairly rapldly. This may be due to the fact that

by far the largest extra-residual 1s encountered
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at this péint. If,howevef,the second egquations ,
[4.72] or f4-73], are used no such divergence took
plade and it was possible to alter fE¢ every internal
iteration.
[2] A somewhat simllar difficulty was encountered at the

separation point. As a direct consequence of part

" [2] of an internal iteration , values are found for
KysKy (or K¥,K¥ and K% ). If these were immediately
used in the calculation of new extra-residuals for
the points surrounding the separation point ,
divergence often occured. If , however , these
extra-residuals were only alfersd every external
iteration convergence was achieved. Thus although
K, ,K; (or K%,K* and X% ) varied with each internal
iteration , the extra-residuals were only altered

according to those values every external iteration.

Before the sequence of events occuring during
an external iteration are listed three refinements to
the method as it stands must be mentioned. These are

given in the following 3 sections.

4.5 3 Linearizatlon of the late TFree Streamline Differences.

Here we will anticipate the numerical results
of section 5.2.5 , in order to outline a harmful effect
which arises and the steps taken to overcome it. In that
section 1t will be demonstrated that under the present
Scheme of solution we get a "whiplash“ effect at the end

of the free streamline ; the latter part , during successive
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Dboundary changes , tends to exhibit a weaving , oscillating

-~ motion , the position of the boundary BC oscillating about

T a Certain.position. This was deleterious to the
convergence of the method. However it was noticed that
if a dilagram were drawn in which the di differences were
plotted against @ s0r the position of thes point k , the
mean of the oscillations was almost exactly a stralight
line,cutting the axis at the mean value of e¢. This
”whiplash effect“ only cccured over the last five or
six dL values. The obvious solution was %o

impose linearity on these last few d; values after each
boundary change. This was done by linearizing the di
values from k = K - 5 ,say, to k = K. Thus in the
calculation of ¢ , the value found immediately after

the boundary change ( and therefore the value retained
throughout the next internal solution ) corresponded

to the point of intersection of the mean straight line
with the axis.

This was very successful in damping out the
whiplash effect. Clearly , however , it is only
Justified if the 0Qp values on this linearized portion
are able to appréaeh zZero in the solution. This was
found to be the case. It is evidence of the well known
fact that the shape of the free streamline close to
the line of symmetry and remote from the separation point
is very close to elliptic. (See Ref. 35 , for example.)

| In fact it was found (see section 5.2.5)

That providing the linearized portion is confined to
Q& - Q < 0.2
¢ -0

the method worked satisfactorily.

Points at which
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4.5.4 Adjustment of internal values following an external

iteration.

The  last refinement alded the convergence of
the method as a whole j the following is an ald to the
internal solution.

The new values on the free streamline are
generated immediately after each boundary alteration.

To help the subsequent internal solution ; the internal
values can be roughly adjusted according to the change
between the boundary values before and after the external
lteration. If the difference is denoted by $ f,4 »then

the author found the following change in the internal
values reduced the neccessary number of subsequent internal

iterations. a

Sty = |1 - %f,% $ o4 s k> kg
Ty )y )

where J = J is the channel wall.

4.5.5 Alternate Points.

The_density of eqguipotential mesh lines in
the region nezr the wetted surface needs to be greater
than elsewhere in the field. But as the mesh stands at
Present the same density occurs on the channel wall
opposite the wetted surface. This is uneconomical and
The programme was so written that on the streamlines,

J > J*% , only alternate mesh points are used. This
requires K to be oda. The limit J* was a programme

Parameter.
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The External Iteration.

The sequence of operations making up an

external iteration can now be listed.

(1]

(2]

The DQh values are calculated and the d; values

- adJusted accordingly by one of the methods

indicated in section 4.3.6 . The following con-

straints are present.

(2)

I the identity

dk < dhq for nﬁ = n§,
1s not cbeyed then dy is set as follows

dh = 2d;4 - dL-z
and the programme prints the letter G.
Normally once G occurs at a point it does so
for all deownstream points but this was found
preferable to distorting the shape. It
cnly occurs , in any case , during the early
iterations.
The author also inserted a maximum change
constraint where

@)™ - @] <

This proved useful during the earlier iterations.

It printed M when called into action.

The linearized portion is confined to

where

K, ¢ k ¢ K

K, 1s inserted as a programme parameter. The

new d; values are printed out with the letters LIN.

next the value dkL

The fractional mesh length c¢ 1s calculated. The

value of K is adjusted so that ¢ cannot be negative.



177

The following steps are separate :

.[4] The separation point residuals are adjusted according
to the values of X, and K, (or K¥,K%¥ and K% ).

[56] If , refering to section 4.4.3 , the first type of
equation is used at the point E* then this point is

- relaxed.

[6] In the case of the sphere , the separation angle
test equation is applied and the "test“ value
printed. It was unneccessary to do this every
internal iteration. [Further comment on this
testing of the separation angle is left until

section 5.2.7 .]

4.5.7 Conclusion.

In this chapter a method has been developed
for the solution of the axisymmetric cavitating flow
problem. The methodé described were those which were
found to work. This could , in many cases , only be
discovered by trial , many other methods having been
developed only to be found wanting , usually through
divergence.

The next chapter includes one of the
Programmes used , the results and other relevant
computations. The author began his work with the
Ferranti Mercufy_computer of the Oxford University
Computing Laboratory; it was continued on theilr English

Electric KDF9
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CHAPTER 5
5.1  MESH POINT DISTRIBUTIONS.
5.1.1 Streamline mesh point distribution.

In this and the next section the precise
geometry of the mesh used is discussed. Comments on the
equipotential mesh point distribution are contained in the
next section.

In section 4 1.4 we defined the relative mesh
length n* as n/¢. Thus the relative mesh length between
points on the wetted surface was 1/P » P being the number
of equally spaced points on that part of the boundary ( DE
of figure 5.1 ). In view of thils , the number and spacing of
points on the boundary FEDC (figure 5.1,5.2 from figure 4.1)
and therefore the number and spacing on every streamline
mesh line , wlll be outlined for both types of body.

[A] The Disc. |

Intially P was chosen to be 8 in the case of
the disc , but was later refined to 16. These 16
points were equally spaced in DE(figure 5.1). But
using the recommended result of section 4.1.6 [3] :

wt/¢k = 12

for the chosen value of X for the disc (1.5) , we
clearly cannot use the same spacing in the entire
interval EF without having an excessive number of
points. Bearing in mind the alternate point

treatment of section 4.5.5 , even numbers of ecgual
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intervals are used ahd a suitable distribution

(figure 5.1) designed for the interval EF. The

maximum value of n* occuring is 1/2 and the

minimum , 1/16 . This distribution in EF was
used for all disc solutions. However the distribution

on the free streamline part , DC , varied with cavit-

~ation number , although in all cases a similar type of

design , to that in the interval EF , was used. Thus
figure 5.1 was designed for Q = 0.5 where (0F/¢s e 8,
For cavitation numbers below 0.2 it was reguired

to use the larger spacing , n* = 1 , in the interval
DC in order that the total number of points per line
was contained within the programming limit of 100.
Note ﬁhat ke = 53.

The Sphere.

The situation is slightly easier in the case of
the sphere where , from section 4.1.6 [3] , @4@% need
only be of the order of 4 ( X = 0.45 ). The cavities
are shorter so that.dL/vg is smaller than for
the disc for the same Q . For example , (0,, /gﬁs ~ 7.5
for Q = 0.3 . The distribution chosen is shown in
figure 5.2 , that particular free streamline distribution
having been designed for { = 0.3 . The distribution
of the &4 points on the wetted surface was also different
from that used in the disc. Normally (n*),. = 1/32

and (n*)

—y = 1/4 though for cavitation numbers below

0.3 , n* = 1/2 had to be used. Again kg = 53
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5.1.2 Egulpctential Mesh Point Distribution.

The number and spacing of points on a streamline
was dictated by (1) the nature of the problem (ii) the
néccessity df having a minimum number of points on the
wetted surface and (iii) the 1limit to the total number of
- polnts per line. The consequent distributions are the
falrly obvious types to choose. 0On the other hand the
equipoctentlial distributicns are much more difficult.

It was found that in order to get any reasonable
rate of convergence per unlt time , 1t was neccessary to
limit J to something of the order of 15. (See section 5.2)
In section 4.1.6 the X values for the disc and the sphere
( 1.5 and ©.45 respectively ) were chosen in such a way
that the resultant fg values would be clcse to unity.
Clearly , then , (fu)3=' must be considerably less than
unity. The value eventually taken was 1/16. But in
section 3.3.1 1t was found that , for a given Q ,2a minimum
‘value of f,/f existed glven by equation [3.44]. Thus for
a glven f, there 1s a minimum value which f, must take
in order that a solution exist. Fof Q= 0.3 ,for example,

equation [3.44] gives (ﬁ1/fc) o 8.15 . Thus , if we

M
say f, = Efg » then this implies that the limit
occurs at about (fu),, = 16-3 - Comparing this with the

chosen value of (fu) it 1s clear that massive grading

i)
is reguired in the V¥ direction. Figures 5.3 and 5.4

Show two ulternative schemes , wilth the fileld eguations
~Which would be applied on each line. Both are 1lnvestigated
for convergence in the next section. The former

was chosen in view of the convergence / unit time it gave

for both the internal and external iterations.
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It must be borne in mind that , since f = r<,

the relative spacing 1s less drastic in the physical
:p']_ane. .

The design criterion of the error distribution also
showed that the extra accuracy involved in the use of
the distribution 5.4 did not warrant the much greater

time required to find a solutlon.

5.2 CONVERGENCE.

5.2.1 Test Meshes and Egyuations.

The matrix KE] of section 4.3.3 is clearly
of the same size as the matrix [M] of section 4.3.4 for
a given net. Thus the same problems of space and time
arise. However , by carrying out ccnvergence tests on
much smaller , but similar , nets , we will hope fto
anticipate the convergence of the lnternal lteratlions.

As mentioned in section 4.5.1 , it is almost
Impossible to predict the convergence of the method as a-
whole. This éan only be dilscovered by actually carrying
out the solutions. The convergence of the internal
lterations can , however , be investigated by considering
The same eguations and type of mesh applied to a fixed
boundary value problem. In the following sections
the results given are for the convergence of this type of
Problem.

The eigenvalue ,l}J s is found for each

matrix LE] set up , by the simple method of continuous
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multiplication starting with a random vector. [See Ref.32,
.p.24] This-is essentially the same process as that

whidh takes place during relaxation since the initial
gﬁessed values have unknown s Or random , errors. Thus,

0 -
if ibl 1s a random vector of the same dimension as LE] B

o] - (1)

The ratios of corresponding elements in {b}

we put
i'land {bz
should con&erge to the required eigenvalue , A .

The matrix [E] is given by equation [(4.42] ,
where the elements are determined from equation [4.46]
or the corresponding eguation for the other form of the

field equation , [4.21]. Taking [4.46] as an example , it
v

3 E

which are unknown. In order to carry out this investigation

il
is clear that the elements are functions of f: o' and r

we will assume that these can be replaced by thelr
upstream values , fu’ without serious error. These
values are known for a given equipotential mesh point
distribution (e.g. figure 5.3 or 5.4) , given the value
for one streamline , say (f;)r1
All the test meshes will , for simplicity ,
have an equally spaced streamline distribution though the
actual interval , n* , will be a variable. For a given
equipotential distribution the variation of ) with the
following guantities Will be reguired :
(1) X and J , the dimensions.
(2)  (ry)
(3) X
(4)

=t Therefore defines all other fu values.

n*

However , by inspection of [4.46] , the number
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. of parameters can be reduced. It is clear from that
equation , substituting fo =f = f3 = f, sthat only

variation in 1 (g)z will effect the matrix [:E] . Thus
£, \n
b

we define the parameter

n.3=/'/ (£ )i
2
= X (f )'- / z
PN/ ()
using section 4.1.4. Thus 7_ replaces the variables X,

n* and (f”)d’l'

With nets for the Laplace and Polsson eguations,
it can be shown (See Ref. 39 ) that if one dimension
(K in this case) iz much larger than the other (J) , the
variation of |A| with K is small compared with that with J.
In that case , |h| is given by

[5.2] IJL] = 111 [cos /(_I__T; + cos '_{_T_f]z

Thus the problem will reduce to finding the
variation oflJJ withw?and J 5 with a few tests to show the

relative unimportance of the variation with K.

5.2.2 Types of Mesh Investigated.

The field eguation [4.18] gives the approximate

error equation (from [4.46])
ukl T, — . . M ‘
[5.3] e, 2+ 2 b ] = by et + b7 e t ey + e,
Where b is a multiplier depending on the value of j for a

given equipotential distribution.

Similarly , the field equation [4.21] gives



- [5.4]

bl[

187

2+ 4 bm = b &' + bu el + 20 ei - 38 e; + 64
377 7% 7215 T 3 Y T

In both cases the factors [2 + 2 b 7] and

[2 + M-tn7/3] correspond to the derivatives , 3¥ , used in

37T,

equation [4.39] when relaxing a point.

Type [A]

Type [B]

Type [C]

5.2.3

Three types of matrix [EJ were investigated.

The form given using the eguipotential distribution
of figure 5.4 with the error eguation [5.3] Ed,
since only the field equation [4.18] is used with
that distribution.

The form given using the eguipotential distribution
of figure 5.3 with the relevant error eguation ,
[5.3] or [5.4]1 , at every point.

As type [B] except that where the error equation
[5.4] is used the factor [2 + 4b7,ﬁﬂ is replaced
by [2 + Ebv 1. This corresponds to using the

2
value of[jo.5 + 10.5 (Q).l] as 3Y, in the relaxation

n fb afo

n/

rrocess rather than L? + 10.5 (mf‘l] at points at
0

which the field equation [4.21] is applied. The
reasons for this substitution will become apparent

in section 5.2.4.

The Over-Relaxation Factor , W

Thus far , we have referred only to a relaxation

process in which W = 1 . (See section %4.3.3) Ifw is non-

zero then the rate of convergence , A\¥ , is given by

[5.5]

1= * = w(1=-A)
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It is now relevant to dilscuss the differences
occuring in the behaviour of the relaxation process with
variation 1n w . This can be compared with the response

of a position control system to a step input where the

damping corresponds to /W . Thus W = 0 gives no change
in any of the values. As ) 1ncreases the rate of approach
to the correct position gradually increases. An "optimum‘

value of W , denoted by w, (e-g. Ref. 39) , is the maximum
value at which no overshoot or oscillation of the dependent
variable values occurs. For w greater thanwg, the process
oscillates but may still converge unless W is greater than
another critical value above which convergence never

takes place. Russell (Ref. 39) recommends , for
Laplace and Poisson equations , that W should take a

value smaller than W, rather than larger for reasons of
convergence.

In some tests carried out with each of the
types 5, [Al,[Bl,[C] , W was varied to observe these
effects. Oscilllation of values invariably first occured
on the line j = 1 as W was increased , though the value
varied both witk1~7and with type. In the solutions
for the major problem it was found these oscilillatlions on
J = 1 had a serious effect on the convergence of the method
as & whole since they effected the QQ&’values. This
ilmplied that a value of w not greater than w, had to be
used. The value of W, was found to behave as follows.
[1] It increased with NI : Thus the w,which was used

in any solution was that for the minimum.‘y occuring
in the mesh. The minimum 7 occurs at the extremes

of the streamline distribution where n* takes its
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maximum value.
[2] It varied considerably with type.
[3] It did not depend appreciably on the dimensions K

and J. -
These variations are demonstrated in figure 5.6 , though
the actual values are only roughly correct. 0On averﬁge »
these values are lower than:those permissable in Laplace
and Poisson fields.

In the actual solutions carried out thé following

minimum values ci‘q occured @

[1] Disc

(£4);,, = 0:0825 , X = 1.5, (n*), = 0.5

then (j )Mw = (0.5625

or if (n*)ys, = 1.0  then (7 Jaw = 0.140625.
[2] Sphere

(fv)‘.| = 0'0625 3 X = 0-45 » (n*> = 0-25

L May
then (»1),,“N = 0.2025

or if (n*) , = 0.5 then ( 7)“N 0.050625

5.2.4 Conclusions of Convergence Tests.

Clearly the relevant comparison between the
results for type [A] and those for [B] and [C] are for
the same { dimension of the field , namely fg. Thus
K= 10,J = 10 in type.[A] corresponds to K = 10, J = 6
for types [B] and [C]. Figure 5.5 shows the results of
a logarithmic plot of |\ against ﬁ using the types
indicated and the dimensions , (X X J). In passing it

may be remarked that these values are substantially
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FIGURE 5.6 ROUGH RELATION BETWEEN w, AND ,7

FOR THE THREE TEST MESH TYPES.

0S5 A » = ’




192

larger than those calculated from [5.5] for Laplace and
Poisson fields.

| From this graph we can draw the conclusion
that the worst convergence rate occurs at the maximum
7 present in the problem ; that is to say in the region
of minimum n*. For the disc , (g;?)m = 36 and for the
sphere (n?*)mx = 3.24 .  The value of (A )MAX varies
little with J or the type used.

However in order to compare the convergence
per unit time of the three types two additional factors
must be taken into account.

[1] The W which is , or must be , used.

[2] The computer time taken for one complete fielad
iteration. This is clearly greater for type [Al
since a larger number of points must be used for a
given f, and same (fu)g=1-

We will use , N , suggested by Russell (Ref. 39) to

denote the number of iterations regquired to reduce the

errors , € , through a decade.

[5.6] N = In { 0.1)
n ( (A )

Clearly from figure 5.5 , type [C] is preferable

to type [B]. This also follows from figure 5.6 where a
smaller W 1is required for [B] than for [C] , thus reducing
the rate of convergence. Comparing [C] and [A] , it is
apparent from figure 5.5 that (|A] ) is virtually

the same ( 0.957 ) in each case. However , it follows
from figure 5.6 that a larger W may be used in type [A]
than in type [C].  Thus for example j for ( 4)M"J = 0.2 ,

using figure 5.6 and equations [5.6] and [5.5]

the ﬁumber of iterations to reduce the error by 5 times
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in type [A] = 35 '(with W= 1.05)

the number of iterations to reduce the error by 5 times
in type [B] = 45 (with y = 0.80 )

But the ratio of the times required for one iteration
will be approximately in the ratio of the total number

of mesh points , in this case €0 / 100 . Thus & much
better convergence / unit time is acheived with type [C].
This is true throughout the range of (7 Jwiy  Elven above
and encountered in the actual solutions.

Tn view of The resulis of €Lhls invesvtigation
the number of internal iteraticns to be carried out
'between each external iteration could reasonably be of
the order of 3C. This number and the type [C] were
therefore used in the actual solutions , the former since
a reduction of the errors , {e} s by about 5 times gave
significant changes in the ﬂQk'values. (See section

4.3.5 )

5.2.5 Comparison of the Methods for the External Iteration.

Two approaches tb the treatment of the ﬂQk
residuals and the consequent changes in tThe dk_values
were given in section 4.3.6. Both involved the use of
unknown parameters for which suitable values could only be
found by trial and error , though the value of/% to be
used with the flrst method , once. found , could be used
universally.

The number of external iterations which are

required befcre the values on the wetted surface and free
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streamline converge is ,.of course , dependent on the
accuracy of the initilal guess. It was found desirable
for the initilal general shape of the cavity to be correct ;
that 1s to say for the identities of section 3.2.4 %o

hold Throughout the solution.

For the sake of éan example a fairly bad guess
is taken to the problem Q = 0.5 , £, = 256 for the disc.
The following were the results obtained in some of the
trials of the various methods using this example. It
is important to reallze that the optimum value of elther

f or oy (equations [4.54] and [4.55]) may vary with the
over-relaxation factor employed and the number of internal
iterations used between each external, since , referring
to section 4.3.5 , the internal process is not taken to
complete convergence. In view of the results of section
5.2.4  all the trials employed 27 internal iterations /

external iteration and an W of 0.9

[1] Method of equation [4.54].

Simple initial tests showed that the value of
(3 in this method had to be less than unity. With b =o0.2
the variations in € and Gy on the free streamline for
successive external iterations is shown in figures 5.7
and 5.8 respectively. [In these graphical representations
only the initial iterations are shown for the sake of
clarity. The successive iterations are numbered in the
graphs. ] From this and other tests ,
specifically with/B = 0.4 and 0.1 , the following points
emerged : |
(A) That the values of f converged much more rapidly

than the values of Q& and the oscillations in the
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downstream &y values were only mirrored by small
oscillationé in the downstream f values. This is
the .whiplash effect mentioned in section 4.5.3
The efféct 1s damped considerably by the method
outlined in that section and employed in all these
trials. |

(B) From figure 5.8 it is clear that forﬁ==(L2 the
upstream values of Qk are monotonically converging
while the downstream values are oscillating about
the required value. For larger'{3(o.4) the convergence
of the upstream values was more rapid, but the
downstream oscillations more dramatic with consequent
deterioration in the rate of convergence. With
smaller F,(o.1) these trends were reversed.

(C) It was also found that , in general , the downstream
values converged last , since change in ﬁhe upstream
values led to downstream changes as anticipated
in section 4.3.6. It was therefore advisable to
obtaln reasonably rapid convergence of the upstream

values in order to hasten the complete convergence.

In anticipation of tests on the second method

of section L4.3.6 the converged values of - Ydg for
30 Rg
each point are plotted against positlon on the ¢ axis

in figure 5.9. (shown by dotted line)

(2] Method of equation [4.55].

Clearly one regulred modification of the
first method would be to use different values of /3
glong the free streamline ; thqug would take values

-larger at points upstream than at points downstream ,
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giving better overall convergence. The form of the curve
plotted in figure 5.9 suggested that this could be done
simply by replacing that curve by the function o, (n¥ P) ,
shown by full.lines for & = U.C2. Comparison of equations

[4.54] and [4.55] shows that the factor -/3( bdlk ) in
, MQg

the former method is replaced by & (n§ P) in the latter ;

hence the reason for the apparently more emplrical second

method. The value of o which corresponds , in this example ,

to p = 0.5 would therefore be 0.C1. Figures 5.10 and 5.11

show the resultant effect on the f and Q% values of using

the second method with oy = 0.007 . The following
comments could be made

(A) The upstream Gk values can be.made to converge much
more rapidly than with the first method since the
violent oscillations no longer occur in the downstream
values.

(B) In comparing the two graphs 5.8 and 5.11 the following
fact , which is difficult to represent there , must be
taken into account. In further iterations , the
oscillations of 5.8 persist for.some time, whereas the
th values. of 5.11 converge to a better accuracy after
a couple of slow oscillations ; this is the feature
which makes the second method more efficient despite
the relative sluggishness of the earlier iterations.

(C) This sluggishness in the downstream values 1s caused ,
presumably , by the carried-over effect of the
upstream changes. Thus the upstream values con-
verge first.

(D) Comparison of the figures 5.7 and 5.10 shows that

there is little appreciable difference in the more
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_rapid convergence of the f values except for the
whiplash effect in the former ; if anything , the

convérgence of the second method is more rapid and
certainly more satisfactory.

(E) A linmit on the value permitted for «, was discovered
as follows. On increasing o, the convergence of the
"second method improved until an optimum value was
reached above which the deleterious whiplash
effect was again observed.. The optimum value of o/,
varied with cavitation number and between the two
types of solution carried out , for the disc and the
aphere. Figure 5.12 shows the approximate optimum

values used in the solutions.

Other more involved methods and functions
glving {5 as a function of k were tried but failed to
improve to any noticeable extent on the second method.

An incidental result of these tests was some
correlation of the errors ,ﬂé%t, to the errors in f.

It is clear from hoth the tests presented that after

the early iterations (say 10) further 10 per cent changes

in the-Qh'values produce less than one per cent change

in the f values. A proper estimate of this correlation

is however complicated by the fact that the internal
lterations are not taken to complete convergence and the
fact that an error ,ﬁQk s at an upstream point ( where these

are smallest in the final solution ) may have a different

effect than an error at a downstream point.
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5.2.6 Conclusion of Overall Convergence.

In the last section a few of the many investig-
ations carried out by the author were given for the sake of
demonstration. One conclusion that must ve drawn is that
any of the methods attempted did not give very rapid
convergence. In cases of this kind it is sometimes found
that The reguired result converges more rapidly than the
dependent variable values. This is trus for some of the
results required in this case , such as Cy , but not for
others , such as L/C.

Since the variations occuring in the()Qk_values
1s greater than those in the f values , in determining the
accuracy of the solution at a given moment it is best to
concentrate on the former. The criterion , chosen by the
author , for the conclusion of any solution was that all
the Qyp values should be within 0.006 of the prescribed
value of . At this point in the iterative process
most of the required results had converged sufficiently
for further iterations to have a negligible effect. The
following are some rough observations on the number of
external iterations recuired to achieve this objective :

" [1] If the initial field was , in fact , a solution for
one cavitation number different by 0.1 from the
prescribed & in the new problem , some 20 iterations
were needed.

[2] If , however , the initial field had the same Q
but a different value of fy then the number required
was of the order of 12.

[2] The average length of time reguired for one external
iteration with its associated internal iterations was

1.2 minutes on the KDF9 computer. Thus , on average ,
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one solution for the disc took 15 minutes. The
time required for a sphere solution is dependent

on- the factors cutlined in the next section.

A final comment must be made on the behaviocur
of the method when a problem with no real solution is
attempted ; that 1s to say a problem whose solution lies
”below“ the choked flow condition. In this case the f
values on the free streamline continued to rise indefinitely -

since the values of QR could néver be reduced to the

prescribed & : hence divergence took place.

5.2.7 Separaticn Angle for the Sphere.

The basic methcd employed to find the additional
result , the separation angle (0¢;), in the case of the
solutions with the sphere was discussed in sections 4.2.6
and 4 3.7 The question which will now be dealt with is
how the guessed value ,95, and the test value , Of , are
made to converge to one and the same.

Initially , the programmes were written so that
the input value :96’ did not vary throughout the computations.
The computed valus of 9: was.printed out every external
l1teration. However , some sight external iterations were
required before this test value converged. Thus it was
most convenient to carry out the adjustment of Eg using
Personal observatlion by terminating the programme , printing
out the final fileld and restarting with a different
according to the final value of Gg*. (See section 5.3.2)

A rough formula was thus arrived at by trial and error for



N
o
[6)

the appropriate adjustment of

[5.7] ( 95) = 03

new

-

2(6x - &)

The number of solutions which had to be carried
out to achieve a small error , gg - 8% s Was dependent on
the initial guess for 9sanﬁ ocnh the accuracy required.
Reference to figure 5.18 shows that the total variation
in 99 in the final solutions for all Q and H/C (§ from
0.2 to 0.6) was a mere 8’ The attainable objective ,
fixed by the author for the maximum final values of
(16* - 1) was 6.07".

As more complete solutions were obtained the
initial guessed value of Eg became progressively better.
However , to give an estimate , the number of ,say, elght
external iteration solutions reguired to attain the chosen
scecuracy s given the initial starting value of Ek one degree
different from the correct value , was of the order of 5.
Thizs number was however smaller for lower cavitation
numbers and larger for higher - The sphere solutions

took on average three times as long as thelr disc counter-

parts.

v

5.3 PROGRAMMING.

5.3.1 The simple results recuired.

Before the programmes themselves are included
1t is convenlent to discuss the main results which will
be required from the final field solution. Two

of the chapters in the programme are devoted to calculating



the following results.

(1]

[2]

The ratios of the overall dimensions of the cavity ,
the maximum radius and the half-length , to the

typical dimension of the body. The half length is
obtained using ecuation [3.10] where the derivative

3f is calculated in the usual way , using extra-

W

residuals at polnts near the singularity at separation.

v

In the case of both the disc and the sphere this
half-length is calculated as the length from the front
stagnation point to the point of maximum radius. The
maximum radius 1s estimated from the value of the
fractionzal mesh length , ¢ , and the £ values
surrounding the point , k=K , j = 0 .

At every point on the wetted surface the coefficient
of pressure is found by means of the formulae [3.39]
and [3.40]. Then the integration of equation [3.41]
is carried out to give a value for the coefficient of
drag , Cp-

Using these results the values of (E and (Cyp)
C/max max

are calculated according to section 3.3.1.

Thus at the concluzion of the set number of

external iterstions the programmes printed the following :

[A]

For every point on the wetted surface ,

For the disc Cp s 1

For the sphere Co s T » T -8 s =x

P 2

the origin of the last being the stagnation point.

In the case of the gphere , since the radius 5 R , 18
dependent on the value Qf,Eg (ecuation [4.30a]) , two

sets of values are printed ; one for the set wvalue
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and the other for the final test value, 9:. These
give some estimate of accuracy.
[B] The values of Cp and Cp/(1 + Q) which result.
[C] TFor every point on the free streamline
@k s I 3 X 3

the last two are also printed for the point of maximum

radius as in [1] above.

The basic parameters , a2gainst which it is
intended to plot the important results , are @ and H/C.
The resulting curves , it can be anticipated s Will Dbe
of the same form as the plane flow results given in
Appendix A , with similar types of choked flow lines ,
obtained in the same manner. The cavitation numbers

for which series of solutions for different H/C were

obtalned were as follows
[1] For the disc from Q@ = 0.2 to 0.7 in steps of .1

[2] TFor the sphere from @ = 0.2 to 0.6 in steps of 0.1
Higher Q would be outside the range of fully developed
cavities in each case.

Difficulties were experienced when an attempt
was made to consider cavitation numbers lower than C.Z2.
These difficulties arose from the fact that the length
of the cavities increased S0 rapidly with lower @
that the fields became too large to be dealt with
by the present programme. However the author hopes to
rewrite part of the programmes To overcome the storage
dif ficulties and thus produce solutions for @ = O.1.

For each cavitation number the range of H/C
values for which solutions were obtained 1s limited as

follows.
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[A] Choked Flow limits the minimum H/C. The values of
(H/C)ya C2n only be guessed initizlly , appearing
as results.

[B] Some maximum 1imit on H/C is provided by the time
and space required for the computatiocns. The fﬂ
values were increased until 1little change occured

in the recuired results for each cavitation number.

5.3.2 The Final Field.

The programmes are designed so that on a
restart the control moves to a different section of the
programme from the initial start and the final field of
£ values is printed out on paper tape. The form of this
print cut coinecides precisely with the form to be read in
28 the initial guessed field of f except for a3 small number
of egsential parameters which ¢an be tascked on the end.
This final field print out can then be used 1n the following
ways.

[1] With an ancillary programme to calculate further
results such as the position of every mesh point in
the physiczl plane.

[2] With an ancillary programme to carry out an error
analysis of any of the types outlined in section
5.5

[3] As initial guessed field for & problem with different
parameters. Thus in the case of the sphere it is
recuired to re-input with an adjusted value of @ (see

section 5.2.7).
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The final field is printed in tThe form :
[A] K

[B] nf » k=1,2.... K.

[c] (J - 1) and J¥. (See section 4.5.5)
(1) (fu)5

(2) r

[D] For j = Uyl ... J

\ee

k‘_z],g e ® 0 5 o K-

se

%
[E] The reference fgs for the stagnation point extra-
residuals.

[F] Those extra-residuals and the gradients 0Z for the
oL

reference value , T - These values are calculated
by an initial ancillary programme.

(@] An additional print out of the final df values on the
free streamline boundary , preceded by K and followed

by the final value of c¢. This is to assist re-input.

Since it may be regulired Lo alter The geometry
of this field before a new solution is started , the
essential parameters mentioned above , include the means
by which the programme will do this. A set of these
parameters may include
(o) K, (J-1), 3% . These may be different from the

values inputed with the initial field. The field
is , however , adjusted to this new geometry before
the start of the maln computations.
(B) The number of internal iterations to be carried out
before the flrst external.
(c) X
(D) @
[(Da) The initial value of E_-Osin.the case of the sphere.]

@) w .



(F) The number of external iterations to be carried out.
(@) The number of intervening internal iterations.

(H) /3 _c;>_1_0 oy - (See section 5.2.5)

(1) oy (See section 4.5.6)

() The value of K, . (See section 4.5.3)

The next section gives one sample programme
( in this case for the sphere ) with comments inserted to

h
describe each part. The programme 1s written in C203
d

5.3.3 A Typical Programme for the Problem of the Sphere.

The following is a typical programme used
for the sphere solutlions. Comments are inserted 1In
sguare brackets to describe the particular task of each
part of the programme. | Symbols used in the programme
could not , in many cases , be the same 23 those used
in the text. In the comments , where a text symbol

s referred to , it is followed by the programme symbol

|

in brackets.
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TITLE

FAEAA B2 A SPHERE . TUBE.

CHAPTERI [Chapter 1 contains 2ll the

: 08 operations carried out during
B:99 an external iteration.]

C:99

G:99

E:50

A:13

D:8

21)x6(300)cs4,46
x6éuoogFo,1oa

X6 {500)30, 100
JUMP3,UT>0. 1
READ%ET;
READ(Y?T [Before the first external iteration , this
NEWLINE short list of parameters 1s read in. These
NEWLINE correspond to (F) - §J) of the last 1list
K=1(1)2 of the section 5.3.2

READ (AK)

PRINT(AK)1,5

REPEAT

READ (M)

PRINT(M)2,0

3)x6(653)D1,1
D2=5.65685425053-D1-4. 656854257530, 41421356WTHWT/F53
D2=0.2734591D2/W7

JUMP12, 1>D2 [This section calculates the test value of
CAPTION T/2 -8 (D3) and the new values of K% (45)
THETA UNREAL- and K¥ (A7) to be used_ for the separation
JUMP11 point “extra-residuals. ]

12 )DU=xSORT (1-D2D2)

D3=90- 180XARCTAN (D2,D4) /&

NEWLINE

NEWLINE

CAPTION

THETA TEST

PRINT(D3)2,5

NEWLINE

11 )NEWLINE
A7=G53-F53-DTWT~-0.25WTHT/F53
D1=xSQRT(F53)

A5=x10G (F52/F53)+C1/D1+0.25Z12Z1/F53
PRINT§A5§1,8
PRINT(A7)1,8
S=0

NEWLINE
NEWLINE
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NEWLINE [This calculates all the 0Qg values on
PRINT(F53)1,5 the free streamline (F9).]
K=1(1)12

SPACE

REPEAT

PRINT (C54)3,7

K=54(1)N

Q=K+1

R=K~-XINTPT(BK/B(K=1)+0.6)

H=XGO/BK

x6 (600+K) D5, 1

JUMP32,K#5

D2=xL0G (F54/F53)
D3=0.43752121/F53+3.75D2-3. 75C1/D1
F3=HHD3+L4GK~0. 5D5-3. 5FK
Dh=-1.5C1/D1+0. 125212 7/F5342. 5D2
F1=HDLFSL

JUMP33

32)JUMP30,K=N '
JUMPBO,B€K+13>BK+01000061
F1=6FQ~F(K+2)-2FR-3FK

JUMP31

303F1=~6FR+F(K~2)+2FQ+3FK

31)F1=0. 16666666666HF 1

F2=1/FK

F3=HHXLOC (FRFQF2F2 ) +4GK-0. 5D5-3. 5FK
33)F3=0.3333333333F3
Fl=F1F1/FK+F3F3

FO=GOGO/Flh-1-72

NEWLINE
PRINT%FK)1 5
PRINT F9+z$1,7

D2=BK/B52
D1=A1FOD2
JUMP2,A2>xMOD(D1) [This alters the dg values (C(K+1)) on the

CAPTION free streamline according to the DQg values
M and the second method ( in this case ) of
D1=A2XSIGN(D1) section 5.2.5 . It alsc contains the G
2)D3=C(K+1)+DT and M constraints referred to in section
JUMP6,57>K L.5.6.]

JUMP6 ,K-2=R

JUMP6,CK>D3

DU=C(K-1)

JUMP14,B(K-2)>B(K=1)-0.0 061
DL4=DU+C (K-2)
14)Dh=2CK-~-D4
C(K+1)=DL

CAPTION

G

JUMP7

6§C(K+1)=D3

7 )JUMP8, S#
JUMP8,C (K+1)>0
S=K
8)PRINT(C(K+1))3,7
JUMP28, K# M- 1
CAPTION

LIN.

28)REPEAT



NEWLINE
PRINT(F(K+1))1,5

JUMP9, S=0
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JUMP10,0. 1>XFRPT (0. 53+0. 001)

N=S
JUMPO

10 )N=8=-1

9)JUMP27 ,N>M+2
=N-4

27)D1=0

K=M(1)N

D1=D14+BK

REPEAT

D2=CM-C (N+1)
D3=0

K=M(1)N

D3=D3+BK
C(K+1)=CM-D2D3/D1
REPEAT

C=D1C(N+1) /D2

D4=D1+C
DU=FM+0 . 5CMD4/BN
=C/BN+C. 5
JUMP5,C>=C. 3
N=N-2

0=C+2
5)JUMP26,30>C
26 )NEWLINE
X7(300)C54,46
CAPTION

N C

NEWLINE
PRINTEN%E,O
PRINT{C)2,5
PRINT(D4)2,5
NEWLINE
NEWLINE
UT=UT+]1
ACROSS22/2

CLOSE

[This section linearizes the d differences
from the points k=K, (M) to k=K §N). Tt
also adjusts the value of K (N).

[Calculates the new value of ¢ (C) and the
approximate maximum £ of the free stream-
line (D4).]

=M
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CHAPTERZ2 [Chapter 2 contains a2ll the cperations
VARIABLES1 carried out during an internal iteration.]
ze)vm—c

2)%6 (400)F0, 100
A6g5uogao,1uo

x6 (600)C0, 100

F30=0.6066666666666667YD-0.111111111111111DD

K=31(1)52

R=K-X INTPTEBK/B(Ku )+o.6g

Q=K+xINTPT (B(K-1)/BK+0.6 [Relaxes all the wetted surface
H=XG0/B(2K-Q+1) points except the separation
D6=0 point. (D6) is the extra-
JUMP31,K>32 ' residual for any point.]

A6(115+K)D6 1

31)JUMP30, K#52

D6==0. 09314575HHA5

30)JUMP32,K>11

JUMP32, R=36

33)D1_.:>Fq F(K+2)~-2FR~3FK

JUMP34

32)JUMP33,K=L6

JUMP35,K=52

D1==6FR+F (K=-2 ) +2FQ+3FK

JUMP34

35)D1=3FKxLOC(F53/F51)+1. Q7056272A5FK
34)D2=1/FK

D3=xSGRT (YY-FK)

D3=1/D3

DA4=HHXLOG (FRFQD2D2 ) +4GK-0. 5CK~3 . 5FK-0. 5HD1D3-D6
D5=2HHD2+3 . 5+0. 25HD3D3D3D 1
FKzFK+FD4/D5

REPEAT

D1=xSQRT (F53)
D2=5. 65685425x1.0G (F52) -XL0OG (F51)+3.65685425C1/D1+0. 414213562121 /F53
F53=XEXPEO.2147372D2)
D1=XSQRT(F53)
Y=D1/D%
D2=xL0OG (F55/F54)+3.65685425C1/D1~-0. 4142135621Z1/F53
DJ=W53<FXP(U 2147372D2)-F53
X7 (300)D3,1 [Calculates new v@lueu For fg (F53),
R(Y) and (fhvl' T, ) (D3) according
to section 4.3.7 [2]

%6 (300)C54,46

R=N+1

D1=1-G0/E ' [Applies the dh values to generate

Kz54(1)R the f values on the free stream-
E(K-53)=F(K-1)+CK-FK line according to section 4.5.2.]

FK=F (K- 1 1)4CK
GK=CGK+D1E(K-53)
REPEAT

x7%hox3?o,1oo
X7 (500)G0, 100

D1=Y-V [Alters the stagnation residuals
140=x13(120,D1,16.,8) according to section 4.4.3.]



NEWLINE
PRINTEFB]%
PRINT(F53
PRINTEFN)1 [Internal Iteration print out. ]
PRINT(G31)
PRINTEGN)]

1,

PRINT(Y)

D1=2C+1
A=UC/D1
B=A-1
O=1
J=1(1)1
JUMP19,J>2
x6(uoojco,1oo

JUMP25

19)x6 (100J+300)F0, 100

%6 (100J+200)C0, 100

K=1(1)99

CK=16CK~14FK

REPEAT

25)x6 (100IJ+400)FO, 100

%6 (100J+500)G0, 100

G=G0-FO [Relaxzes all other points.]
JUMP18,J#L

0=2

D1=1+C

A=2C/D1

B=A-1

18)D1=F(0+1)=F0
D2=FO+A (0+10)
D3=FO+A13

DL4=D2/D3
F1=FO+D1D4XSQRT (D4 )
D6=1-GO/E

T=0+1

K=T(0O)N [Points on Ik = 1.]
JUMP20,53>K

JUMP20, J=1
GK=GK+D6D6E (K-53)

20)S=xINTPT(B(K-1)/BK-0.4)
Q=K+0S+0

H=0B(K-3) [P
H=XG/H [
D5=F

JUMP26,H>0. 9

D5=1.1111111HF

26 )R=K-0OXINTPT (BK/B(K=-1)+0.6)
D1=1/FK

JUMP6,2>J

D2=5. 25HXLOG(FRFQD1D1 ) +CK+5GK-7FK
D3=10.5HHD1+10.5

FK=FK+D5D2/D3

JUMPO,J#L
F(K~15=o.5FK+o.5F(K—2)

JUMPO

i

ﬁ n using the field equation
.2

ts
1]1.]
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6)p3=0

JUMP11,K>30

JUMP29,285K [Points using the field equation
%6 (109+K+3J ) D3, 1 [4.18].]

11)JUMP29,K*53

D3=-0. 0931457547

JUMP29, J#2

D3=5.65685425D3

20 )D2=HHXLOG (FRFQD1D1 ) +GK+CK-2FK-D3
D3=2+2HED1

FK=FK+D5D2/D3

9)JUMP10,K~<N=-0
F(K+20)=AFQ~BFK
10)REPEAT

X7 100J+5003Go,100
X7 (100TJ+40C)FO, 10

REPEAT

8)VT=VT+1
JUMP2, V1SV
JUMP23,UT>ET
ACROSS21/1
23)ACROSS20/5

CLOSE

CHAPTER3 [Chapter 3 contains the instructions for

VARTARLES?2 the final field print out referred to in
section 5.3.2.]

2L )R=0(1)200

PUNCH(0)

REPEAT

NEWLINE

PRINT(N)2,0

NEWLINE
R=xINTPT (0. 125N+0. 0" 1)
J=0(1)R

NEWLINE

K=1(1)8

Q=K+GJ

JUMP1,5>N
PRINT(B&) 1,4

1 )REPEAT
REPEAT
NEWLINE
PRINTEI?E,O
PRINT(L)2,0
NEWLINE

R=0(1)50
PUNCH(0)
REPEAT



C=XINTPT (0. 2N+0. 19)
R=T+1

O=1

J=0(1)R

NEWLINE .

x6 (100T+400)FC, 100
JUMP2, JAL+1
G=XINTPT (0. 1N+C. 19)
0=2

2 )NEWLINE
PRINT(F0)2,5
P=0(1)g

NEWLINE

K=0(1)4

S=0K+50P+1

JUMP3, SON
PRINT(FS)2,7

3 )REPEAT

REPEAT

REPEAT

R=0{1)100
PUNCH(0)
REPEAT

NEWLINE
NEWLINE
PRINT (V) 1,3
NEWLINE
x6(120)F0,8
K=0(1)7
PRINT(FK)1,6
REPEAT
NEWLINE
6 (100)F0,8
K=0(1)7
PRINT(FK)1,6
REPEAT
NEWLINE

E=0(1)100
PUNCH(0)
REPEAT
NEWLINE
PRINT(N)2,0
NEWLINE
x6(30"3053,46
K=53(1)N
NEWLINE
PRINT (CK)1,7
REPEAT
NEWLINE
NEWLINE
PRINT(C)2,6
NEWLINE

R=0(1)100
PUNCH(C)
REPEAT

I=0
ACROSS20/0
CLOSE
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CHAPTERY
VARIARLES?

17)RBAD ()
READ(T .
READ(L

JUNMP18,I=S3
JUMP19,I>S
Au(1om1+wo T0, 100
D1=1/F0

D1=D1D1

K=1(1)99
GK=D1FC-D1FK
FK=F0

REPEAT

=10
x7(20?1+5oo)90,100
=1(1)T

6 (100T+400)Fo, 100
K=1(1)99
FE=FK+FOFCGK
REPEAT

X7 (10 J+400)F0, 100

an

JUMP18

19)%6 (100T+300)F0, 1

D1=1/F

=0. 54D1D1
=1(1)99
GK=-DI1FO+D1FK
FR=4TF0
REPEAT

FO=4F0
X7 (10 IT+50 )P0, 100

T
3 e T4
<~..-1.()

J=1(1)I

10 J+uo VRO, 100
(1)99

PRAFOROCK
RLPE“T

Y7 (1L0T+400)FO, 100
REPEAT

=S O
H —_—

i R A

=

18)JUMPY, TN
D1=CT~C (T+1)
=T 1

K=o (1)N
C=C-1
C(K+1)=CK-D1

T)T PLAI—\
9)x7(god)054,46

NEWLINE
CAPTICN
C.START
PRINT(C)2,5
CAPTION
N.I.L.
PRINT(N)2,0

216
[Chapter 4 contains the instructions for
Tthe initial adjustment of the guessed
field according to section 5.3.2. Also
prints out some informetion concerning
this initial adjusted field.]
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PRINT 132,0
PRINT(L)2,0
NEWLINE
NEWLINE

ACROSS21/0
CLOSE

CHAPTERS [Chapter 5 cont
VARIABLRESA calculating Tl
surface. ]

n
<L
@

20 )36 (L00)FC, 100
6 (500)G0, 100
E18=0
EWLINE
NEWLINE
CAPTION
VALUES FOR SURFACE OF SPHERE
21)NEWLINE
NEWLINE
CAPTION

R PHi/2 - THETA X -CP(POT.FLOW)

NEWLINE
NEWLINE
CAPTION
0.00 GO 00. 0000 0.0 00 -1.00

Di1=1+2C

D2=1-2C

D3=4C/D1

Dlh=p2/D1

F§N+1g =D3FN+ DMn%N-13
G(N+1 DSuN+ plilel

E10=0
E7=1+7
K=30(1)53
F1~ASLPT§HR)
E2=xSGRT(YY HK)

Bl=y-E2

h—K—AINTPTEBK/B(Km1)+O,6§
L=K+XINTPT(B(K-1)/BK+0. 6
H=XG0/B(2K-0+1) -

JUMP1,K#30

E5=0.66666666667HYD-0. 2222222222HDD
JUMP2

1)JUMP13,K>41

JUMP13,K=36

18)E5= 61‘ W(K+2)—2FR—3FK

JUMP 14

13)JUMP15,K#53

E6=0

JUMP1Y

ins the instructions for
results for the wetted

0osc =1,

GO

-CP

O
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15)JUMP 16, K£52

55=0. 5HP52xL0G (F53/F51 )+0. 328427 12A5XF52

JUMP2

16)JUMP 18, K=46 [This calculates r , W/2 - © and
BB==b6FR+F (K-2 ) +2FG+3FK x for each mesh point. It also
14)E5=0. 16666666666THES caleculates Ce and the Ce for the
2)E5=YYES5ES same point in the eguivalent
E6=-FKE2E2GOGO/ES+1+2Z Dirichlet flow and by integrating
17 )EB=E6+ET7 the former values arrives at the
E7=EG coefficient of drag. This is
E9=FK~-F(K-1) carried out for both the input
50=EQ/Y and best values of @5 and there-
E10=E104+0. 3E8E9/Y fore R. (See section 5.3.1)]

E15=1.5E1/Y
E15=E15815~1
NEWLINE
PRINT(E1)1,
PRINT(E3)2,
PRINT(E4)1,
PRINT(E15)1
PRINT(Z-E6)
PRINT(E10)1
REPEAT

NEWLINE
NEWLINE
CAPTION
cD(Q) cD(0) cp(a).RR/F53 CD(0).RR/F53
NEWLINE
D1=1+Z
E16=E10/D1 [Prints out the final value of Co

PRINT 31031,5 in all forms. NB. CD(0) refers
PRINT(E16)1,5 to Cp/(1+Q).]

PRINT YYE10/F53§1,5

PRINT(YYE16/F53)1,5

NEWLINE
NEWLINE

JUMP19,E18>3
%6 (6539D5, 1
D2=5.65685425G53-D5-4 . 65635425F53-0. 41421356WTHT/F53
De=0.2734591D2/W7

DU4=XSQRT (1-D2D2)

D3=90-130%ARCTAN (D2,D4) /£

NEWLINE

CAPTION

TEST THETA

PRINT(D3)2,5

NEWLINE

NEWLINE

CAPTION

SURFACE WITH TEST RADIUS

Y=xSGRT (F53)/D2

E18=5

JUMP21

19 ) NEWLINE
NEWLINE

ACROSS20/6

CLOSE
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CHAPTERG [Chapter 6 calculates the results required
VARTABLES S from the final free streamline values.]

20 )CAPTION
VALUES ON FE.S.
NEWLINE
NEWLINE
CAPTION
R CAV.NO. (L) X
NEWLINE
NEWLINE
PRINT(E1)1,5
K=1(1)12
SPACE
REPEAT
CAPTION
0.0 00
J=N+1
C53=WTD*
D1=E4
K=54(1)J
F]lmvSQRT(FK)
=K+1
R= =K-XINTPT (BK/B(K-1)+0.6)
H=XGO/BK
xO(6ou+K)D
JUMP32, K7 54
D3=xQuRT(~R°)
D2==1.5C7/D3+0. 1252727 /F53+2. 5XL0OG (F54/T53)
=HD2F54
JUMP33
32)JUMP30,K=N
JUMPBO,B(K+1g>BK+0.0uoool [Calculates r,x and Q. for every
F1=6PQ-F(K+2)-2FR~3FK mesh point. ]
JUMP3 T
°O§W1~-o TR+ F(K—2)+2PO
31 )F1=0. 1666666666HF
33)Fe=1/FK
F3=HHEXLOG (FREQF2F2 ) +4GK-0. 5D5-3. 5FK
CK=0.3333333333F3
Fl=F1F1/FK+CKCK
FO=G0GO,/fl-1
JUMP5, K=54
D2=T72H
JUMP3,B K-13>B(K—2)+o.ooo1
710=24C (K-1)=-3CK+15C (K~-2)
JuMPL
3)F10=10.5C(K-1)+8C(K-2)~-0.5CK
4)JUMPT , K=R+1
D2=144H
7)D1=D1+F10/D2
PRINT(D1)2,5
5)JUMPE ,K=J
NEWLINE
“Ing 11)1
RINT(FQ)1,¢
6)RLPLAT

ow



D5=FJ-F(N=1)
D2=2FN~-FJ-F (N~
D@ TN, _)u.L/5 0.
D6~XUWR“5DG)
D3=xSGRT (1+Z )
DU=GC/D3+CN
D5=0. 25D4C /q+D
NEWLINE
CAPTION
CL.VALUES
NEWLINE
PRINT (D6)1
K=1(1)11
SPA
?VP AT
PRINT(D5)2,5
NEWLINE
NEWLINE
NEWLINE

1)
5CCDe

x=0(1)2
CAPTION

B/C L/C CcC/BB

JUMP22,K ©
CAPTION
C=TEST R
JUMP25 ﬂ
22)JUMP23,K+ 1
CAPTION
C=MAX R7?
Y=E1
JUMP25
23 )CAPTION
C =RE AL R
41/3¢
25 )NEWLINE
NEWLINE
D7=Y/D6
PRINT D6/Yg
PRINT(D5/Y
PRINT DTDTg
PRINT(Y/D5
NEWLINE
NEWLINE
REPEAT
D7=xSHRT(E)
CAPTION
H/C =
PRINT(D7/Y )L, 4
NEWLINE
NEWILINE

1
2
1
1

ACROSS20/C
OLOSE

[Calculates the values of r and
x &t the point of maximum dis~
meter. |

C/L

[Print out of reguilred ratios. ]



CHAPTERC [Control and initial input chapter]
F:08

B:99

C:99

G:99

w50

A113

D:8

JUMPE,I=0

ACROSS24/3

READ%S%
READ (M
T=8+1
0=1
J=(1)T

JUMP2,J, M+1

0=2

2 )READ(F0)

X=1(0)P

READ(FK)

JUMP8,0=1

JUMP8S, K=1

F(K-1)=0. 5FK+0. 5F (K-2)
8)REPEAT

K=P(1)99

FK=FP

REPEAT

<7 (100J+4C0)F0O, 100
REPEAT

E=F0

[Tnitial field input. See section 5.3.2.]

READ(V)

X10€120,8) [Stagnation residual input.)
x10{100,3)

100=x15(120,8)

READ(T)

K=53(1)T [Initizsl free streamline difference input. ]
READ(C(K+1)) :

REPEAT

READ(C)

ACROSS17/4

21 )READ(YT)
READ(X) [%] [Parsmeber input corresponding to (1)
READ%Z% ol = () ?f the second 1list of section
2
-

,_1
W

1
L
Py
1

READ (U
READ (T
NEWLINE



CAPTTON
X )
NEWLINE
PRINT
PRINT
PRINT
PRINT
NEWIL T

o G N
IR L\ S
LU P "

(D w

oy

l

=

D1=0
K=2(1)28

D1=D1+B(K=-1)

REPEAT
D2=0.5D1/X
A13=D2D2

D3=D2~0.5B1/X
DU=D3-0.5B2/X
A11=D3D3
A12=DUDL

U=90~-U

Pi/2 - @,

U=0.0055555555555555558U

D=B29/X%
D=xC0S (U)
D1=xSQRT (Z+1)
W=1/D1
7+=WUB52/%
=7 1% SIN(U)
x6 (452)752,2
X6 (B0 )GU,1
x6(553)G53,1
D1=xSERT (F53)
Y=D1/D7
Wr=GOW
READ2A5§
READ (AT

A

Uit=0
5)ACROSS22/2
20)END

CLOSE
>
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O.R.P.

[Some other cuantities required
throughout the programme. ]
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5.4 CAVITATING FLOW SOLUTIONS.
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Figure 5.13 shows a typical pressure distribution

the solutions of the cav

|

behind & disc. That particular solution was for § =
H/C = 13.47 and the figure shows the result of plotting

the value of Cp obtained at each mssh point. he author
drew many curves of this type and found that for a particular

H/C were indistinguishable on the scale of figure 5.13.

inserted for the sake of clarity but lie regularly between
the two {in the case of @ = 0.4,0.5,0.6). It is thus
anticipated that there will be little variation of the
function Cp/(1 + &) with either @ or H

Rouse and Mc Nown (Ref. 38) produce experimental

pressure distributions ; however ; their in

ot

more in the cavity pressure distributions so that at only
four points on ths sur
measuremant made. The author has reproduced cne set of
their measurements [ for (CPL== - 0.24 ] and this is shown
ts in figure 5.14. The agreement 1s close ,
though in view of the lower drag coefficlents given by

experiment 5 1t 13 & 1little surprising that the values are

not below those of theory. (See section 5.4.3) Scme error
may , however , have occured 1n reproduction due to the

small size of this reglon in the graphs of Rouse and
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FIGURE 5.13

A Pressure Distribution for the

Disc showing the positioning of
CP the Mesh Points.
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Cp/ (1 + 2) oplotted against H/C 5 the total variation is
under 2.5 per cent- Despite the magnified scale , the

as the choked {flow condition is approached In accordance
with the results of Appendix A , the drag falls off as
H/C - (H/C)“N .

With the results obtained , the value of Cp/(1 +
2t H/C = @0 iz accurately defined for each cavitation
number. It 1s true for most of the results to follow , ths
best definition is obtalned for H/C remote from (H/C),, -

Corresponding to the curve in figure 5.15

for sach cavitation number , there is the intersecting

£ (Cplyay/ (1#+2) 3 these are calculated from eguation

=
-
3
@
o]

[3.444] ¥nowing H/C and . However the scale of Ffigure
5 is such that tThese lines appear as the verticals

indicated in the lower left hand corner of the figure.

e)

For example , for @ = C.4 , H/C = 5.8 1leads to

) gives (Cplag/ (1+Q)

il
(@)

(Co)y/ (142) = 0.8066 and H/C
as 0.86

As az conseqguence of this we will make an
assumption which proves extremely useful in Tentatively

constructing later choked

is that the choked {flow condition occurs , for sach @
at the values of H/C indicated by the vertical lines in
figure 5.1D. This is a reasonable assumption since the

i
two curves , for (Cp)/(1+4) and (Cpluay /(1+8) » will ,
presumably , not intersect at values of Cp/(1+Q) very

far below those in the figure 5.15, 1f the plane flow
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the choked flow line in that figure , however , since the

two curves will clearly

'_l

intersect at & small angle.
Figure 5.16 ghows the result of plotting

Cp/(1+6) against @ for various fixed values of H/C (these

being written on each line). The line for H/C = @ has
been tentatively produced to cut the axis at @ = 0 ,
glving a value of (Cply,, of 0.08263.

In figure 5.17 the line H/C =e is replotted

to compare with similar results given by Armstrong and

Dunham (Ref. 1) , Fisher (Ref. 11) and Plesset and Shaffer

(Ref. 33). (See sections 2.32.2 and 2.4.1.) Clearly
) R
the authors results are in very good agreement with all

but the latter , whose method is outlined in section 2.3

Th

D

L3 . .
authors value of (Ga)é}_iJ of 0.8263 is extremely close
to that of Garabedian (Ref. 13 and section 2.4.2) of
. T R .

0. 8272 and is well within CGarabedians estimate of errcr.
Horu ; arabedian er resyl £ Cy/(1+Q) = ©.865
However, Garabedians other result , of Cy/(1+Q) = 0©.865
at @ = 0.22 would seem a 1little high in comparison with

other results.

i

e

xperimental measurements of Cpfor the disc

nave been made by Reichardt (Ref. 3U) ¢ Eisenberg and
Pond (Ref. 10) ; these sets of results both indicate =
constant value of Cp/(1+Q) , any deviation being within

experimental error. The values of (Cyp) 20 obtalned are

L

Q=0
0.79 and .80 respectively , values which are substantial

lower than those cf theory. A comment on this is found

in section 5.4.3.

.2
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5.4.2 The Angle of Separation from the Sphere.

As mentioned in section 5.2.7 , the separation
angle solutions are terminated when ]95% - 95) < 0.07 .

Pigure 5.18 shows the results - v/2 - @s anda W/2 - 9;4

in the final solutions- Within each ring there are two

993 and a circle the

. s . 1 .
points § a square indicates thati-Qé 4

reverse. The approximate relation of that section would
show the errors in the final valus of Bsuo e little

reater than + 2 ( 95 - 8&). In view of this the

02

difference of behaviour in the results for Q = 0.2,0.3
and those for @ = 0.4,0.5,0.6 near the choked flow
condition would seem to be outside the margin of error.

In figure 5.19 the variation of ¥/2 - B

xed values of H/C (marked

0
H.
o]
)
|—l-
5

with §@ 1s shown for cer

Y

on the curves). In both 5.18 and 5.19 any choked flow

ine constructed would be extremely tentatlive but the

l_l

author has drawn a2 rough estimate in 5.19 based on the

assumption of the last section and the results of the

The clearly defined line for H/C = @ isg

reproducad in figurs 5.20 on a2 much larger scale. This

figure also shows the results of Armstrong and Tadman (Ref.
for both a cylinder and & sphere. The suthor finds it
very surprising that their results show 05@‘0 as

o »>e 1in both cases. Since the Dirichlet flow around

a2 sphere exhibits a minimum Cp of -1.25 at =0 s 1t

would seem more likely for 95~% Cas @ *+ 1.25. The

Dirichlet flow is identicsl with a Riabouchinsky flow
for @ = 1.25 , the length of the cavity being zsro.
(This identity extends to the second derivative of

3)
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FIGURE 5.19
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o

section 3.4.4 as well as the velocity as can easily be

shown from the Dirichlet solution.) In the case of t

cylinder , the same reasoning glves 6@» C as o = 1.

authors results are

=
o
by
e
48
[
]
[
\n
\O
t
>
®
6]

tentatively produced to © = O and would seem to be clos

to the results of Armstrong and Tadman at lower & .

Some experimental results given by Hsu an

Perry (Ref. 19) are included in figure 5.20. These
show marked disagreement , not only with the theoretic
results but also with the following observations.

Reichardt (Ref. 30 , quoting results of

d

experiments by Ackeret) includes pressure distributions

for the cavitating

<&

flow pasgt a sphere. From these

q

the separation angles would seem to be roughly as

indicated in figure 5.20. Similarly the experimental

[ €3]

et

distributions of Rouse and Mc Nown (Ref. 28) would s
to displaey values of W /2 -8& varying from 60° at
0=0.2 to 8% at o= 0.7 .

Konstantinov (Rer. 24) gives experimental
pressure distributions for the cavitating flow past a
cylinder 3 these show falr agreement with the results
of Armstrong and Tadman with values between 50 and

0

70" for 4@ from 0.5 to 1.2 .

Hsu and Perry conclude , however , that

Finally , of course , 2 remark of sectlion

[t

1.4.6 must be repeated. In the flow of a viscous Iluid

h
the boundary layer and
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-

outside the layer. A comparison with the ideal fluid
results is , neverthsless , interesting.

ta for the Sphere.

igure 5.21 shows the type of wetted surface
pressure distribution obtained for the sphere , the
mesh point values being marked ; also plotted on that

AN

tributicon for the equivalent

As in the case of the disc , distributions

for different H/C , same § were indistinguishable ,

[}
o
g
&
S
I
o
}_]
Q
o]

-
gc
He
<
s
[
[1°]
O‘\
H
[N
0=
jay
ct
i_l
<
(@]
[N
4
Hh
9]
=
[§]
S
p=s
[43]
0]
*d
"S
d.

ation angles.

stribution variation with & 13 shown
in figure 5.22 and secms regular. Also plotted is one

of the experimental distributicons of Rouse and Mc Nown

)

v
(Ref. 38) , in this case with @ = 0.3 ; the same comments
apply a3 in The case of the disc.
The values obtained for Cyp are shown in
figure 5.23. These exhlibit the same difference in
behaviour near choked flow between @ = 0.2,0.3 and

-~

G = 0.4,0.5,0.6 as does the separation zng

G

&

Plotting the values of Cy for H/C =

-

agalnst O gives the result shown in Ffigure 5.24. Both

0
&
&)
5
[N
rg
(0]
3

ry (Ref. 19) and Eisenberg and Pond (Ref. 10)

glve numerous experimental results and the mean lin

f o

through each set 1s shown 1n figu

=
(0]
N
o
=
>
l_l
4]
O
0
iy
o
5

for the sake of demonstration s ars the theoreticzl results

- T o

of Armstrong and Tadman (Ref. } and the experimental

(Gx]

results of Waid (Ref. 45) for Cy of the plane flow past
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FIGURE 5.21

A Pressure Distribution on the Surface
of the Sphere showing the Positioning of

the Mesh Points,. o N
Dirichlet Flow = —c——euo

'Rouse and M° Nown a
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FPIGURE 5.22

Pressure Distribution Variation

' (; with Cavitation Number. Sphere,
N p




242

FIGURE 5.23
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An interesting observation , based on the
results of this section and 5.4.1 , that can be made is

that the experimentally measured drags are invariably

)

substantially below the theoretical. This is ,

presumably , due to the presence of the boundary layer
which produces a lower pressure gradient at separation,

thus "flattening$ the pressure distribution for a glven
cavitation number and producing a lower Cp. This 1is
corroborated by the comparison of the pressure distributions
of figure 5.21 , though not of figure 5.14.

In figure 5.25 the authors results for

Cy/(14+0) at H/C = % would seem to compare favourably

[oy]

with those of Armstrong and Tadman (Ref. 3). As 1
widely recognlzed , the varlation of Cy/(1+Q) with ¢ Ffor
smoothly separating flow (sphere) is very much greater
than that for abruptly separating flow (disc). Thus the
accuracy of eguation [2.7] in the case of the sphere is

very limited for both experimental and theoretical results.

5.4.4  Cavity Dimension Results for the Disc.
Figure 5.26 shows all the results obtained for
k3

(c/B) for the disc. Alsc presented are most of the
values of (C/P)mq corresponding to the points for (C /B)
Where each palr of curves intersect ;, that point should
zive the choked flow condition for that particular 4 .
The behavicur of the two curves in each set
near the choked flow condition is not very well defined

by the results obtained. However ; with the aid of the
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FIGURE 5.27

Résults for the Diéc.
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FIGURE 5.28 Results for the Disc,.
—0@— Armstrong and Dunham —bB— Rouse and Mc Nown
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[

assumption given in section 5.4.1 , that the choksd flow

e

condition occurs at those values of H/C shown in figurs

5.15 , the choked flow points can be obtained with
fair accuracy in figure 5.26 . They must be the points

where the three lines intersect in eact e.

t

a

i
(&)

The line Joining the choked flow points , the

nstructed and shown in

[
[0}
ct
=y
o
=
]
L)
o]
=
©
o
O

choked flow line
figure 5.26.

The corresponding graphs of (C/B)z against 4
for various values of H/C ig shown in figure 5.27 3 the
choked flow line is also transcribed to this graph. The

latter exhibits a smoothness in both 5.2¢6 and 5.27 which

ndicate that the tentative construction

e

would seem to
has given fairly accurate results. The reader is

reminded that the choked flow line is independent of the
mathematical model chosen.

Clearly the most accurate definition of results
is obtained at larger H/C. The line , H/C = @ , is
reproduced in figure 5.28 for the szke of comparison. Also
shown there are the theoretical results of Armstrong and
Dunham (Ref. 1) and Brunauer (Ref. 9) ;5 the experimental
results of Rouse and Mc Nown (Ref. 38) , Eisenberg and
Pond (Ref. 10 4, a mean line) and the results of Reichardts
empirical formula (equation [2.10]). The last is , of
course , only des d For the range 0 { & < 0.1 . The
authors results would seem a little higher than others
though close to those of Armstrong and Dunham and Eisenberg
and Pond.

The authors results for C/L are shown in figure
5.29 . A similar tentative construction to that for (C/B)L

is made in that graph , being simpler in this case since
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Pigure 5.30 presents
for the particular values of H/C shown.
In figure 5.31 the curve for H/C = is
reproduced to compare again with results by some of the

authors mentioned above. Also presented are some

experimental results given by Gadd and Grant (Ref. 15,

The experiments of Gadd and Grant were carried
out in a fixed walled channel with H/C = 14.67 ; those of
Rouse and Me Nown in both fixed and free channels with

H/C

for a free Jet § Eisenberg and Pond do not give details

-

I

12.90 3 the experimental results of Reichard: are

4

0]

of H/C 3 the theoretical results of Armstrong and Dunham
are , of courge , for an infinite stream.

The result given by Brunauer (Ref. 9) in both
Pigure 5.31 and figure 5.28 would seem to agree less well
with other values. However , a knowledge of his value

of H/C may bring his results into line with those of fi: gures

5.4.5 Cavity Dimension Results for the Sphere.

Flgures 5.32,5.33,5.34,5.35 present the

authors results for the dimensions of a cavity behind

w

sphere these figures are parallel to 5.206,5.27,5.29

2o

and 5.30 for the disec zo little further comment on their

Figure 5.33 shows the appropriate sort of
<D
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FIGURE 5.30

Results for the Disc
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FIGURE 5.31 | Results for the Disc
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FIGURE 5,32 Results for the Sphere
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FIGURE 5.33 | Results for the Sphere
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- PIGURE 5.34

- Results for the Sphere

o7f—

. G:06

06— _ Q:0s

)

05 -

-0y

Ol f-omev
@-03

-0

®

0_}

I
!
O l ‘ I
- . . P . D S
. 1=, 0 ‘
i I




257

FPIGURE 5.35

Results for the Sphere
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The results for the disc are presented in
figures 5.36 and 5.237. These exhib
behaviour as the majority of the other results and were
clearly defined in thelr converged state. T

eresting to note that the relation DIM. (K,)= -1.26 X

r for all palrs of values ,

indicating a definite strength of singularity in each

The magnitudes of the values in figures 5.36

and 5.37 are misleadingly large. The factors used in the

due to the small mesh lengths M3z and nks s abpesaring

in the denominators. Typilcal conversion multipliers
ere 256 for K, and 543 for K,.  Thus the guentities

the expansions of section 4.3.7 are small

numerator.

The results for K ,Kﬁ and K% 1in the solutions
for the sphere were , however , less aatisfactory. Only
one set , namely that for K§ » 1s displayed (figure 5.38).

though the K* values converged to a definite limit with
no oscillation for one solution with a set GL, once this
@5 was altered , even fractlionally , a relatively large
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FIGURE 5.38

A
T
x
Dim(K})
-0.0G . . - o — - “i = l - T "‘l
-0.05| —— - S
(1]
-0y | et 4
"
g Y
‘ T
.
s A
003 | B -__E,_M.-,_,,EI,,‘V- - S .
PO

e o

o

i H :

o | é f
-0.08 ‘ A i 1 —

o Y e IR 16 20 U 8
H /C
LEGEND =~ t Q = 0.2 A g =0.5
B Q = 0.3 0 Q, = 0.6
X 8 = 0u&



change occured

4,37

jon around

(N

Two re

for the

constructed knowlng the coordinates

T

and the channel wall ,

may e of

:_3“4
AL

.
appr

T o

Zram near

constructions of The x,r planes

gsake of completenes

for presenta

a m

7
SRS

(x,7) of every mesh

5.39 shows the re T

13.47

sul

H/C with all

aguipotentials sketched

= 123

sely bunched 1in

PR

cion in

magnification of the

the aqulvalant



264

PIGURE 5.39
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FIGURE 5.42
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In both cases the flow in the reglon of
separation exhibits the correct

3.

in fact , ensured by the treatment of that voint.

5.5 ERROR ANALYSIS

Having obtained a solution and the final fleld
of £ values ; an error analysis must be carried out to
check the valldity of that solution. In section 5.5.2

the major error analysis 1s outlined and the subsecuent

sections describe the results of some additionasl tests
which can be applisd

Clearly the essentlial aspect of an error

1
that the errors in the field ecuation

|—’-
e

analysis
substilitution by the finite difference forms be negligible
or within an acceptable tolersnce. This can be checksd

the expansions [4.1G

multiplied through by & factor , which makes no difference

to their application , the equivalent E will =2lso bhe
€

O
=
o
)
()]

or. fhus the magnhitudes

themselves. They must be converted to some meaningful

error in the values of £ , the dependent variable.



Thisz is done by considering the change in
at each point which would be precduced by a residual of
magnitude E¥ at that point if the values of £ at surrounding

points are unaltered. Thus the value of ?*/(: b&}) is

the values obtained are {or changes in £ . These are then

converted to fractional changes , denoted by E¥**, at every

point. Hence , in Tact , Tthe value of

“;'.?J ok — TV 3%

is computed at sach point.
Table 5.1 shows the result of such a computation
with the final solution for a disc at @ = 0.4 , £y = 256.

in floa

-

The numbers are gilver ting decimal form. Only the
results for the lines J = 1 to J = 6 are presented . In
this case the channel wall is J = J = 13 but the values
for all lines above J = 6 fall off gradually to the order

of 10 on j = 12. Thus , in general ; a slight peak

region of the stagnation point. Since extra-residuals are
applied within The region shown by the dotted linss , any
results obtained there would be meaningless in view of tThe

above analysis , since those exbtra-residuals are meant to

and higher derivatives in that region. Also , the results
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TABLE 5.1

Gt .
Values computed for the fractional errors , E , in T

in the solution for the disc with Q = 0.4 , £y = 256 .

The stagnation point is marked , E .

The separation point is marked , D .

L
E

k

j=1 j=2 j=3 j=4 j=5 =6
3 467, =5 7e9s =5 6asl, o & wlals =7
4 le35 =7 feis =7 4daB;, =B wT7abe =&
5 2!38 "7 Euzr P? 9305‘ -8 rs.?iﬁZ? 9‘:7
b . 223, =7 S Pods =8 w2a8s =7
7 3edy =7 308 =7 85, =8 mbeBs w7
& 4075 =7 4622 =7 lels =7 =8092 =7
g sy =7 G9ds =7 Tabs =6 wlods =
10 Bals =~7 beT7as =7 belJsr =8 P e85 -4
11 lelas =35 G5 =7 wdoQs =& =&
12 15,2 =6 {els wmg ~lebs =7 v
13 240, =¢ {5, =6 w4655 &7 ol - {3
14 Zalls ~§ 2oCs =& =Qads =7 oH.Vs wi
15 4e0as =6 Zabr b ele9p 26 wmlgls =3
16 592 mb eS8 =& =3672 =& milaBs 5 |
17 Ba9s mb  4eTs =6 =6e9s =bH wlohs
18 led, =5 taelle =5 =1s3s =5 w372
19 2235 =B Tebds =& =205, =5 rhe%s
20 5062 =5  2s4sr w5 3e7s a6 mlebi %
21 lels =4 567, =5 =3efy) =7 NI
22 3e5; =4 208 =4 fe72 =4 7ebs =3
23 mlabs =b w3e2s =5 habs w5 mhaGs wi
24 mEelas =6 =501 =5 “925; =5 rSe(e =&
25 w2als =5 cBobs =8 elody md  mio? sl
26 3ele =5 m]e9s =5 ~de8,; =5 w5
27 402 w8 w4625 =5 =Ta4y wh
26 JebBa =4 290 ~4 5252 =3 e
29 m1le32 =4 wledsr =4 =le2s =4 w5
a0 m2els =4 =] aQp =4 mlebBs =4 -

(Continued overleaf)
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TABLE 5.1 (continued)

31 ~3eb5y w4 w2072 =4 w=1a9p =4 «BeP2 =H
32 =lvds w4 =“FeHhr ™K «5 a8 =5 72n5s =5
33 =282 m4 =leds =4 ~T7els =5 =2eBs =5
34 ‘ 232 =7 Febr =6 =lols =5 =80ls =5
35 5671 =4 =1e9s =4 =781 m5 w2ads =5
IR ﬁ] «3eB5,; w4 w2ae2s w4 =709y ™5 w3els =5
37 I\»309p *4 w2632 =4 e787s =5 =3.0s -5
38 | o o e o ____Jd mbale =4 =281 m4& =Tels =5 m2e8s =5
39 _rlnl, -2 3el, =3 w2alp m5 mle5, =4 =595 =5 §2q&p =5
40 3nbs =3 1el, =3 2efis w4 wVel23 =5 =w4als =5 éZeEs =5
41 leds =3 3.8, =4 4432 =4 1e2s ™5 =2eds =5 m2,0a =5
42 da8, m4 2e2, =& 4afis ™4 SeTas =5 mbdaoGyr =4 mleSs =5
43 9,58, «5 -1-71 - 4oabs =i ledsr =4 leds =5 wlels =58
44 | mdaly =5 =260, =4 dals m4 leps md 3ele =5 w=5e0s =6
B 1 =7405 5 3.0, <4 edsr =4 Z2eQs =4 debs =5 130 =7
44 rbhad, =5 -3, ~4 2e8s w4 Zelz =4 ¢85 =5 Bals =4
47 5,0, =5 7296, -4 292)_"4 2802 m4a «bhaBsp  mb 9o B am ws

48 | =374 =5 =240, =4 1a7s =4 192 =4 7e5s

]
o
—
®
.S
£

1

¥

49 ~2a%9s =5 w289, =4 1632 =4 lade =4 Bals =B 1ebBs =%
50 | =222 =5 w26, =4 lals =4 lebhe =4 He2s =B 2ela =5
51 | mlads =5 19, -4 9alp =5 laGao =4 Ba2s =8 2035 =H
52 4,7, =5 <le?, =4 Ba2s =5 1els =4 Ta9s =5 2455 =5
53 4ab6, w5 alel, 4 328 b lels =4 Tsds w5 Zebar =2
54 | w5445 «5 w103, w4 974 w6 Bole =5 GelBs =5 ;
55 | 323, =5 w949, =5 wlads wB  Sefs =B bals =5

56 | mbe7s =B =3s2, w4 =254 =4 4cls =5 laTs w4 ;
57 w2uloe =5 ali&; -4 wleQs =4 lels w4 1«92 éd |
B | wFelp mb ml*;z =4 w=Ba2, w5 bdudyp m8 1ads =4

5o mhedy =b w5t , =5 wheFPa w5 lefs =85 1els wé

60 | w2445 =0  abal, =5 mbels =5 m3a3s =6 Bo2s w5

A mleD,y =b 3409, -5 wlaBas =5 wiaels =5 balr =5

62 | #1a8s =5 «lel, w4 w2els w4 =203s =4 5¢le =8

63 | m2eb, =b wbed; =5 25483 =5 m&s0, =3 143 =4

64 | =lads =6 m4el, =8 =340 =5 whoss =5 Teds =B

hB mial, =7 w3ab, w5 wle7s =& w3e2s =B 4a00s m5

hé& »S5al, =7 =2¢8, =5 wleOr =5 m2aelsy =5 2022 w8

67 m3ab, =7 32'3; -5 mOaby b mwlods w5 Ml#Z: ]

- X5] wdaFa mb w37, =5 mBahy =8 w169, w4 mlelBs =4
69 | wbes =7 22¢0; w5 wlsds =5 m3o0bs =8 =lae9s mb

7 ~Zalas =7 wleB, =5 m7a5; unb mloeBs =5 wAdaBs =h

71 r242, =7 mlel, =6 =4a2) mb miaQs =5 =273 mb ;
72 | ~1lsds, =7 wBal, mé =2eb6s =6 mSafs w4 =B8Bsls =7 Aaby =5
75 | =9405 =8 2740, a6 wlebs b w304, mé 5675 =7 Jeds =3
74 mbhady, =8 55’5: -6 mlalse =6 m2els =5 1ed3s mé feds =5
75 | mdab, o8 w409, mb =725, 27 =lo3s =é 1978 =b 1e%s =5
76 w33, =& m4!3p -t whed, =7 wBec3y =7 le&s 96 teBs =5
77 2,5, =0 w3el, =& =4dsly =7 w5 aGs w7 1ol =6 1639 =5
78 | =2e0, =8 w363, = =325 =7 =268, =7 1e7s =6 1eOp =5
79 mla, =8 «3e0, =b —=2e5 wT w2atyr =7 lebr wmbd Faldsr =h
80 | =lad, =8 HZ’Z’ mty  mZ2a2y w7 m2e(as =7 1650 éé 7Telr =&
a1l mlely =B w22, b =le7y =7 wla(Ga =7 lebs wd Bale wmb
82 m7alTs =9 w204, =g =le(ls =7 4e7s =8 Te7e wmh baubte =é
83 | mdabs =9 2e2; =6 w345, =3 Ze2s =7 1e%2 =6 . 732 =&
B4 1ols, =& w2el, mb CleBa &7 489y =7 1ePy =g Habs e
85 | w243 =8 n2els mb w3el, =7 =38 =7 9abs =7 baly =i
Bs | mbaG, =9 w260, =h «T7e7, m8 mle0as =8 lale =6 dale mh
87 3.7y =9 -1'9: -t =4a3y »5 lals =7 jads ;6 Babs =¢
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TABLE 5.2

* %
Values computed for the fractional errors , E , in f

in the solution for the sphere with Q = 0.3 , f,= 128.

The stagnation point is marked , E .

The separation point is marked , D .
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TABLE 5.2 (continued)

A R =3 Fels o fros i el -4
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It is a little surprising that the values in
the reglon of separation are not more sharply peaked. This
is perhaps due to the fineness of the mesh in that region.

In general these results show that the stream-

graded than that used by the author,shown in ssction
5.1.1. The equipotential distribution of points would
seem to be adeqguate.

Some estimate of the accuracy of the £ value

®

tained on the free streamline could be obtained by

otaling the results for E** for 211 J at k

i
o
O
5
w
%
£
|
<

t

This leads , on average , to total changes never great
han 0.05 per cent. The author feels , however , that
his would be a very optimistic assumption , the final
values of the local cavitation number giving , perhaps ,

mation of accuracy.

[&Y]
o
0]
o
t
O]
R
o]
w
o
e

Table 5.2 shows the results for the final

These results are encouraging provided another

method , given in section 5.5.3 , shows the invalidity

el

of’ the results obtained near the stagnation point.

5.5.3 A Test at the Stagnation Point.
Figure 5.43 shows the graph of the functions

(§) for £, = 0, 0.0625 , 0.125 and 0.25 in the region
of the stagnation point for the disc solution , & = C.5 ,

£y, = 128. The fuller lines present the actual value:

v’}

obtained and the broksn the solution for the Dirichlet
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FIGURE 5..43

Stagnation Point Test .

o.i . - v I P R SO ]‘ A._,:\m,,,_..‘ o 2 o e e 1 e e e

o.g S SR : . e e e e e o e o ; - -

—

3{Z=="" ®The lines £, = 0.125

0.q

Ol

~

Keene™3 k, -

STag. ksma,"' o)



value at the polnt E That is to say , referring to se

4 4 3, the function used to find the extra-~residuals in
this region , fl Naturally the solutions diverge with
distance from the stagnation point but , in the close
proximity of that point , the difference between the
functions £ and e (see sections 4.4.1,4.4.2) is very
amall.

reculred of the extra-reslduals , 2 , the changes which

these would produce in the values of £ at each point

were estimated from compubations of ZO/Lm ; Yb], For

4 BT
the same solution depicted in figure 5.43 <these values
are shown in figure 5.4/ Both Tthese figures give results

It is clearly suffilcient to treat the points
ringed in figure 5.44 and , correspondingly , in figure
5.43 with extra-residuals. This range was used for the

-~

solutions with both the disc and the sphere , the latter

.

glving very similar resulte in thls reglon.

5.5.4  The Upstream Test.

Figure 5.45 shows gome results of the upstreanm
test , mentioned in section 4.2.3, on the solution for ©
dise with ¢ = .4 , £y = 512 The values of £ - I, are
plotted for points near the upstream boundary for The
actual solution (solid lines) and for the values given

using [4.
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FIGURE 5.44

Stagnation Point Residual Test.
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are neccessarily presented on different scales.
The results of these tests substantiated the

results of section 5.5.2 in showin slight peak in the

(1!
W

errors around J = 4 or 5. Thus the greatest relative
difference between the two curves for all streamlines
occured at J = 4 or £, = 0.5 in this test. To show

this two other sets are presented in figure 5.45

8]

one for a streamline above and one for a streamline
below j = 4.

The results of this test are difficult to

comment on. They are not , perhaps , as satisfactory
as might be wished. Accordingly the author carried

out a couple of major solutions with a larger value of
¢l s but no significant changes took place in the
results § that is to say none that could be assigned to
this alteration in (ph. The conclusion was therefore
reached that the upstream solution was satisfactory.
This was partially ensured by the analysis of section

L.o1.6 [3].

5.4.5 Tests by Integration to find x Differences by

Several routes.

This provides a demonstration of the accuracy
of the final f field. Using equation [3.10] , we can
cgrate the relevant first derivative of £ along

her a streamline or an equipotential to find the difference

ial distance , x , between two mesh points. Thus the

|.—J‘-
o)
)
4

same distance can bhe estimated by several routes.

However , any errors which occur cannot be
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simply analysed since they may be due to either or both of
errors in the f values and errors in the numerical integration
carried out. Some exsmples are given below from the
solution for the disc with ¢ = 0.4 , fy = 256.
[A] To find the distance from (0,25) (on the stagnation
streamline) to (0,45) (on the wetted surface),
(1) by integrstion along the line j = O , travelling
through the stagnation point , x = 1.23217 ,
(11) by the route , (0,25) = (2,25) » (2,45)
(0,85) , x = 1.21590 .
Thus ; despite the presence of the singularity , we

find an srror of less than 2 per cent.

[B] Between two points on the free streamline :
(1)  (0,61) » (0,67) s X = 0.28918 ,

(ii) (0:61) > (2:61) > (2:67) i (0367) 3 0.28925 ,

>
i

giving a negligible error.

[C] Between the same two points
(111) (0,61) » (6,61) » (6,67) = (0,67) , x = C.28733 .
This is a long way round in comparison with the actual
x difference and yet glves an error of less than one

per cent.

Q

However , due to the difficulty in analysis
of’ these errors ; this section is merely presesnted as a
confirmation of accuracy. In fact , in any test of this
sort , it was found that the errors were rarcly greater
than one per cent , except when the front stagnation point

wes included , when the errors rose to around 2 per cent.
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5.6 CONCLUSION.

of flexibility. Alternative types of flow which the
method can be simply adapted to treat are , for example ,
those 1n which the outer boundary tazkes any axisymmetric
form , or in which it is a free Jet. Besides this ,

the author 1g considering the possibility of adaptation

to unsteady cavity flow.

)

Both the previous significant methods , those
of Garabedian and of Armstrong and Dunham , are limited to

SC.

QJ

the Infinlte stream cs&
Another advantage of this method is that it

rolves the complete flow field. Thus the zuthor i=s

considering the problem of diffusion of absorbed alr in a

cavity flow , using these solutions as a framework.

It

e

s difficult To compare the computational
work reguired in the three methods , though that of
Garasbedisn must be the most complex.

The method has been employed to solve the
steady state cavitabting flows behind a sphere and a disc ,

o

demonstrating the behaviour of those cavities and drag
on the body as the condition of choked flow is approached
the solutlons also provide values for the separation angle

in the case of The sphere.
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APPENDIX A

A.1 Computations on the Riabouchinsky Planar Flow past a

Flat Plate set normal to a Uniform Stream in a Channel.

One of the results of this thesis 1s an
attempt to discover the behaviour of the cavity behing
a2 disc in a channel for varying @ and H/C, a blockage
ratio. It is clearly of interest to compare the

gsults obtained with those for the equivalent planar
flow , for a flat plate in a channel. The solution
to this problem was glven in section 1.5.5.

Although the numerical results for the
infinite stream case are often quoted (e.g. Ref.1) , the
author could not find similar results for non-infinite
H/C. A programme wasg therefore written for the purpose
of computing the main dimensions , B/C and L/C , and the
coefficient of drag , Cp , for various values of & and
H/C. Equations [1.36] to [1.40] contain the two
parameters u, and k. Since the simplest of these eguations
is that for § , the results B/C , L/C , H/C and Cp were
calculated from those ecuations for sets of the parameters
U, and k where all pairs within a set gave a prescribed
value of Q.

Bearing in mind the ”choked“ flow phenomenon
investigated in section 3.3.1 , the results (B/C)y, 2nd
(Cylua, were also computed for each result using the
values of @ and H/C.

The results of thsse computations are shown

in graphs [A1],[A2] and [A3] , being plotted against Q
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for various H/C. The values of H/C chosen were those
which gave choked flow close to 0 = 0.1,0.2,0.3,0.4,0.5
and C©.6.

Graph [A1] shows the values obtained for C/B
(solid lines) , the particular value of H/C being written
in on each line. For each of these values the correspond-
ing values of (C/B),, are a2lso plotted (evenly dotted lines).
Thus the point of intersection of the curves for C/B and
(C/B)my marks the choked flow point for that particular
value of H/C. Joining these choked flow points produces
a choked flow line. (unevenly dotted) Thus any result for
C/B must lie between this choked flow line and the infinite
H/C line. The position of the choked flow line will be
independent of the mathematical model chosen as was pointed
out in gection 3.3.1 since in a choked flow condition the
cavity becomes infinitely long.

In the case of the cavity length parameter,
(C/L;i, the choked flows gave this parameter as zero for
all H/C,as anticipated. These results are shown in
graph [A2].

Finally a modified coefficient of drag ,
Cop/(1 + Q) , is shown plotted against 4 in graph [A3].
The corresponding values of [Cp/(1 + Q)la, 2are also
plotted for each H/C (evenly dotted lines) , the
intersection poilnts giving the choked flow line (un-
evenly dotted). Thus all values of Cyp/(1 + Q) must
lie between this choked flow line snd the infinite H/C
line. It is noticeable that the variation of this
modified coefficient with either Q or H/C is negligible
for any practical purposes. ' The drag

at given Q is reduced by decreasing H/C. The choked
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As Gadd (Ref. 14) points out there is =

(D
*u
(u
H-

rimental data for this problem.
Graphs [A1] and [A2] show some results glven by Waid
(Rer. 45) for a normal plate in & channel. These

experiments were carrisd out with H/C = 37.3. Tt

ts are at least better

t
than to the other H/C in those graphs. Some
oth

er results quoted by Reichardt (R

o)
Fy
)
I~
g
i
L}
]

shown in graph [A1]. These were , however , for

experiments in which the outer boundary was a free jet.

A.2 A Note on Choked Flow.

BirkhoffT,Plesset and Simmons (Ref. 7) have
£ )

investigated wall effects in plane cavity flow.

In that paper , they consider plane flows

b

in a choked condition for various stream limiting
boundaries including a straight wall and a free jet.

In the former case , they find Cp and & as funections

&l

of H/C using an infinite cavity model in all cases.

~

Their results therefore show Cqy > @ as H/C > 1 , as

does graph [A3]. This is , however , misleading since

w

2 also tends to infinity in thelr case. They do not
give results for the transition region between infinite
stream {low and choked flow , which shows the drag

~ Fal

falling , at a given & 5, as the flow nears the choked

condition.
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NOTATION

The following 1s the notation used in this
theslis. The author has attempted as far as possible to
adhere to a single universal notation s but iIn some
sections a common symbol may have a localized meaning

different from that given below. When that occurs

g Equal to ¢ - T, .
B The maximum radius or half-height of the cavity.
C The fractional mesh length which locates , with

k = K , the boundary of symmetry of the
Riabouchinsky flow.

C The radius of the disc or half-height of the
flat plate.

Ce The coefficlent of pressurca.

Cp The coefficient of drag.

e The differences in the values of £ between a

* point on the free streamline boundary and the

di surrounding mesh points.

et The error after 1 iterations between the valus

of £ at a mesh point and the final , converged
value at that point.

Lw] The matrix of e .

B The error involved in the substitution for =
differential eqguation of 1ts finite difference
eguivalent.

m* Two other error terms which zare functions of

T ™

i ta e

f The value of r?, where r is the radial variable

in the physical plane.

Ty The asymptotic , upstream value of f on &
particular streamline.

pH* The exact solution of the differential equation
at a particular mesh point.

£* The golution of the finite difference equations.
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03

The analytic function used in the neighbourhocod
of a singularity.

The Froude number.

The acceleration due to gravity. When subscripbed

it refers to the difference in the value of £y
on the streamlines jJ = J + 1 and j =7 .

The radius or half-height of the channel.

Either the complex quantity or the number of
iterations.

The mesh line streamline numbering integer in
the () ,¥ plane.

The value of jJ for the channel wall streamline.
A mesh size change~over value of jJ.

The eguilpotential mesh line numbering integer
in the w » ¥ plane.

The value of k for The ecuipotential just
upstream of the plane of symmetry of the
Riabouchinsky flow.

A special value of k , referring to a point on

the free streamline a2t which linearization of the

d differences commences.

Guantities describing the singular behaviour of
the flow at the point of flow separation from
the disc.

Quantities describing the singular behaviour of
the flow at the point of flow separation from
the sphere.

The axial distance between the upstream boundary

and the stagnation point in the physical plane.
The half-length of the cavity. |
The mesh length in the ¥ direction.

The relative mesh length in the 4/ direction.

P
As a differential operator ,

Sy P

To denote a matrix of f values.

The mesh length in the (¢ airection. In section 3.4

it denotes the coordinate perpesndicular to the
body streamline at separation.

The relative mesh length in the (p direction.
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As the differential operator , o .

When subscripted in section 3.4 , it refers to
a coafficient in the expansion for n.

Used to denote an unknown constant where n 1
any integer.

T

The number of ecual intervals on the wetted

o,
suriace.

3

Fluid velocity magnitude.
Cavitation number.
Incipient cavitation number or indsx.

The local cavitation number , calculated at a
mesh point on the free streamline boundary.

The residual , Qg - Q

The radial variable measured from the axis in
exisymmetric problems.

Equal to r - rg .

The radius of the sphere or cylinder

The Reynolds number.

The arc length measured along a streamline. In
1

section 3.4 , it denotes the coordinate para
To the tangent to the body streamline at separation.

When subscripbted , this refers to & cosefficient
ex of s in section 3.4 .

o
£
6]
(
¥
o]
o
In I
0
I..J-
o)
S

rdinates of a transformed plane in section

ime, except in section 3.4 and section 1.5 .

Components of velocity in the directions Ox ,
Oy or Or , Oz .

The uniform stream velocity.

The complex potential funection , @+ i¥. 1In
section 3.4 it denotes the perturbation velocity
potential , - @ + s .

A coeflicient in the expansion for the perturbation
velocity potentizl , w , 1n section 3.4
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b

The coordinabe measured parallel to the uni
stream direction.

orm

The special parameter , W ;
s tu

The coordinate measured perpendicular To the

uniform stream direction.

The residual at a mesh point. In section 3.4 ,
it refers to a coefficient in the expansion fo

¢ -

The complex variable , x + iy , or the third
dimensional coordinate.

The extra-residual applied at mesh points near
a singularity. In section 3.4 , it refers %to
a coefficient in the expansion for v o

GREEK SYMBOLS.

oL,

=

1)

£~ o

The parameter used 1n the second free streamline
method-

The maximum movement parameter in the free
streamline methods.

The parameter used in the first free streamline
method.

The eigenvalue of the error matrix with the
largest spectral radius. Or , in section 4.1
a function of & .

Stokes stream function.

Veloclty potential.

The difference in potential between the upstream
boundary and thes stagnation point.

The difference in potential between the stagnation
and separation points.

The difference in potential between the separation
point and the point of maximum radius of the
cavity.

The complex quantity , In. (U/q) .

Density.

The over-relaxation factor.
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E*

[N

e

01,83y

STh¢ ¢ €

LV

The sngle between the direction of the flow
veloecity vector and the uniform stream direction.

L+ 16 .

A value at a reference point.

A value on the free streamline or within the
cavity.

A value at the mesh point just downstream of
stagnation.

A value on the channel wall.

A value at a mesh point using the field system
of identification.

A value at the points 0,1,2 ... 1in the local
system of identification.

Used as Jsk when J = C.
Used as J,k when the value is the same for all k.
A value at the separation point.

A value at the stagnation point.
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