
 

 Shock Propagation in Polydisperse Bubbly 
Liquids  

Keita Ando, Tim Colonius, and Christopher E. Brennen  

Abstract We investigate the shock dynamics of liquid flows containing small gas 
bubbles, based on a continuum bubbly flow model. Particular attention is devoted to 
the effects on shock dynamics of distributed bubble sizes and gas-phase nonlinearity.  
Ensemble-averaged conservation laws for polydisperse bubbly flows, together with a 
Rayleigh–Plesset-type model for single bubble dynamics, form the starting point for 
these studies. Numerical simulations of one-dimensional shock propagation reveal that 
phase cancellations in oscillations of different-sized bubbles can lead to an apparent 
damping of the averaged shock dynamics. Experimentally we study the propagation of 
finite-amplitude waves in a bubbly liquid in a de-formable tube. The 
ensemble-averaged bubbly flow model is extended to quasi-one-dimensional cases and 
the corresponding steady shock relations are derived. These account for the 
compressibilities associated with the tube deformation as well as the bubbles and host 
liquid. A comparison between the theory and the water-hammer experiment suggests 
that the gas-phase nonlinearity plays an essential role in the propagation of strong 
shocks.  

1 Introduction  

A number of complex phenomena in bubbly liquids can be attributed to the interaction 
of the flow and the dynamics of dispersed bubbles. Even for the case of dilute flows 
(bubble volume fraction less than 1%), the flow structure can be significantly altered 
by bubble dynamics. The presence of compressible bubbles in a stiff liquid means that 
the effective compressibility of  
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the mixture can deviate drastically from the liquid compressibility. If bubbles respond 
in phase with the flow excitation, the mixture becomes less stiff and the resulting wave 
speed is reduced. Since the bubble response depends on the excitation frequency (as 
well as amplitude), the mixture compressibility and the corresponding phase velocity 
are regulated by the length scale of the waves. That is, waves are dispersive due to 
bubble dynamics. Nonlinearity associated with gas-phase compressibility is another 
issue, particularly evident in strong shocks.  

In the modeling and simulation of the dynamics of dispersed bubbly flows, it has   
been a challenge to resolve wave dispersion and nonlinear bubble dynamics. Direct nu-
merical simulations of wave interaction with individual bubbles [27, 28, 53, 70] can 
shed light on the detailed flow structures but are impractical for large-scale flow com-
putations. For practical applications, for example in hydraulic machinery [5, 14],  
underwater explosions [22, 46], or shockwave lithotripsy [6, 49], we favor simulating 
mixture-averaged dynamics (rather than solutions to individual realizations) based on 
continuum models in which the bubbly mixture is treated as a continuum. Averaging 
approaches allow us to remove stiffness resulting from individual bubble dynamics and 
thus reduce the computational effort. In such an approach, a choice of the constitutive 
relation for a model closure is required. The simplest choice is a barotropic relation 
[15, 17] that ignores the bubble dynamics and is therefore incapable of capturing wave 
dispersion. Alternatively, to account for the unsteadiness associated with the bubbles, a 
Rayleigh–Plesset-type model for the single bubble dynamics can be coupled with 
mixture-averaged conservation laws [25, 57, 86]. However, to further reduce the 
computational effort,  monodisperse bubbles (of the same size) are often assumed.  

We consider the canonical example of shock propagation through a bubbly liquid in 
a tube. In the pioneering work of Campbell and Pitcher [20] and the subsequent 
experiments (see for example [11, 44, 45, 60, 79]), dispersed bubbly flows were 
created in a vertical tube attached to a shock tube in order to generate shock 
propagation. Shocks in monodisperse bubbly flows exhibit an oscillatory structure that 
can also be numerically predicted using continuum models coupled with 
single-bubble-dynamic equations [44, 45, 58, 70, 78, 87]. In particular, the work of 
Kameda et al. [45] reveals that the shock structure in the monodisperse case is 
sensitive to thermal dissipation in the bubble oscillations. However, experimental 
observations on shocks in the polydisperse case are rather limited.  

The above-mentioned experiments were confined to the case of weak shocks.  
Further increase in the shock strength results in bubble fission [16] and tube 
deformation [71]. Dynamic loading of a fluid-filled deformable tube is a classic 
example used to study fluid-structure interactions in water-hammer events [89]. For 
tubes filled with liquids (without bubbles), a linear wave speed is predicted by the 
Korteweg–Joukowsky model that accounts for the compressibility associated with the 
liquid and the structure [43, 48]. This was later extended to bubbly liquid cases [47]. 
On the experimental side, an underwater shock simulator has been developed to study 
coupled stress waves propagating in the axial direction of a fluid-filled tube [26, 31, 
40]. However, the study of finite-amplitude waves in a mixture-filled, deformable tube 
had not been previously reported.  



The aim of this chapter is to review recent progress in the modeling and simulation 
of shock dynamics of dispersed bubbly flows. In particular, we focus on the effects of 
polydispersity [3] and gas-phase nonlinearity  
[4] on the mixture-averaged shock dynamics. In Sect. 2, the ensemble-averaged bubbly 
flow model (together with single-bubble-dynamic equations) is introduced and the 
acoustic properties of polydisperse bubbly liquids are then examined. In Sect. 3, the 
numerical method for shock computations is presented and one-dimensional shock 
propagation in a polydisperse bubbly liquid is simulated to quantify the effect of 
polydispersity on averaged shock dynamics. To examine the effect of gas-phase 
nonlinearity as well as fluid-structure interaction (FSI), shock propagation through a 
bubbly liquid in a deformable tube is considered in Sect. 4. The ensemble-averaged 
model is extended to quasi-one-dimensional configurations in order to incorporate FSI; 
the corresponding steady shock relations are compared to water-hammer experiments. 
Finally, we summarize the our findings in Sect. 5.  

2 Modeling of Continuum Bubbly Flows  

2.1 Mixture-Averaged Conservation Laws  

In deriving a continuum model for bubbly flows, there is a need to select either time, 
volume, or ensemble averaging [41, 86, 91] in order to define mixture-averaged 
quantities. If the system is ergodic [8, 12], averaged values do not depend on a choice 
of the averaging manner under appropriate scale separation [3, 56, 65]. Here, we use 
the emsemble-averaging technique of Zhang and Prosperetti [90, 91, 92] to formally 
derive mixture-averaged conservation laws. To be specific, physical quantities are 
statistially averaged over a large number of realizations of spherical bubbles in the 
flow; any scattering effects in an individual realization are discarded but the 
statistically averaged dynamics are explored. For dilute flows, direct interactions 
between neighboring bubbles are often ignored. In this case, the system is 
two-way-coupled in a sense that bubble interactions are captured indirectly through the 
averaged field. An attempt to account for direct bubble/bubble interactions, which is 
useful in particular for high void fraction flows (see for example [13, 19, 35, 70]), is 
beyond our scope.  

For the two-way-coupled case, we write the emsemble-averaged conservation 
equations as  



∂ρ  

+ ∇ · (ρu)= 0, 
(1)  

∂t  
∂ρu  

+ ∇ · (ρuu)+ ∇(pl − p˜)= 0, 
(2)  

∂t ∂α R
2
R˙ 

+ ∇ · (αu)= 3α 
, (3)  

∂
t
R
3

  

where ρ is the mixture density, u is the mixture velocity, pl is the averaged liquid 
pressure, α is the volume fraction of bubbles (i.e., void fraction), and R and R˙are the 
bubble radius and the bubble wall velocity, respectively. Here, the mixture density is 
approximated by ρ =(1 − α)ρl where ρl is the liquid density. It is assumed that the 
bubbles follow the ambient liquid motion (i.e., no-slip), for relative motion between 
the phases plays a minor role in shock propagation [44, 70]. The liquid-phase pressure 
is given by the Tait equation of state [81] that assumes isentropic processes in the 
liquid phase:  

()
m 

 

pl + B 1 ρ  

= , (4)  

pl0 + B ρ
l

m 

0
1 − α  

where ρl0 is the reference liquid density at the undisturbed pressure pl0, and m and B 
denote the liquid stiffness and tensile strength, respectively. For water, we use m = 
7.15 and then determine the value of B, specifying the speed of sound in the liquid at a 
given temperature.  

The phase interaction term p˜in the momentum equation (2), which does not appear 
in classic volume-averaged equations formulated with heuristic reasoning [85, 86], is  

   

R3R˙2 
R

3 

pbw  

p˜= αpl − − ρ , (5)  

R3 R3 

where pbw is the bubbl wall pressure in the liquid phase [15]:  

4µlR˙2S  
pbw = pb + −  . (6)  

RR  

Here, pb is the internal bubble pressure, µl is the liquid viscosity, and S is the surface 



tension. The overbar in (5) as well as (3) denotes moments with respect to the 
distribution of equilibrium bubble radius R0 at pl0. With no-slip and monodisperse 
assumptions, the phase interaction term (5) reduces to that of Biesheuvel and van 
Wijngaarden [12] or Zhang and Prosperetti [91].  

To account for the effect of polydispersity, we need to evaluate the moments in  
(3) and (5):  

l ∞  
ϕ¯(x, t)= ϕ(x, t;R0) f (R0)dR0, (7)  

0 where ϕ represents particle quantities (such as R
3

) 
and the (normalized) bubble size distribution, f (R0), is assumed spatially uniform. The 
equilibrium bubble radius, R0, is assumed unchanged within fluid-dynamic time scales, 
which are typically  
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Fig. 1 Lognormal distributions (8) with varying the standard deviation σ. The distributions are  

normalized in order to satisfy 
∞ 

f (R
∗  

0
)dR

∗  

= 1.  

00  

much shorter than those associated with mass diffusion of dissolved gases (such as air 
in water) [30, 62]. As an illustrative example, we model the disribution using a 
lognormal function (Fig. 1) with the probable size R

ref 

and standard deviation σ: 
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= R0/R
ref  

where R
∗  

0 
. In the limit of σ →0, the distribution (8) reduces to the Dirac  

0  

delta function that models monodisperse mixtures. The measured distribution of gas 
bubble nuclei in water tunnels or seawater is reasonably fit by the lognormal 
distribution with σ ≈ 0.7 [3, 24]. For example, the void fraction is computed as  

4π 

α = nR
3 , (9)  

3  

where n is the number of bubbles per unit volume of the mixture. Provided that 
fission and coalescence of the bubbles do not occur, the bubble number density is 
conserved in time; namely  

∂ n  

+ ∇ · (nu)= 0. (10)  

∂t  
However, for strong shocks, there will arise bubble fission possibly due to a Rayleigh– 
Taylor-type shape instability or a re-entrant jet [16, 29, 42, 68], so that the bubble 
number conservation no longer holds.  



2.2 Single-Bubble-Dynamic Equations  

A closure of the mixture-averaged equations (1) to (3) requires evaluating individual 
bubble dynamics. Taking into account acoustic damping (to first order) on bubble 
oscillations, we use the Gilmore equation [36] that is an improvement to the incom-
pressible Rayleigh–Plesset equation [61, 69]:  

() ()()() 

R˙3 R˙R˙RH˙R˙ 

RR¨1 −  + R˙
2 

1 −  = H 1 ++ 1 −  , (11)  

C 23C CCC  

where the dot denotes the substantial time derivative, and H and C are the enthalpy and 
the speed of sound in the liquid, respectively, at the bubble wall:  
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l 
 H = 

l 
, C =. (12)  

  

  
ρl (p 

′ 
dρl 

p

l l 
) 
pbw  

In calculating H, the term pl is taken from the averaged liquid pressure in the con-
tinuum model. Note that the averaged liquid pressure can be regarded, in the dilute 
limit, as far-field pressure from the bubble [18, 77].  

Finally, the internal bubble pressure pb in (6) needs to be determined. The simplest 
choice is the polytropic gas law:  

()
− 3κ

 

R  

pb = pv(Tw)+ pg0 , (13)  

R0  

where pv is the vapor pressure at bubble wall temperature Tw, pg0 is the partial pressure 
of the noncondensible gas in the equilibrium state, and κ is the polydropic index that 
ranges from 1 (isothermal) to the ratio of specific heats γg (adiabatic). Here, it is 
assumed that the bubble contents have spatially uniform pressure. This homobaric 
assumption is valid since the inertia of the bubble contents is neglibible compared to 
the liquid inertia [66]. However, for nonlinear computations, using  
(13) often gives rise to innacurate evaluations of the thermal behabior of the bubble. 
For resolving the thermal effect on the dynamics of bubbles, the full conservation 
equations for both liquid and gas phases need to be solved. If the bubble contents are 
perfect, the bubble energy equation can be simplified to [59, 66],  



( ) 

3γb γb − 1 ∂ T   
′′  

  

p˙b − ˙m kbw (14)  

= Rpb + RvTw ˙+ , 
v   

R γb ∂ r 
w 

where γb is the specific-heat ratio of the bubble contents, Rv is the gas constant for  
′′  

the vapor, m˙is the mass flux of the vapor at the bubble wall, and kbw is the ther 

v  

mal conductivity of the bubble contents. The last term in the parenthesis stands for 
heat conduction, across the bubble wall, driven by the temperature gradient (∂ T /∂ r) 
in the gas phase. Provided that the liquid is cold (well below the boiling point) and 
phase change occurs instantaneously, the vapor pressure can be assumed unchanged, 
except near the the end of a violent bubble collapse [34], with constant wall tem-
perature. In this case, the liquid-phase thermodynamics becomes irrelevant. In the 
simulations of shocks in monodisperse bubbly flows [44, 45, 87], the full conservation 
equations for the bubble contents are solved to accurately evaluate the heat and mass 
fluxes in (14). However, computations of the full partial differential equations are still 
expensive for polydisperse cases. To further reduce the conputational effort, one may 
use the reduced-order model of Preston, Colonius, and Brennen [63] which constitutes 
a set of coupled ordinary differential equations describing diffusive effects on the 
single bubble dynamics.  



We now write the bubble-dynamic equations in conservation form, which is suit-
able for shock computations [50]. For example, the evolution of the bubble radius can 
be described by  

∂ nR  

+ ∇ · (nRu)= nR˙, (15)  

∂t where the bubble radius is defined as Eulerian 
variable R(x, t;R0), enen though it is attributed to Lagrangian particles. Now that a 
large number of bubbles are assumed to exist for the mixture to be a continuum, the 
bubbles may be considered to be distributed continuously in space [87]. The evolution 
of other bubble-dynamic variables (such as R˙and pb) can be written in the same 
fashion.  

2.3 Acoustics of Polydisperse Bubbly Liquids  

Before proceeding to shock computations in Sect. 3, we examine the effect of poly-
dispersity on linear waves in a dilute bubbly liquid. By linearizing the continuum 
bubbly flow equations (Sect. 2.1) coupled with the single-bubble-dynamic model 
(Sect. 2.2), one may derive the dispersion relation [25], which is indentical to that from 
multiple scattering theory [21, 33]:  

l 

11 
∞ 
R0 f (R0)dR0  

=+ 4πn , (16)  

c
22 

ω
2  

m c
l 
0 

N 
− ω

2 + i2βω  

where cm is the complex speed of sound in the mixture, cl is the sonic speed in the 
liquid alone, β is the bubble-dynamic damping constant, ω is the angular frequency (ω 
= 2π f ), and ωN is the natural frequency of bubble oscillations. Since the damping 
constant and the natural frequency depend on the equilibrium bubble size, their 
contributions need to be integrated over the distribution, f (R0), for polydisperse 
mixtures. For the case of gas bubbles (without vapor), the damping constant and the 
natural frequency can be written as [64]  
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where the first, second and third terms on the right-hand side of the damping constant 
stand for viscous, thermal and acoustic contributions, respectively. The quantity ϒ is a 
function of the Peclet number (Pe = ωR

2

0
/αT; αT is the thermal diffusivity of the gas):  

3γg 

ϒ = (√ ). (19)  

√ 1 − i3(γg − 1)Pe
− 1 

iPecoth iPe − 1 

The effective polytropic index in (13) for thermal behavior of the gas is therefore given 
by κ = ℜ{ϒ}/3. In the limit of Pe → 0, the thermal behavior is isothermal (κ →1). 
Large values of Pe, on the contrary, imply that the thermal boundary layer is thin 
compared to the bubble radius and therefore the bubble tends to behave adiabatically 
(κ →γg). For free oscillations of such large-sized bubbles, the frequency is well 
approximated by the Minnaert frequency [54]:  

13γgpl0 

ωM = , (20)  

R0 ρl  

where the effects of surface tension, heat transfer and acoustic radiation in (18) are 
ignored.  

The phase velocity c
ph 

and the attenuation a
att 

are defined as [25]  
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ph  

c=ℜ, (21)  
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a= − 20(log
10 

e) ωℑ, (22)  

cm 

where a
att 

has the unit of decibels per length. The acoustic theory is known to overes-
timate attenuation under resonance [88], but the error associated with resonance can be 
deemphasized by including the broad bubble size distribution since the probability of 
finding bubbles of certain size under resonance is low among a wide spectrum of R0 [32].  

In Fig. 2, we examine the dispersion relation for linear waves in an air/water of void 
fraction α = 0.001 at standard temperature and pressure (STP; 20

◦

C, 101kPa). The 
bubble size in the mixture is assumed lognormally distributed about R

ref =  

0 10µm 
with varying the standard deviation σ. Figure 2(a) shows the phase velocity in 
frequency space. While the phase velocity reduces to the speed of sound in the liquid 
alone far above the resonant frequency (at which bubbles cannot respond to such high 



frequency excitation), the sonic speed of the mixture in a low frequency limit is given 
by [15]  

m(pl + B) pl 

ph  

c = lim c= . (23)  

f →0 ραm(pl + B)+(1 − α)pl  

Thus, in the quasistatic regime (where all the phases are in dynamic equilibrium at all 
times), the sonic speed can be even smaller than the speed of sound in air, as in  
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Fig. 2 Dispersion relation for linear waves in an air/water mixture of α = 0.001 at STP. The bubble 

size is assumed lognormally distributed about R
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= 10µm with varying σ. The isothermal natural  
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this particular example. That is, the inclusion of a tiny amount of bubbles yields sig-
nificant reductions in the fluid compressibility, while the fluid is yet dense. However, 
around the resonant condition, the bubble size distribution tends to have a striking 
impact on the phase velocity. If the mixture is monodisperse (i.e., σ = 0) or the 
distribution is narrowly peaked (say, σ = 0.1), the phase velocity is reduced as the 
external frequency increases to the resonant frequency, for the amplitude of bubble 
oscillations becomes larger and the mixture compressilibity is thus enhanced. If further 
increasing the frequency above the resonant frequency, the phase of the oscillations 
changes. Specifically, an increase in the ambient pressure leads to bubble expansion. 
Conceptually, the mixture becomes stiffer than the host liquid so that the phase 
velocity above the resonant frequency goes beyond the speed of sound in the liquid. 
On the other hand, for the case of broad size distributions, the abrupt transition across 
the resonant frequency is effectively eliminated due to the fact that having bubbles of 
certain size under resonance is less likely among a broud spectrum of the distribution.  

Furthermore, it should be noted that the bubble size distribution increases the 
attenuation below the resonant frequency (see Fig. 2(b)). To interpret this trend, we 
consider linear bubble oscillations under sinusoidal excitation (without mutual 
interactions between the bubbles) [64],  

ε pl0 

χ¨+ 2βχ˙+ ω
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2 
χ = −  sin(ωt), (24)  

ρ
l
R
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where ε is the infinitesimal amplitude of sinusoidally oscillating far-field pressure (|ε
|≪1) and χ is the corresponding perturbed bubble radius:  

[] 

pl = pl01 + ε sin(ωt), (25)  

 



R = R0 (1 + χ) . (26)  
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Fig. 3 Evolution of the first moment (35) as a function of time normalized by the Minnaert frequency 
(ωM /2π) for R

ref 

0 
. The (inviscid) bubbles are set into linear oscillations according to a 

stepwise change in the farfield pressure. The bubble size is assumed lognormally 
distributed with the standard deviation σ.  

The particular solution to the linearized problem (24) is  

− ε pl0 

χp = � sin(ωt + φ), (27)  
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where the phase shift φ is given by  
ω

N 
2 − ω2  

φ = cos
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� . (28)  
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2 + 4β 
2
ω
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Noting that the damping constant and the natural frequency depend on the bubble size 
in the quasistatic regime, the phase shift can also vary with different values of R0 so 
that there may arise cancellations due to the different phases among the different-sized 
bubbles. Hence, (collective) volume oscillation of a polydisperse cloud is 
deemphasized due to the phase cancellations. In other words, the phase cancellation 
effect can be regarded as an apparent damping of the mixture-averaged dynamics and 
is augmented as the distribution broadens [2]. This additional damping associated with 
polydispersity may account for the observation at low frequency in Fig. 2(b).  

The phase cancellation effect appears also in free oscillations in one-way-coupled 
flow, which may be modeled by replacing the sinusoidal excitation term on the 
right-hand side of (24) with stepwise forcing; namely  

ε pl0 

 



χ¨+ 2βχ˙+ ω
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χ = −  H(t), (29) 
ρ
l
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where H(t) is the Heaviside step function. If the bubbles are initially stationary (i.e., χ 
= 0 and χ˙= 0 at t = 0), the solution to (29) is then given by  
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ε p
l0 
Ω − e

− βt

Ωcos(Ωt) − β sin(Ωt) 

χ = −  , (30)  
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where Ω =(ω
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2 
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2)1/2
. For the inviscid case (β = 0), the bubbles keep oscillating 

without any damping and the solution (30) is simplified to  
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ε pl0cos(ωNt) − 1 

χ = . (31)  

ρ
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Moreover, if the natural frequency is approximated by the Minnaert frequency ωM in 
(20), the inviscid solution further reduces to  

 
which can be redefined as a normalized perturbation from the new equilibrium:  

() 

3γg ε t 3γgpl0 

′ 

χ= χ += cos . (33)  

ε 3γgR0 ρl  

To observe the dynamics of clouds in which the bubbles are freely oscillating ac-
cording to (33), we define the moments of the (perturbed) bubble radius with respect to 
a smooth bubble size distribution f (R0):  
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For example, µ
1 
stands for the mean bubble radius. It follows from the Riemann– 

Lebesgue lemma [9] that the first moment vanishes as t → ∞, provided that the  
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χ = ε 3γg cos t R0 3γg pl0 ρl − 1 ,  (32) 
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That is, bubble oscillations eventually reach a statistical equilibrium at which the 
different-sized bubbles oscillate totally out of phase and the polydisperse bubble cloud 
can thus be considered to be stationary, regardless of inviscid bubble oscillations. The 
existence of the statistical equilibrium is numerically verified in Fig. 3  
′ 

where the moment µ
1 

is evaluated using the lognormal function (8). While (inviscid) 

oscillations continue in the monodisperse mixture (σ = 0), the inclusion of bubble 
size distributions eventually yields a time-invariant value. Furthermore, the 
broader the distribution, the more quickly cancellation between bubbles at 
different phases of their oscillation cycles is achieved. If the distribution is sufficiently 
broad, the moment can converge to a stationary state, due to apparent damping 
associated with the strong cancellation effect, only within a couple of oscillation 
periods for the probable size.  



Nonlinear oscillations of inviscid bubbles in one-way-coupled flow can also be 
shown to reach a statistical equilibrium and the apparent damping associated with 
polydispersity may dominate over physical dampings, in the averaged sense, if the 
distribution is sufficiently broad (for details see [3, 24, 75]). In the next section, we 
simulate one-dimensional shock propagation based on the continuum model and show 
that the phase cancellation effect comes into play in two-way-coupled poly-disperse 
flows as well.  

3 Simulation of Averaged Shock Dynamics  

3.1 Numerical Method  

Because shocks in bubbly flows often contain oscillatory structures due to bubble 
dynamics, we favor the properties of high-order accurate resolution in complex smooth 
structures as well as shock capturing and robustness. Here, we select a finite-volume 
(FV) weighted essentially non-oscillatory (weighted ENO or WENO) scheme [52, 72], 
which has proven to be stable and accurate for shock computations in various 
examples, together with monotonicity preserving bounds [7]. ENO reconstruction [38] 
is based on adaptive stencils in the sense that interporation across discontinuities is 
automatically avoided. WENO schemes consist of a convex conbination of all the 
ENO candidate stencils for more efficient and accurate evaluations. To guarantee 
entropy solutions, it is safe to implement the WENO procedure in characteristic space 
[67].  
The system of the governing equations in one dimension can be written as  

∂ q ∂ f(q) ∂ fs(q) 

+= + s(q). (36)  

∂t ∂ x ∂ x  

The column vectors (conserved variables, numerical fluxes, and bubble-dynamic  

nϕ˙ 



 
where u is the x-component velocity, ϕ represents the bubble-dynamic variables such 
as R and R˙, and the superscript s denotes sources that vanish in the equilibrium state. 
Given a computational cell [xi− 1/2, xi+1/2] where i denotes the grid index, the system 
(36) is discretized in FV fashion:  

χ = ε 3γg cos t R0 3γg pl0 ρl − 1 ,  (32)  
sources) are  
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= −  ++ s¯i, (38)  

dt Δxi Δxi  

where Δxi is the cell width (xi+1/2 − xi− 1/2) and the overbar denotes the cell-averaged 
quantities. In the FV method, q¯

i 
is reconstructed at each side of the cell edge and the 

numerical flux fi+1/2 is determined from a local Riemann problem. Here, we implement 
the fifth-order monotonicity-preserving FV-WENO scheme in the characteristic space 
for reconstructing the cell-edge conserved variables and then calculate the numerical 
flux using the HLLC approximate Riemann solver [84, 83] that automatically satisfies 
the entropy condition. The HLLC Riemann solver restores contact waves that the HLL 
Riemann solver [39] ignores, and thus gives better resolutions of the contact 
discontinuities.  

Once the HLLC fluxes and the sources are determined, the system (38) in 
semi-discrete form can be integrated in time. In the examples in Sect. 3.3, a third-order 
TVD Runge–Kutta scheme [37, 73] is used to integrate both the convective terms and 
the bubble-dynamic sources. Such an unsplit integration method works for weak 
shocks, for the bubble-dynamic sources are not very stiff. It is instructive to note, 
however, that if the system is stiffer in particular for cases with strong shocks or 
cavitation bubbles, one may need to apply time-step splitting techniques [35, 51, 83] or 
implicit methods [23, 80] for stable time integration.  

In Sect. 3.3, the FV-WENO scheme together with the HLLC Riemann solver is 
used to compute the numerical fluxes and the system is inetgrated in time using the 
unsplit method. The computational grid is uniform with Δx = Rref 

. For the polydis 

0  

perse case, the moments (7) associated with the distribution of equilibrium bubble 
sizes are evaluated using Simpson’s rule with 101 quadrature points. This method has 
been shown to be accurate enough to resolve wave dispersion in a wide range of 
frequency. Moreover, a comparison to the experiment [45] validates the continuum 
approach to predict mixture-averaged dynamics for weak shocks. For further 
infomation, see [3].  

3.2 Steady Shock Relations  

The simulation of shock propagation requires the steady shock relations to be used as 
initial conditions. While shocks in single phase flow have infinitesimal thickness (in a 
continuum sense), the thickness of shocks in bubbly flow becomes finite due to 
bubble-dynamic relaxation. In front of the shock, the bubbles are in equilibrium at (R0, 
T0, pl0) where T0 is the (undisturbed) liquid temperature. Far downstream of the shock 
front, the bubble dynamics are finally damped out and the bubbles are once again in 
equilibrium at (RH , T0, plH ) where RH is the new equilibrium radius corresponding to 
the shock pressure plH . The specification of T0 in the final equilibrium state implies 
that the bubble temperature eventually returns to the liquid temperature due to heat 



conduction across the bubble wall. Now, the one-dimensional conservation laws for 
mass, momentum and bubble number are written in a coordinate system moving with 
the constant shock velocity Us:  



′ 

dρu = 0, (39)  

dx ′ d  

′2 
+ pl −  ˜

 

(ρup)= 0, (40)  

dx ′ ′ 

dnu  

= 0, (41) dx ′  

′′ 

where u is the velocity in the coordinate system with x = x− Ust. Integrating (39) to  
(41) from upstream to far downstream, it transpires that, independent of the detailed 
shock structure,  

′  

− ρHu
H 
= ρ0Us, (42) ′2 

ρHu
H 
+ plH = ρ0U

s 

2 
+ pl0, (43)  

′  

− nHu = (44)  

H
n
0

U
s

, 
 

where the subscripts 0 and H denote upstream and downstream quantities, respec-
tively, and ρ0 =(1 − α0)ρl0 and ρlH =(1 − αH )ρlH .  

The new equilibrium bubble radius RH is related to the shock pressure plH :  

()( )− 3 

2ϒ RH 2ϒ  
plH = pl0 − pv ++ pv −  , (45)  

R0 R0 RH  

where the bubbles are assumed to behave isothermally so that the bubble temperature 
finally returns to T0. From (42) and (44), we write the bubble number density far 
behind the shock as  

()
1/m 

− 1  

pl0 + B 4π  

nH =(1 − α0)+ n0R
3 . (46)  

plH + B3 
H 

 

From (42) and (43), the steady shock speed becomes  

  

  



 plH − pl0 

Us = (), (47)  
ρ0 

ρ01 −  
ρH  

and the induced velocity far downstream of the shock front is then given by  
() 

ρ0 
′  

uH = u
H 
+ Us = 1 −  Us. (48)  

ρH  

It can be shown that the shock speed (47) approaches the sonic speed (23) if the shock 
strength is infinitesimal.  
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Fig. 4 Spatial evolution of the unsteady shock propagation, 5.2µs after the steady shock relations are 
imposed at x = 0, through an air/water mixture of α0 = 0.005. The equilibrium bubble radius is 

lognormally distributed about R
ref 

= 10µm with the standard deviation σ.(a) Averaged liquid  
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pressure. (b) Void fraction. (c) Bubble radius with different equilibrium sizes.  

 



(a)  

t = 15 µs t = 36 µs  

0 2 4 6 810  

0 2 4 6 810 x (mm)  

Fig. 5 Spatial evolution of the shock propagation, 15µs (solid lines) and 36µs (dashed lines) after  

the steady shock relations are imposed at x = 0, through the polydisperse mixture of α0 = 0.005, 
R
ref  

0 
= 10µm, and σ = 0.7. (a) Ensemble-averaged liquid pressure. (b) Bubble radius with different 

equilibrium sizes.  

3.3 One-Dimensional Shock Propagation  

Here, we consider unsteady and steady shock propagation through a polydisperse 
bubbly liquid. As a representative example, we simulate shock propagation in an 
air/water mixture of void fractions below α0 = 0.005 at STP. The equilibrium bubble 
size is assumed lognormally distributed with varying the standard deviation σ. The 
shock pressure is set to plH = 2pl0. The steady shock relations in Sect. 3.2 are initially 
imposed by a diaphragm at x = 0. Diffusive effects on the dynamics of single bubbles 
(i.e., heat and mass diffusion at the bubble wall; see Sect. 2.2) are evaluated using the 
reduced-order model of Preston, Colonius, and Brennen [63], which is accurate for the 
case of micron-sized air bubbles in water. We judge steadiness by observing the first 

 

 



peak of pressure oscillations due to bubble dynamics;  
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Fig. 6 Spatial evolution of the averaged liquid pressure for steady shock propagation through an  

air/water mixture of α0 = 0.005. The equilibrium bubble radius is lognormally distributed about 
R
ref  

= 10µm with σ ranging from 0 to 0.7. The position where the pressure is (pl0 + plH )/2 is set  

0 at x = 0.  

if the peak pressure is unchanged, the shock propagation is considered to be in a steady 
state. Note that we limit our attention to the case of weak shocks in a dilute liquid in 
order to avoid issues associated with bubble fission [16, 29] and direct bubble 
interactions [35, 70].  
In Fig. 4, we examine unsteady shock propagation in an air/water mixture of α0 =  
0.005 and R

ref = 10µm at STP; the mixture is monodisperse (σ = 0) or polydisperse  

0 (σ = 0.7). In addition to the averaged liquid pressure and void 
fraction fields, the spatial evolution of the bubble radius for different equilibrium 
sizes (R

∗  

0 
= 0.25, 0.5, 1, 2, 4) is plotted to visualize the individual bubble 

dynamics. It follows from the pressure field (evidently for the polydisperse case) 
that high-frequency waves precede the primary shock wave and propagate 
essentially with the speed of sound in (pure) water. However, these precursory 
waves do not perturb the void fraction field (Fig. 4(b)), for most bubbles 
(excluding very small bubbles) do not respond to such high-frequency forcing 
(Fig. 4(c)). While the precursory pressure waves in the monodisperse mixture is 
damped out, those in the polydisperse mixture are still on the decay. This is 
because the bubble size distribution decreases the attenuation of high-frequency 
acoustic waves as demonstrated in Fig. 2(b). It is also interesting to note that 
oscillatory shock structure is obtained in the monodisperse mixture but not in the 
polydisperse mixture in which the different-sized bubbles oscillate with different 
phases in the neighborhood of the shock front. To see the details of the 
polydisperse case, Fig. 5 presents the spatial evolution of the shock propagation at 
two different times at which the larger-sized bubbles still show oscillations with 
less effective damping. Despite the (undamped) bubble oscillations, the shock 
profile in the averaged pressure field seems unchanged during this period; the 
shock propagation can thus be said to reach a steady state. Because the 
different-sized bubbles oscillate with different phases as in the case of linear 
waves  
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Fig. 7 Effect of the probable bubble size R
ref on steady shock structure in an air/water mixture 
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α0 = 0.005. The position where the pressure is (pl0 + plH )/2 is set at x = 0. (a) Monodisperse case (σ = 
0). (b) Polydisperse case (σ = 0.7).  

 

 



(Sect. 2.3), the phase cancellations associated with the distribution yield an apparent 
damping of the mixture-averaged shock dynamics, which can be effective enougth to 
make the averaged dynamics insensitive to the behavior of individual bubbles as in this 
example with a broad distribution. To be specific, the phase cancellations in a 
polydisperse bubble cloud occur locally and bubble oscillations reach a statistical 
equilibrium (defined in free oscillations of inviscid bubbles in one-way-coupled flow; 
see Sect. 2.3) shortly after the shock passage, so that the polydisperse cloud does not 
oscillate in the averaged sense. Hence, this collective effect leads to such a smoothed 
shock profile.  

The steady shock structures in the averaged pressure field are plotted in Fig. 6; the 
simulation conditions are the same as in Figs. 4 and 5 with σ ranging from 0 to 0.7, but 
steady solutions are now presented. If the distribution is narrowly peaked, oscillatory 
shock structure is obtained still in the steady state. For the distribution to  
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Fig. 8 Effect of the initial void fraction α0 on steady shock structure in an air/water mixture of 
R
ref  

= 10µm. The position where the pressure is (pl0 + plH )/2 is set at x = 0.  

0  

further broaden, on the contrary, the averaged shock structure becomes less oscillatory 
and the pressure rise tends to be more gradual. Namely, the broader distribution results 
in the more effective apparent damping because the phase cancellation effect is 
augmented with increasing σ. If the distribution is sufficiently broad (say, σ = 0.7), the 
shock profile is smoothed out, indicating the quasistatic behavior of a polydisperse 
bubble cloud in spite of individual bubble dynamics. Such a smoothed shock profile in 
a polydisperse mixture is reported in the experiment of Beylich and G¨ulhan [11].  

To further assess the effect of polydispersity, we continue a parametric study on the 
shock propagation. In Fig. 7, different values of the probable bubble size 

(R
ref  

= 15µm, 10µm, 20µm) are selected to examine its impact on the averaged  

0 shock dynamics in an air/water mixture of α0 = 0.005 for both monodisperse and 
polydisperse cases. The intent is to compare the apparent damping associated with 

 



polydispersity to physical damping (mainly due to thermal dissipation) that depends on 
the value of R

ref 

. The spatial coordinate is normalized by R
ref 

for the compari 

00 son. For the monodisperse case (with no phase cancellation effect), 
the first peak in the pressure oscillations decreases with increasing R

ref 

; the 
single-bubble-dynamic  

0 damping has an impact 
on the averaged shock structure. However, the inclusion of the broad bubble 
size distribution with σ = 0.7 leads to the observation that the shock profiles 
with different values of R

ref 

0 
coincide in the normalized coordinate. This means 

that the dynamics of the polydisperse bubble cloud are insensitive to the 
physical dissipation in bubble oscillations, which is overwhelmed by the 
apparent damping associated with the broad distribution. Finally, the effect of 
the initial void fraction, α0, on the shock simulation with 

R
ref  

= 10µm is explored in Fig. 8. Two different values (α0 = 0.001, 0.005) are  

0 chosen; the corresponding sonic speeds of the mixture (23) in the low frequency  
limit are 312m/s and 142m/s, respectively. In the coordinate normalized by the 
characteristic length c/ωN where c is the sonic speed (23) and ωN is the isothermal 
natural frequency for R

ref 

, the averaged shock structures coincide for both monodis 



0 perse and polydisperse cases. That is, a choice of the initial 
void fraction simply changes the propagation speed but the solutions remain similar.  

4 Shocks in a Mixture-Filled Deformable Tube  

4.1 Quasi-One-Dimensional Conservation Laws  

In the preceeding section, particular attention has been paid to the effect of poly-
dispersity on the mixture-averaged dynamics for weak shocks. Now, we focus on 
nonlinear effects attributed to compressible bubbles in particular for strong shocks. 
One of challenges for creating strong shocks in a fluid-filled tube is related to tube 
deformation that can be regarded as additional compressibility in the shock propa-
gation [89]. The simplest way to tackle this issue is to apply quasi-one-dimensional 
analysis so as to account for the tube deformation. In what follows, we include the 
effect of fluid-structure interaction (FSI) in the ensemble-averaged bubbly flow 
equations presented in Sect. 2.1.  

Let A be the internal cross-sectional area of a (fluid-filled) cylindrical tube. Since 
the effect of tube dynamics on linear wave speeds is negligible in a low-frequency 
limit [74, 82], small tube deformation may be modeled by [71]  

2a0 

A = A01 +(pl − pl0) , (49)  

Eh  

where a is the mid-plane tube radius, h is the wall thickness, E is Young’s modulus of 
the tube material, and the subscript 0 denotes the initial (undisturbed) values. This 
quasistatic relation can be obtained from the balance between liquid pressure pl and 
stress associated with the hoop strain εθ :  

εθ = 
a0 

(pl − pl0) . (50)  

Eh  

From a conventional control volume anlysis, the quasi-one-dimensional versions of 
the mass, momentum, and bubble number conservation laws are written as  

∂ρA ∂ρuA  

+= 0, (51)  

∂t ∂ x ∂ρuA ∂ [] ∂ A  

+ ρu
2

A +(pl − p˜) A= pl , (52)  

∂t ∂ x ∂ x ∂ nA ∂ nuA  

+= 0, (53)  

∂t ∂ x  



where quantities are cross-sectionally averaged. With the quasistatic relation (49) for 
tube deformation, the momentum equation (52) is rewritten as  

∂ρuA ∂ A0a0
2
 

+ ρu
2

A +(pl − p˜) A −  p= 0. (54)  
∂t ∂ x Eh 

l 

 

For future use, we introduce the sonic speed of the mixture, in a low frequency 
limit, that accounts for the structual compressibility as well as the fluid compressibility 
[14]:  

()
− 1/2

 

1dρAc  

cJ == � . (55)  
A dpl 1 + ξ  

Here, c is the sonic speed (23) of the mixture (without FSI) and ξ determines the extent 
of fluid-structure coupling defined as  

2Ka0 

ξ = , (56)  

Eh  

where K is the bulk modulus of the mixture that depends on the void fraction α:  

11 − αα  

=+ . (57)  

K Kl Kg  

The bulk modulus of the gas phase (bubbles) is written as Kg = κ pl where κ is the 
polytropic index that approaches unity in the quasistatic limit; the bulk modulus of the 
(Tait) liquid is given by Kl = m(pl + B). The wave speed (55) is identical to that of 
Kobori et al. [47]. For rigid tubes (E → ∞), this expression coincides with the 
mixture sonic speed (23). In the dilute limit (α →0), this approaches the so-called 
Korteweg–Joukowsky wave speed [43, 48]:  

cl  

cJ →clJ = � . (58) 1 + ξl  

Here, ξl is the FSI parameter for the liquid:  

2Kla0 

ξl = . (59)  

Eh  
4.2 FSI Shock Theory  

Following the same procedure in Sect. 3.2, one can derive the steady shock relations 



corresponding to the quasi-one-dimensional conservation laws. Integrating Eqs. (51) to 
(53), in a frame of moving with the shock speed Us, from upstream (denoted by the 
subscript 0) to far downstream (denoted by the subscript H), we find  



′  

− ρHu
H
AH = ρ0UsA0, (60) ′2 

ρHu
H
AH + g(plH )= ρ0U

s 

2
A0 + g(pl0), (61)  

′  

− nHu
H
AH = n0UsA0, (62)  

′ 

where u is the velocity measured in a coordinata system moving with Us and  
() 

2p
l0

a
0 

A
0

a
02 

g(pl)= A01 −  pl + p
l 
. (63)  

Eh Eh  

The new equilibrium bubble radius RH is also determined from the isothermal 
relation (45). If one ignores vapor pressure and surface tension, it is simply given by  

()− 3 

RH  

plH = pl0 . (64)  

R0  

With this simple relation, the bubble number density (46) at plH is  

()
1/m 
− 1 pl0 + B pl0 nH = n0 (1 − α0)+ α0 , (65) plH + BplH  

and the void fraction at plH is  
()

1/m 
− 1 1 − α0 plH pl0 + B 

αH = 1 + . (66) α0 pl0 plH + B 

From (60) and (61), the steady shock speed becomes  

g(plH ) − g(pl0) 

Us = () , (67)  
ρ0A0 

ρ0A01 −  
ρHAH  

and the induced velocity far downstream of the shock front is then given by  
() 
ρ0A0  

uH = 1 −  Us, (68)  
ρHAH  

where ρH =(1 − αH )ρlH . If the shock strength is infinitesimal (plH → pl0), the shock 



speed (67) approaches the Korteweg–Joukowsky wave speed (55). Consequently, the 
shock Mach number may be defined as  

Us 
Ms = . (69) cJ  

These relations reduce to the steady shock relations in Sect. 3.2, provided that the tube 
material is rigid (E →∞).  
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Fig. 9 Effect of gas-phase compressibility on steady shock propagation through a fluid-filled 
de-formable tube, with varying the initial void fraction α0. The FSI parameter is set to ξl = 7.29. (a) 
Shock speed. (b) Shock Mach number.  

Figure 9 presents the steady shock relations for the case of bubbly water with the 
FSI parameter ξl = 7.29, where the value of ξl is determined from the properties of the 
tube and water used in the experiment [4] to be described in Sect. 4.3. For simplicity, 
we ignore the effects of vapor pressure and surface tension. In this figure, the shock 
speed and the corresponding shock Mach number are plotted as a function of the initial 
void fraction, with varying the shock pressure plH . The case of plH = 1atm means the 
linear wave case, in which the shock speed (67) coincides with the sonic speed (55). At 
α0 = 0, the linear wave speed is given by the Korteweg–Joukowsky velocity (clJ = 
518m/s), which is reduced, due to the structural compressibility, from the sonic speed 
of pure water. It follows from Fig. 9(a) that even a tiny amount of bubbles lead to a 
substantial reduction in the shock speeds. Moreover, unless the void fraction is 
extremely small, the finite shock strength yields a significant deviation from the linear 
wave speed due to the nonlinearity associated with the compressibility of bubbles. As a 
result, the shock Mach number increases with increasing α0 as seen in Fig. 9(b). 
Finally, we note that the shock Mach numbers are close to unity for the case of water 
alone (α0 = 0) because pressure perturbations up to several hundred atmospheres 
remain very weak [40, 55]. In what follows, we report briefly on the experiment [4] to 
validate the observation regarding the gas-phase nonlinearity from the FSI shock 
theory.  

4.3 Water-Hammer Experiments  

The experiments [4] were performed to measure coupled stress waves propagating in a 
deformable tube filled with fluids. The experimental setup (Fig. 10(a)) consists  

3 

of a polycarbonate tube (E = 2.13GPa, ρs = 1200kg/m, a0 = 3.5h = 22.2mm)  
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Fig. 10 Water-hammer experiment for generating a shock through a fluid-filled tube. (a) Schematic of 
the experimental setup. The shock evolution is detected using strain gauges (g1 to g6) and pressure 
transducers (p1 to p6). (b) An example of the image of injected air bubbles with α0 = 0.0081. (c) The 
collapsing bubbles due to shock loading with Hp = 2m.  

containing an air/water mixture inside. A 1.5kg cylindrical steel projectile starts to fall 
2m above the top of the tube and then impacts a 0.46kg polycarbonate buffer inserted 
into the tube. Stress waves in the tube material are measured using six strain gauges g1 
to g6 (placed at intervals of 100mm along the tube and oriented in the hoop direction); 
fluid pressures on the inner tube wall are measured using six pressure transducers p1 to 
p6, which are located at the opposite side of g1 to g6.  

The bubbles are created using a bubble generator that consists of an aluminium 
plate and capillary tubes of inner diamater 20µm, as depicted in Fig. 10(a). The 
capillary tubes panatrate through the drilled holes of the plate and are fastened with 
epoxy. One side of the plate is tightly covered with a chamber, which is pressurized in 
order to inject air into the water column. The water temperature is kept 23

◦

C. The 
sonic speed of the water is 1491m/s; the corresponding Tait constants are m = 7.15 and 
B = 310MPa. The void fraction, α0, ranges from 0 (no air injection) to 1%. An example 
of the image of the injected air bubbles with α0 = 0.0081 is presented in Fig. 10(b). The 
spatial distribution of the bubbles is fairly uniform but with certain size distributions. 
The collapsing bubbles after the projectile impact is captured in Fig. 10(c). The 
shock-induced collapse is too violent to maintain their spherical shape.  



First, the evolution of a shock wave for the case of no air injection (α0 = 0) is examined in 
Fig. 11. The strain and pressure histories at different locations along the tube direction are 
separately plotted in the vertical axis for clarity. Note that precursory waves (propagating 
essentially with the sonic speed of the tube material) precede the primary shock wave but their 
amplitude is too small to be visible in these plots scaled with the large amplitude of the shock. In 
Fig. 11(a), three different threshold levels of the hoop strain (30%, 40% and 50% of the 
maximum strain measured at the strain gauge g1) are selected to determine the postion of the 
wave front; the wave speed (with its standard deviation) is then obtained from the slope of a 
linear least-squares fit to the wave front positions. It transpires that the wave speed is fairly 
constant and the dispersion resulting from the thresholding is very small. Moreover, the 
measured wave speed (521m/s) is in reasonable agreement with the Korteweg–Joukowsky 
velocity (518m/s from (58)). This suggests that the linear theory works effectively for predicting 
the water-hammer velocity in the case without bubbles, even thougth the wave is dispersive due 
to structural oscillations and decays as it evolves.  

Next, the case with bubbly water of α0 = 0.0024 is investigated in Fig. 12. As in the 
previous example, the propagation speed is determined from the strain histories and 
turns out fairly constant with small standard deviation. The wave speed (474m/s) is 
now reduced by the compressible bubbles. However, the sonic speed of the mixture 
(containing isothermal bubbles) is 191m/s from (55). The significant deviation 
between the measurement and the linear theory explains the nonlinear effect that 
results from the gas-phase compressibility. The pressure amplitude due to the shock 
loading is on the order of megapascals at which the bubble responce is no longer linear 
and the linear theory is thus incapable of properly evaluating additional 
compressibility associated with the compressed bubbles. It is also interesting to point 
out that the pressure signals are contaminated with acoustic radiation from the 
collapsing bubbles in the neighborhood of the pressure gauges but the fluctuations at 
different positions are irregular due to a random configuration of the bubbles. On the 
other hand, the structural response is slower and rather insensitive to such pressure 
fluctiations.  

Finally, we make a comparison between the experiment and the FSI shock theory. 
To do so, we need to assign piston velocity uH for the closure of the steady shock 
relations in Sect. 4.2. The velocity of the buffer (inserted into the top of the tube) may 
be considered to be representative values of uH . For every experimental run, the buffer 
position was recorded using a high-speed camera. The position history was extracted 
from the movie and well fitted to an exponential based on the least-squares method; the 
buffer velocity was determined from the fitted function. The buffer motion was found 
to decelerate considerably within observation periods. The details of analyzing the 
buffer dynamics can be found in [4]. Despite the decelerating buffer motion, the waves 
propagate fairly with constant speeds as presented in Figs.  
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11 and 12. This may be explained as follows. Initially, the shock is generated soon 
after the projectile collides with the buffer and starts to propagate in the fluid. At later 
times, the rarefaction wave arises from the deceleration of the buffer but cannot catch 
up the preceeding shock wave, which is propagating faster due to larger peak pressure. 
As a result, the peak pressure of the preceeding shock wave will not change if damping 
effects do not come into play (see Fig. 11(b)). Provided that the peak pressure is 
critical to the determination of the shock speed even in the case with bubbles, we will 
obtain constant shock speeds. In Fig. 13, the wave speeds from the FSI shock theory as 
well as the sonic speeds are plotted as a function of α0 and compared to the measured 
wave speeds. At each α0, we define the upper and lower bounds of the theoretical 
shock speed that correspond to the maximum and minimum piston velocities during 
the measurement period, respectively. Errors in the measured wave speeds and void 
fractions are small and omitted in this figure for clarity. It is confirmed that the choice 
of uH is irrelevant at α0 = 0, for the nonlinear effect related to the liquid and struc-
tural compressibility is minor in this example. However, the measured speeds for the 

0 0 0.002 
0.004 0.006 0.008 0.01 α0  



bubbly cases clearly show deviations from the sonic speeds. This explains the effect of 
the gas-phase nonlinearity on the propagation speeds of finite-amplitude waves. 
Although uncertainty associated with the choice of uH is augmented as the void 
fraction increases, the FSI shock theory allows us to more accurately capturing the 
trend with increasing α0. This suggests that the gas-phase nonlinearity as well as FSI 
needs to be taken into account to properly estimate the propagation speeds of shock 
waves in a mixture-filled tube.  



In developing the FSI shock theory, we have ignored damping and wave dispersion, 
for simplicity, that result from the dynamics of both fluids and structures. To account 
for such effects, there is a need to numerically evaluate (unsteady) conservation laws 
for bubbly flow interacting with a deformable tube. If bubble fission occurs due to 
shock loading as in Fig. 10(c), the fission damping needs to be included in the 
modeling of single bubble dynamics [16, 29]. Unsteady wall friction  
[10] and the viscoelasticity of tube materials [76] may also affect the wave speed and 
damping.  

5 Concluding Remarks  

The shock dynamics of dilute bubbly flows have been reviewed. Particularly, 
one-dimensional shock propagation was considered as a canonical example in order to 
clarify fundamental issues arising in polydisperse flows in pipes. First, the conser-
vation laws for bubbly flows with the distribution of equilibrium bubble sizes were 
formulated, using an ensemble-averaging technique, so as to investigate 
mixture-averaged dynamics. The dispersion relation for linear waves, which results 
from linearizing the mixture-averaged conservation equations, shows that the inclusion 
of broad bubble size distribution yields a profound impact on acoustic properties. Next, 
the propagation of weak shocks in polydisperse flows was numerically studied. A 
series of the numerical simulations reveal that the bubble size distribution leads to an 
apparent damping of the averaged shock dynamics due to phase cancelations in 
oscillations of the different-sized bubbles; the apparent damping with broad size 
distributions can dominate over physical dissipation associated with individual bubble 
dynamics and makes the shock profile less oscillatory. Finally, the propagation of 
strong shocks in a fluid-filled, deformable tube was considered. The bubbly flow 
equations were extended to quasi-one-dimensional configurations and the steady shock 
relations that account for tube deformation were derived. A comparison between the 
FSI shock theory and the water-hammer experiment clearly suggests that the nonlinear 
effect attributed to compressible bubbles (as well as FSI) needs to be taken into 
account to properly predict the propagation speeds of finite-amplitude waves in a 
mixture-filled pipe.  
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