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Chute Flow of Granular Materials

EXxisting constitutive relations and governing equations have been used to solve for
Jully developed chute flows of granular materials. In particular, the results of Lun
et al. (1984) have been employed and the boundary value problem has been for-

mulated with two parameters (the coefficient of restitution between particles, and
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the chute inclination), and three boundary values at the chute base wall, namely
the values of solid fraction, granular temperature, and mean velocity at the wall.
The boundary value problem has been numerically solved by the “‘shooting method. >’

The results show the significant role played by granular conduction in determining
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the profiles of granular temperature, solid fraction, and mean velocity in chute
Sflows. These analytical results are also compared with experimental measurements

of velocity fluctuation, solid fraction, and mean velocity made by Ahn et al. (1989),
and with the computer simulations by Campbell and Brennen (1985b).

1 Imtroduction

The rapid flow of granular materials is characterized by high
deformation rates, and this rapid shearing motion of the flow
causes collisions between particles, generafing random motion
of those particles. The random motions constitute a so-called
granular temperature which is a measure of the fluctuation
energy in the granular material. Just like the normal ther-
modynamic temperature, granular temperature is conducted
if there is any temperature gradient. That is, fluctuation energy
flows from a region of high fluctuation energy to a region of
low fluctuation energy by the process of granular conduction.

Though many studies on granular materials draw the analogy
with the kinetic theory of gases, there are differences between
granular materials and gas molecules. One of the major dif-
ferences is that the collisions between granular particles are
inelastic. This implies that energy dissipation due to inelastic
collisions plays an important role in fluctuation energy balance.
Therefore, the question of how the flow creates a balance
between the generation of fluctuation energy due to shear
motions, its dissipation, and granular conducion becomes an
important issue to be explored (see Haff (1983, 1986)).

Our knowledge of the rheological behavior of rapidly flow-
ing granular materials has been advanced by several theoretical
works. For example, Ogawa et al. (1980), Savage and Jeffrey
(1981), Jenkins and Savage (1983), and Lun et al. (1984) have
provided constitutive relations which lead to a comprehension
of how stresses are associated with solid fraction, shear rate,
and granular temperature, and how energy flux is related to
granular temperature, solid fraction, and their gradients. These
theoretical results have been applied to a simple shear flow.
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Especially in the work of Lun et al., the ratio of the charac-
teristic mean shear velocity to the granular temperature, and
the ratio of shear stress to normal stress, are given as functions
of solid fraction and the coefficient of restitution. In appli-
cation to chute flows, however, theoretical works have faced
difficultiés due to lack of knowledge of appropriate boundary
conditions at the solid wall (for example, see Hui et al. (1984)
and Richman and Marciniec (1988)). Furthermore, the non-
uniformity of velocity gradient, granular temperature, and
solid fraction over the depth of flow complicate the solution
of the equations for chute flows.

Computer simulations of Couette flows (for example,
Campbell and Brennen (1985a), Walton and Braun (1986a,b),
Campbell and Gong (1986), and Campbell (1989)) have added
considerably to our knowledge of the rheology of granular
material flows. For example, anisotropy of the granular tem-
perature has been found in most computer simulations while
most theoretical works assume the temperature to be isotropic.
Relatively little work has been done on the computer simulation
of gravity flows. Campbell and Brennen (1985b) simulated
chute flows with two-dimensional disks, presenting profiles of
velocity, solid fraction, and granular temperature over the
depth of flow. Walton et al. (1988) have used three-dimensional
spheres to simulate gravity flow of particles through arrays of
cylindrical horizontal rods and down inclined chutes. Both
have employed periodic boundaries which imply steady, fully
developed flow.

On the other hand, progress in experimental methods for
granular materials has been very limited, being hindered by
obvious difficulties involved in making point measurements
of velocity, solid fraction, and granular temperature in the
interior of granular flows. For example, the granular temper-
ature, in spite of its importance, had not been experimentally
measured until Ahn et al. (1988) used fiber-optic displacement
probes to measure one component of the granular temperature.
The present state of the experimental information on granular
flows consists of a number of Couette flow studies (e.g., Savage
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and McKeown (1983), Savage and Sayed (1984), Hanes and
Inman (1985), Craig et al. (1986)) and several studies of flows
down inclined chutes (¢.g., Bailard (1978), Augenstein and
Hogg (1978), Savage (1979), Sayed and Savage (1983), and
Ahn et al. (1988, 1989)). The understandable initial objective
of some of the Couette flow experiments, such as those of
Savage and McKeown, was to produce a simple shear flow
with uniform velocity gradient, uniform solid fraction, and
hopefully, uniform granular temperature. To this end the sur-
faces of the solid walls were roughened to create a no-slip
condition at the wall though practical engineering applications
usually involve smooth walls.

Only recently has the numerical analysis of the flow of gran-
ular materials been attempted, partly because the constitutive
relations have been unclear and partly because the boundary
conditions remain still uncertain. For rapid granular flow, Hui
et al. (1984) developed boundary conditions which were derived
from the nature of individual grain-wall collisions. Johnson
and Jackson (1987) proposed constitutive relations in which
frictional and collisional-translational mechanisms are com-
bined for stress transmission. Furthermore, they developed
boundary conditions at the wall which relate friction force and
slip velocity at the wall with the large-scale roughness of the
surface and relate the wall-particle coefficient of restitution
and fluctuation energy flux at the wall. Both relations were
described in terms of local density and granular temperature.
Using these boundary conditions, Johnson and Jackson (1988)
attempted to solve numerically the chute flow of granular
materials.

Clearly, the limitations involved in an analytical approach
to granular material flows lie in the postulated constitutive
relations and boundary conditions, and in the assumption that
a continuum approach has validity. Therefore, without thor-
ough understanding of constitutive relations and boundary
conditions, the analytical results will be of limited value. Fur-
thermore, the continuum assumption implies that the analysis
will become of dubious validity when the depth of the flow
becomes less than several particle diameters.

2 Analysis of Chute Flows

2.1 The Governing Equations and the Constitutive Equa-
tions. In the present analysis of fully developed chute flow,
the constitutive equations of Lun et al. (1984) for granular
materials are used along with the basic equations of motions.
The continuity equation, the momentum equations, and the
translational fluctuation energy equation are as follows:

dp
. . 1
di pV-u (§))]

du
—=pb— VP 2
PP 2
29T pivu-v.q-. @)

27 dt

In these equations, p=p,» represents the bulk density, where
pp is the particle density and » is the solid fraction. The bulk
velocity and the body force per unit mass are represented by
u and b, respectively, and P is the stress tensor. The granular
temperature, T, is defined by (1/3)(Cu’?) +(v'%y +(w'?))
where u’, v’, and w’ are the three velocity fluctuation com-
ponents. Finally, q is the flux of fluctuation energy, and v is
the rate of the dissipation of fluctuation energy per unit vol-
ume. In the translational fluctuation energy equation, the term
—P: vuindicates the work done to the system by the stresses,
and the so-called conduction term, — V -q, represents the con-
duction of the fluctuation energy within the system.

The recent studies of the rheological behavior of rapidly
flowing granular materials have provided explicit constitutive
expressions most of which have been derived using metho-
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dologies from the kinetic theory of gases. Most of them, how-
ever, are not applicable over the entire range of solid fraction.
For example, the expressions of Jenkins and Savage (1983) fail
at the boundary of the free surface of the chute flow. Only
the results presented by Lun et al. (1984) seem to be satisfactory
for application to chute flows. Following Lun et al., the total
stress tensor is written as

L
P= {ppgl(v,ep) T—ppd—3~ g T *v -ll}
xXI- 2ppdg2(Vyep) Tl/zsa (4)

where I is the identity matrix and S is given as S=(1/2)
(uij+u;)— 1/3u;.46;;. The particle diameter is d, and
n=(1+e,)/2 where e, is the coefficient of restitution for col-
lisions between particles. The flux vector of fluctuation energy
is

q= '—ppd(g?)(yaep)Tl/zvT+g4(V7ep)T3/2VV)y (5)
and the rate of dissipation per unit volume is
o
V=7 8s0nep) T2 (6)

HCI'C,. gl(V9ep)9 gZ(Vyep)s g3(v,ep), g4("’sep): and gS(Vsep) are the
functions of » and e, as follows:
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And gy, the radial distribution function, is chosen as suggested
by Lun and Savage (1986), as follows:

» —-2.50%
8= (1 _V—*) ’

where v* is the maximum shearable solid fraction for spherical
particles; a value of »* =0.62 is used in this analysis. It should
be noted that g, g,, g3, and gs are positive quantities for all
v and e, while g, is always negative. Furthermore, g, and gs
vanish as v—0 while go, 25, g3, g4, and all the derivatives of
8os 81> 83, 83, &4, With respect to », do not vanish as »—0.

2.2 The Formulation of the Boundary Value Prob-
lem. We shall now apply these governing equations by Lun
et al. (1984) to two-dimensional fully developed flow down an
inclined plane. In such a flow the derivatives parallel to the
plane are zero and the continuity Eq. (1) is automatically sat-
isfied. The momentum Egs. (2) in the flow direction (x-direc-
tion) and in the direction normal to the chute base (y-direction)
become

oP

T;X = —p,rgcosd, %)
aP L
—af = pprgsing, (8)
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where § is the angle of the chute inclination, and g is the

gravitational acceleration. Note that for the fully developed

chute flow, — P,,/P,,=tanf. The energy equation simplifies

to
ou oq

0= —P———2—y. 9

»y Y ay Y ©

The constitutive Egs. (4) and (5) also simplify. Since v -u=0,
the normal and shear stresses become

Pyy:ppng, (10)

ou i
Pyx=—ppdg25T‘ , (1n

and. the y-component of fluctuation energy flux is given as
aT i

= —pdl eT2E o, T2 ]
4qy Pp (g3 ay 84 ay

Here the temperature gradient term has no known physical
significance. For the sake of comparison, we retain all the
terms of Lun et al.

Equations (7)-(9) with (6) and (10)-(12), after nondimen-
sionalization, can be written in the following form:

o 1 N aT*
= e—— |+ g ),
oy T \" oy
T 1 g 1 foT*\2
=— - T*g{? ] tan®d—gst +—
ay*? g12(81g4—g1g3)[ ' {gz 8T ay*
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+ o lgigar+ (2lei —g{'govz}], (14

ou*
P & T+ tand.
ay* &
Here the dimensionless spatial coordinate y*, granular tem-
perature 7%, and mean velocity u* are defined by
4
d’
T

(15)

y*

*

N gdcosf’

u
U =——.
+/ gdcosf

And in g{, g, g/, and g{, the dashes denote differentiation
with respect to ». These differential equations are nonlinear,
and must be solved simultaneously. Equations (13) and (14)
can be solved for » and T*; u* follows from Eq. (15). It is
important to note that » and 7* have solutions independent
of u*.

The above system of differential Eqgs. (13)-(15) requires
boundary conditions both at the wall of the chute base and at
the free surface. At the free surface, the stresses and the energy
flux, g,, must vanish. It is clear that all the conditions are
satisfied if and only if 47*/8y* vanishes at the free surface.
In Eq. (13), when this gradient of the granular temperature
tends to zero at the free surface, the gradient of solid fraction
is always negative, and thus the solid fraction vanishes in an
approximately exponential manner. Since the solid fraction
vanishes at the free surface, the gradient of the solid fraction
tends to zero. Therefore, the energy flux vanishes because both
gradients of granular temperature and solid fraction vanish at
the free surface. Note that the gradient of mean velocity also
vanishes, since the solid fraction tends to zero at the free
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surface. Therefore, all the stresses and their derivatives vanish
as v goes to zero, satisfying the momentum equations at the
free surface. The energy equation is also satisfied since all three
terms in Eq. (9) vanish independently at the free surface.

It transpires that 7=0 also satisfies all the boundary con-
ditions at the free surface. However, if 7=0, dq,/dy should
be zero from the energy Eq. (9). The condition of dg,/dy=0
at the free surface with T=0 yields 37/3y =0 at the free sur-
face. (This can be shown by differentiating Eq. (12) with respect
to y.) Therefore, the condition §7/dy =0 is sufficient and nec-
essary to satisfy all the boundary conditions at the free surface.

Hence, the boundary value problem is formulated as fol-
lows: The differential Egs. (13), (14), and (15), are to be
solved with three boundary values at the wall (», T*, and u*
at y*=0) and one boundary condition at the free surface
(dT*/dy* =0). A “‘shooting method’” has been chosen to solve
this boundary value problem. That is, for given », T*, and ©*
at the wall, a guess is made for the value of d7*/3y* at y*=0.
With these four values, the above differential equations are
integrated from y*=0to y*=oo. If T*/3y* at y* = oo is not
zero after integration, another 7*/dy* at y* =0 is tried. This
iterative procedure is continued until 37*/3y* at y* = oo be-
comes zero. In practice, as the equations are integrated from
0 to o, a finite »¥ is found at which 8T*/dy* is sufficiently
small to say that y} is the location of the free surface. Iterations
were done until the ratio of the temperature gradient at the
free surface to that at the wall became about 107%, and the
differential equations were, for most of cases, integrated up
to y* =10~ 100. A fourth-order Runge-Kutta method was em-
ployed, and no convergence problems were encountered.

It is noteworthy that the location of the free surface is au-
tomatically determined in the present analysis. In other liter-
ature, there have been efforts to locate the free surface using
various techniques. For example, Johnson and Jackson (1988)
have attempted a numerical analysis similar to the present one.
In their analysis, the spatial coordinate ¥ was normalized by
h, the depth of flow. Since # is not well defined because often
v vanishes slowly, it was necessary to define a small layer
adjacent to the free surface. The location of this layer was
then defined as 4, and a boundary value problem was solved
between Y=0 and Y=~h. Later, the results near Y= h were
matched to asymptotic low density solutions in the neighbor-
hood of the free surface. The asymptotic solutions were ob-
tained by demanding that the solid fraction and the derivatives
of velocity and granular temperature vanish as Y—oo.

3 Results of Analysis and Comparisons

3.1 Results of Analysis. As described earlier, the flow
properties, », T*, and u*, were obtained as functions of y*—
the distance from the chute base normalized by the particle
diameter. Each result was specified by the two parameters, ¢,
and tan#, and three boundary values at the wall, »,, Ty, and

ut. The results for \/F and u* were normalized by JT% and
u}, respectively.

Though two parameters and three boundary values created
numerous variations, the results could be classified into two
distinct types and a transitional type according to the form
of the granular temperature profile. The first type is illustrated
by the solution shown in Fig. 1 for which e,=0.95, tanf=0.4,
T*=2, »,=0.2, and u* = 10. Note that granular temperature
increases with distance from the wall. The profile of solid
fraction exhibits a monotonic decrease from the wall to the
free surface, and it is clear that solid fraction vanishes at the
free surface. The profile of mean velocity appears to be roughly
parabolic. Near the wall the profile is fairly linear, and the
velocity gradient tends to zero at the free surface. The physical
location of the free surface, £, is ill-defined in view of the solid
fraction profile. One might reach different conclusions about
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Fig. 1(a) Nondimensionalized square root of granular temperature,
(T*/T%)"2, (b) solid fraction, », and (c) nondimensionalized mean velogity,
u*/uy,, against nondimensionalized distance from the chute base, y*.
Parameters: e,=0.95 and tand=0.4. Boundary values at the wall:
Ty=2,»,=0.2, and u},=10.
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Fig. 2(a) Nondimensionalized square root of granular temperature,
(T*/T3)'"", (b) solid fraction, », and (c) nondimensionalized mean velocity,
u*/uy, against nondimensionalized distance from the chute base, y*.
Parameters: e,=0.6 and tanf=0.4. Boundary values at the wall:

1.5

2.0

fa=2, »,=02, and u; = 10.
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Fig. 3(a) Nondimensionalized square root of granular temperature,
(T/T%)'"”, (b) solid traction, », and (c) nondimensionalized mean velocity,
u*/ug, against nondimensionalized distance from the chute base, y*.
Parameters: e,=0.9 and tanf=0.4. Boundary values at the wall:

Tv=2,»,=03, and u},=10.

the value of #, depending on whether the granular temperature
or the velocity profile is being examined.

Obvious differences in the profile of the granular temper-
ature occur for the second type illustrated in Fig. 2 for which
€,=0.6 and the other values remain unchanged. First of all,
the temperature gradient is now negative. The variation of the
magnitude of the temperature with distance from the chute
based is substantial. The different choice of the value of the
coefficient of restitution also results in a particular type of
solid fraction profile, where the maximum solid fraction is
achieved in the center of the flow and lower densities occur
both at the wall and at the free surface. In this case, the free
surface is more clearly defined.

Finally, a transitional type, which contains features of both
the first and second types, is illustrated in Fig. 3. Note that
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e,=0.8 and »,,=0.3 while the other parameter and boundary
values are not changed. The granular temperature first in-
creases with distance from the wall boundary, then decreases
at larger distances from the wall, and then becomes uniform
near the free surface. The profile of solid fraction is similar
to that of the first type.

The question of when each of these types of the granular
temperature profiles occurs will be discussed later. In this pres-
entation, the first, second, and last types will be referred to
as Type I, Type II, and Type III, respectively.

The effect of the variation of the parameter tanf is inves-
tigated in Fig. 4. The results show that higher gradients of
granular temperature and velocity arise from a higher angle
of chute inclination, and the depth of flow also increases. This
is consistent with a physical understanding of the chute flow.
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Fig. 4 The effect of the variation of the chute inclination angle.
(a) Nondimensionalized square root of granular temperature, (T*/T%)'",
(b) solid fraction, », and (c) nondimensionalized mean velocity, u*/u},
against nondimensionalized distance from the chute base, y*. Param-
eters: e,=0.95, tand = 0.3, and 0.4. Boundary values at the wall: T:, =2,
vy =0.2, and uy, =10.
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Fig. 5 The effect of the variation of granular temperature at the wall.
(a) Nondimensionalized square root of granular temperature, (7+/T%)'2,
(b) solid fraction, », and {(c) nondimensionalized mean velocity, u*/uj,
against nondimensionalized distance from the chute base, y*. Param-
eters: e, =0.95 and tand = 0.4. Boundary values at the wall: T4 =1 and 2,
v, =0.2, and u}, =10.

1
005 0.1 015 02

2
(T* T%) ut u,
Fig. 6 The effect of the variation of solid fraction at the wall. (a) Non-
dimensionalized square root of granular temperature, (T*/T%)'%, (b) solid
fraction, », and (¢) nondimensionalized mean velocity, u*/u}, against
nondimensionalized distance from the chute base, y*. Parameters:
€,=0.95 and tand = 0.4. Boundary values at the wall: 7}, =2, »,=0.15 and
0.2, and uy, =10.

That is, for a higher inclination angle, particles move faster
and collide with greater impact, resulting in the increase of
granular temperature and velocity gradient. The increase of
the overall granular temperature causes dilatation near the wall
which is accompanied by an increase in the depth of flow. As
a result, the solid fraction for the higher chute inclination is
lower near the wall, but higher at a distance from the wall.
The effect of the variation of boundary values at the wall
is examined in Figs. 5 and 6. Comparison shows that a larger
value of granular temperature at the wall results in an increase
in the granular temperature gradient and thus the overall gran-
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ular temperature as shown in Fig. 5. As a consequence, (see
Eq. (15)), the gradient of mean velocity also increases. The
increase of granular temperature is also accompanied by an
increase in the depth of flow. These results are consistent with
the experimental observations of Ahn et al. (1989). On the
surface where higher temperature is created, higher gradients
of temperature and velocity are observed, and the depth of
flow is increased.

The effect of the variation of solid fraction at the wall is
examined in Fig. 6. When a larger solid fraction is prescribed
at the wall, the granular temperature, the depth of flow, and
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Fig. 7 Comparison with the experimental data of Ahn et al. (1989). The
smooth aluminum surface used for the chute base and d=1.26 mm 4,
data from the experiment. Solid line results of the present analysis. (a)
Nondimensionalized square root of granular temperature, (T*/T%)'Z, (b)
solid fraction, », and (¢) nondimensionalized mean velocity, u*/u},, against
nondimensionalized distance from the chute base, y*. Parameters:
€,=0.95 and tané=0.418. Boundary values at the wall: T;=0.935,
v, =0.205 and 0.304, and uy, =11.3.
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12
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Fig. 8 Comparison with the experimental data of Ahn et al. (1989). The
rubber-coated surface used for the chute base and d=3.04 mm A, data
from the experiment. Solid line results of the present analysis. (a) Non-
dimensionalized square root of granular temperature, (T*/T%)"2, (b) solid
fraction, », and (¢) nondimensionalized mean velocity, u*/uj, against
nondimensionalized distance from the chute base, y*. Parameters:
e,=0.95 and tan6=0.418. Boundary values at the wall: T =0.440,
»,=0.179 and 0.244, and u}, =4.39.

the mean velocity all increase significantly. These results agree
with the experimental observations. In order to have a high
solid fraction at a given chute inclination, the mass flow rate
needs to be large and this implies a deeper flow.

3.2 Comparison with Experimental Results. Few exper-
imental data are available for comparison with these analytical
results. In particular, there are almost no measurements of
granular temperature, Furthermore, the wall boundary con-
ditions are not sufficiently well understood to allow us to
estimate the values of 7%, v, and u* at the wall. The experiments
of Ahn et al. (1989) represent an attempt to acquire the nec-
essary data. In measurements through the sidewalls, the pro-
files of one component of granular temperature, mean velocity,
and linear concentration were obtained. For comparison with
the present results, granular temperature and solid fraction are
obtained from one component of granular temperature, {u 2y,
and linear concentration, »p, by taking T=<{u’'?) and
v =7vip/6. Furthermore, the value of e,=0.95 is appropriate
for the glass beads used in the experiments (see Lun and Savage
(1986)) and this value of e, is employed in all the results pre-
sented.

In a strict sense the solid fraction goes to zero at the wall
since the particles are spherical. As a result, the appropriate
wall solid fraction to be used in the corresponding continuum
model is rather unclear. Therefore, two candidate choices are
employed in the comparisons which follow. One is the solid
fraction which was obtained at the measurement location clos-
est to the wall. The other is the maximum solid fraction which
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was usually obtained at between a half and one-particle di-
ameter distance from the wall.

Experimental data for 1.26-mm diameter glass beads flowing
down a chute with a smooth aluminum surface are compared
with the present analysis in Fig. 7. The chute inclination angle
# was 22.7 deg, and the boundary values at the wall, 77 =0.935
and uj,=11.3 are taken from the experiments. Two wall solid
fractions are used as described above, namely, 0.205 and 0.304.
The profile of granular temperature from the experiments shows
a general increase of temperature with distance from the wall.
This increasing feature is predicted by the present analysis.
With »,,=0.205, the magnitude of granular temperature is also
well predicted. Moreover, the monotonic decrease of solid
fraction with distance from the wall is consistent with the
experiments. Near the wall, the result for the case of »,,=0.304
shows better agreement with the experiments, but at the free
surface, the present analytical result deviates from the exper-
iments. For »,,=0.205, the depth of flow of the analysis is
consistent with that of the experiments while there is slight
discrepancy near the wall. In addition, good agreement is ob-
served between the profiles of mean velocity for the case of
v, =0.205.

For the second comparison, experimental data with a rubber-
coated chute base are presented in Fig. 8. This rubber-coated
surface created quite different boundary conditions. Com-
pared to a smooth aluminum surface, the depth of flow was
high, mean velocity was usually low, and both the gradients
of mean velocity and granular temperature were high. In the
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Fig. 9 Comparison with the computer simulations by Campbell and
Brennen (1985b). A, data from the computer simulations. Type A simu-
lation with ¢=230 deg, ¢,=0.6, and e, =0.8. Solid line, results of the
present analysis. Parameters: e, = 0.6, and tanf = 0.577 and 0.45. Bound-
ary values at the wall: T}, =7.00, »,=0.140, and u}, = 14.0. (a) Nondimen-
sionalized square root of granular temperature, (T*/T%)"?, (b) solid
fraction, », and (¢) nondimensionalized mean velocity, u*/u}, against

nondimensionalized distance from the chute base, y*.

experiments, the 3.04-mm glass beads were used, and the chute
inclination angle was 22.7 deg. Boundary values at the wall,
T%=0.44 and u},=4.388 are taken from the experiments, and
v,=0.179 and »,,=0.244 are chosen as alternative solid frac-
tions at the wall. Considerable discrepancy is observed between
the profiles of granular temperature. The present analysis yields
almost uniform granular temperature while the experimental
data display significant granular conduction from the free sur-
face to the wall. On the other hand, a remarkable agreement
is found in the profiles of solid fraction, especially in the case
of »,=0.244. The depth of flow as well as the general shape
of solid fraction profile is well predicted in the present analysis.
In the profiles of mean velocity, a deviation of the analysis
from the experimental data is found. The discrepancies found
in the profiles of granular temperature and mean velocity could
be a result of the experimental flow not being fully developed.
One might surmise that this flow would obtain a higher gran-
ular temperature as it becomes fully developed. If a large value
of T% were used in the present analysis, considerable increases
of granular temperature and mean velocity would result (as
shown in Fig. 5).

3.3 Comparison with Computer Simulation. Com-
parison of the present analysis can also be made with the
computer simulations of Campbell and Brennen (1985b). The
results of Campbell and Brennen for 8 =30 deg or tan §=0.557,
e,=0.6, and e,,=0.8 and their Type A boundary condition are
presented in Fig. 9. The results, with two-dimensional disks,
were converted into three-dimensional values by taking
vip=413/3\7 and T=(1/2)(<u’'*) +{v’?)). The boundary
values were T%=7, ul =14, and »,=0.14. The results of the
present analysis with these parameters and boundary values
are shown in Fig. 9. When tanf=0.577 is used as a parameter
in the analysis, a fundamental difference is found. The results
of Campbell and Brennen are of Type II, while the present
analysis yields a Type III flow. However, when tanf =0.45 is
used for the analysis, comparison shows excellent agreement
between the analysis and the computer simulation. Both pro-
files of granular temperature have negative gradients, and their
magnitudes are also in good agreement. The profiles of solid
fraction are qualitatively similar, and the depth of flow is also
well predicted. A discrepancy in the magnitude of solid fraction
may arise from the fact that the computer simulations were
done with two-dimensional disks. In the case of tanf=0.45,
the mean velocity profiles also show good agreement between
the computer simulation and the present analysis.

In short, good agreement is achieved in the case of tan
0=0.45, which is slightly different from the value of the com-
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puter simulation. This may imply that the present analysis
confirms the possibility of the existence of Type II flow but
does not accurately predict when that type of flow takes place.

The results of Campbell and Brennen’s computer simula-
tions at the small chute angle of #=20 deg could not be re-
produced by the present analysis. The analysis yielded a Type
Il temperature profile, while the computer simulations pro-
duced a type of plug flow. That is, the minimum granular
temperature was achieved in the center of the flow and higher
temperature occurred both at the wall and at the free surface.
The solid fraction profile of the analysis was similar to Type
I while the computer simulation result had the profile of Type
1I.

Comparisons of the present analysis with experiments and
computer simulations lead to the following conclusions: The
experimental data are similar to Type I flow in which a positive
temperature gradient and monotonically decreasing solid frac-
tion are observed. The present analysis also produces the results
of Type I as long as the boundary values are properly chosen.
The general profiles of flow properties are well predicted,
though some discrepancies in their magnitudes are observed.
On the other hand, the computer simulations have Type 1I
flows for sufficiently high chute inclinations. The granular
temperature decreases with distance from the wall, and the
solid fraction increases near the wall and decreases with further
distance from the wall. These results can also be produced by
the present analysis when a slight change in the parameter tané
is made.

The fundamental difference between the experimental results
and the computer simulations is the value of the coefficient
of restitution (e,=0.95 for the experiments and e,=0.6 for
the computer simulations). The different values of e, result in
Type I flow for the experiments and Type II flow for the
computer simulations. This will be discussed further in the
next section.

4 The Nature of Granular Conduction

For fully developed chute flows, the translational fluctuation

energy Eq. (9) may be written as follows:
W+Q—v=0

where W is the rate of the work done by stresses to the system
per unit volume, Q is the rate of conduction of the fluctuation
energy within the system, and + is the dissipation rate per unit
volume. For a simple shear flow, the conduction term dis-
appears from the energy equation. But for chute flows, the
role of the conduction term, or its magnitude compared to the
other two terms, has been unclear. Haff (1986) emphasized
the importance of grain. inelasticity during a discussion of the
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conduction and damping length scales. In this section,.the
fundamental nature of the conduction term will be discussed.

For fully developed chute flow, the ratio of shear stress to
normal stress is a constant, given by tanf. Using the constitutive
equations for the stresses presented in Egs. (10) and (11), the
ratio of the characteristic velocity gradient to the granular

temperature, often known as S or R in the literature, is given
as follows:
du  du”
__ DA g
Tl/Z T*I/Z & g .

Recall that g; and g, are functions only of e, and ». Therefore,
S is a function not only of e, and » but also of tanf, while for
Couette flows it is a function only of e, and ». Note S vanishes
at the free surface since g; tends to zero as y—0.

The explicit form of § makes it possible to evaluate the work
done by shear stress, and thus all the terms in the fluctuation
energy equation are given as follows:

2
we =8l 32,

&2
¥ =g5T*3/2
Q* ="Y* - W*

1 L B e I o o o e

tan 0.5

0. o b v by by v s b s b i

where W*, v*, and Q* are shear work term, dissipation term,
and granular conduction term nondimensionalized by
p,(gdcost)’’?/d. Furthermore, it is recalled that

._ 09"
o= P

where g*, the fluctuation energy flux nondimensionalized by
pp(gdcosf)*?, is given as

g*=— <g3T*1/23

T v
T*3/2 .
84 ay*

It can be noted from the constitutive equations that y* is
quite sensitive to the value of e, while W* is less sensitive, and
that y* vanishes as e, approaches 1. Therefore, for large e,
(c.g. 0.95), W* is larger than v*, and this results in a negative
value of Q*. The opposite is true for small e, such as 0.6. For
a positive Q*, the gradient of g* is negative, and a positive
gradient of ¢* is achieved for negative Q*. But the boundary
condition at the free surface requires that g*—0 as y*—oo.
Consequently, for a fixed », a negative value of g* is obtained
for all y* in the case of a positive gradient of ¢*, and a positive
value of ¢* in the case of a negative gradient of g*. In other
words, for a sufficiently large e,, a negative energy flux, g*,
is achieved along with a negative granular conduction term
Q*. And for a sufficiently small e,, a positive Q* results in a
positive energy flux.

As v varies over the depth of the flow, however, the above
argument may need modification. The effects of » and tanf
on the conduction term can be examined along with the effect
of e, as follows: The zero of Q* is found by examining the
following equation for Q*

g2
Q*= <g5 ~g—;tan20> T*32 -0,

This is solved as shown in Fig. 10. Each curve represents zeros
of Q* for a given e,. If tanf is greater than the value on the
curve for a given », negative values of Q* are obtained, and
if tand is smaller, then Q*>0. For example, for tanf=0.4,
negative values of Q* result for all » in the case of ¢,=0.95,
but positive values result in the case of e,=0.6.

The effects of e,, », and tanf on the conduction term were
examined in detail for solutions of Type I, Type I, and Type
111 flows. The energy flux, ¢*, and the conduction term, Q*,
are plotted in Fig. 11(a), (), and {(¢) with the same parameters
and boundary values as given in Figs. 1, 2, and 3, respectively.
As expected from the results of Fig. 10 in the case of ¢,=0.95
and tanf = 0.4, negative Q* is achieved in Fig. 11(a) and thus

ay*

0. 0.1 0.2 0.3 0.4 0.5 0.6  negative g*. But for e,=0.6 and tanf=0.4 in Fig. 11(), po-
sitive O* and g* emerge, which are in accordance with the
v results-of Fig. 10. When g¢* is negative at the wall boundary
Fig. 10 Zeros of the granular conduction term for various e,. it means that the wall absorbs the fluctuation energy. For this
40 T T T 10 AERARAN ARRLS aARs nALAE:
(a) {b)
30 | A
y*
20 - 4 st
10 -
at/ i q*
¥ £l
0 i Q:* 0 Q L L
2 -l5 10 -05 0 05 0 0.2 04 0.5
Q*’q* Q*,q* Q*’q*
Fig. 11 Nondimensionalized granutar conduction, Q*, and fluctuation

energy flux, ¢*, against nondimensionalized distance from the chute
base, y*. Parameters and boundary values at the wall; (a) as in Fig. 1,

(b) as in Fig. 2, and (¢) as in Fig. 3.
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case, the granular temperature is expected to be low near the
wall while high temperature is exhibited at the free surface,
and thus the fluctuation energy is conducted from the free
surface to the wall. The generation of fluctuation energy
through shear motion feeds fluctuation energy into the bulk,
where it is partly absorbed at the wall boundary and partly
dissipated away. On the other hand, positive fluctuation energy
flux at the wall implies that the wall should supply energy to
the flow. Unless energy is provided to granular materials
through the wall (for example, by vibrating the chute base),
there can be no such positive fluctuation energy flux and there-
fore no such flow. (Note that changes to granular material
flows wrought by vibration are well known in industrial prac-
tice.) In the experiments of Ahn et al. (1989) when the angle
of the chute inclination was less than about 12 deg, there was
no flow unless the chute was agitated. This is consistent with
the results of Fig. 10 in which the zero of Q* for €,=0.95 is
achieved at tan 0=0.22.

With this idea in mind, it is interesting to study a hypothetical
experiment in which there is no shear motion but granular
materials are allowed to have granular temperature which might
be supplied by wall vibration. Then fluctuation energy will be
conducted from the wall and should all be dissipated inside
the bulk. Now examine such a state using the present analysis.
The mean velocity and its gradient are zero, and tanf = 0. From
Fig. 10 it is expected that the conduction term will be positive
for all values of the coefficient of restitution. The solutions
are illustrated in Fig. 12 in which e,=0.9 and 0.95, tan6=0,
»,=0.2, and T% =5. As expected, the solutions are of Type II
because of a positive conduction term. Temperature decreases
with distance from the wall, and solid fraction increases near
the wall but decreases with further distance from the wall.
Comparison between the results for different values of e, show

20

y*

12
(T*/ T%,) \Y

Fig. 12 The study of the case in which no shear motion and mean
velocity exist. (a) Nondimensionalized square root of granular temper-

as expected that for low e,, the fluctuation energy dissipates
faster than for high e,. Therefore, the case of the lower e,
results in a lower temperature at the free surface.

At this point, it is necessary to study how solid fraction
varies with granular temperature. Physically, it is clear that it
is difficult for particles to stay close in the presence of high
temperature. Therefore, when the temperature is high, the solid
fraction is low. The variation of solid fraction with granular
temperature can be explained in more detail by using Eq. (13):

ov L ([ T
e T\ )

When the temperature gradient is negative, the solid fraction
gradient can be positive since both g; and g{ are always po-
sitive. Therefore, when the temperature decreases significantly
with distance from the wall, the solid fraction increases near
the wall as shown in Figs. 2 and 12. Furthermore, when the
temperature is lower, the magnitude of the solid fraction gra-
dient is higher. Hence, the solid fraction for e,=0.9 increases
more than for e, =0.95 as shown in Fig. 12. Equation (13) also
explains the variation of solid fraction near the free surface.
Near the free surface g{ tends to 1, g, is the same order as »,
and the temperature gradient is negligible. Therefore, » de-

creases approximately ase™ */T* When the temperature is low
at the free surface, a rapid decrease of solid fraction occurs.
Therefore, the free surface is clearly defined as shown in Fig.
2. On the other hand, when the temperature is high near the
free surface, the solid fraction decreases slowly with distance,
resulting in the case of Fig. 1.

Figure 11(c) is an interesting case for which ¢* and Q* start
with negative values but become positive and tend to zero as
the free surface is approached. The boundary values at the
wall (»=0.3) and the two parameters (¢,=0.8 and tan6=0.4)
give a negative value of Q* from Fig. 10. As v decreases from .
the wall to the free surface, a positive Q* is to be obtained
from Fig. 10. This particular profile of energy flux over the
depth gives rise to the particular shape of temperature profile
in Fig. 3. Note from Fig. 11(c) that a local maximum of g* is
achieved when Q* =0.

The fundamental question of the magnitude of the conduc-
tion term in the chute flow is answered in Fig. 13 where the
ratio of the conduction term to the dissipation term is plotted
against y*. Figures 13(a), (b), and (c) are the results from cases
of Figs. 1, 2, and 3, respectively. In none of Figs. 13(¢) and
(b) is the conduction term insignificant relative to the dissi-
pation term. In an transitional case such as Fig. 13(c), the
conduction term is relatively smaller than the dissipation term.
In fact, the ratio of the conduction term to the dissipation
term is given as follows:

ature, (T*/T3)'2, and (b) solid fraction, », against nondimensionalized Q* g% 2
distance from the chute base, y*. Parameters: e,=0.9 and 0.95, and = 1 ———tand.
tangd =0. Boundary values at the wall: T}, =5 »,=0.2. Y 8285
40 T T T 10 T 40 T T
(a) (b) ()
30 - B 30 | i
¥*
20 F 4 5k 4 20 i
10 + - 10 4
0 I L 0 L 0 L L
4 3 -2 1 0 0 0.5 1.0 -1 -05 0 0.5 1
Q¥ Q*/ v+ Q¥/v*

Fig. 13 The ratio of granular conduction to dissipation, Q*/y*, against
nondimensional distance from the chute base, y*. Parameters and
boundary values at the wall: (a) as in Fig. 1, (b) as in Fig. 2, and (c) as in

Fig. 3.
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In Fig. 14, g /2,85, normalized by the value at »=0, is plotted
as a function of » and e,. Note that g3/8,8s at v=0 is given

as follows:
<ﬁ_ 2 3_—_€e>
285),_, 5\1-¢/)"

Therefore, Q*/y* varies from 1(when §=0) to —o (when
e,=1), and conduction is always important. In general, the
magnitude of the ratio is large for large e, and small for small
e,. When negative conduction exists, a higher chute inclination
yields a larger value for the ratio. That is, for a higher chute
inclination, the conduction term plays a more important role
relative to the dissipation term than for a lower chute incli-
nation. When the conduction is positive, the opposite is true.

Since W*/v* =1— Q*/y*, the shear work term is small com-
pared to the dissipation term when the conduction term is
positive. When the conduction term is negative, W*/y* is
relatively large. (Note the comparison between Figs. 13(¢) and
(b)). When W*/~* is small (such as the case of Fig. 13(b))
granular temperature is low, because fluctuation energy is
slowly generated by the shear work. Furthermore, the flow
dissipates well because of a low coefficient of restitution. As
a result, the high density at the center of the flow is not dilated
(see Fig. 2).

5 Conclusion

The governing equations and the constitutive relations pre-
sented by Lun et al. (1984) have been used in the present
analysis of fully developed chute flow. The boundary value
problem has been formulated with two parameters (e, and
tand). Three boundary values at the wall (»,, T, and u,) are
required for the solution. It is found that all the boundary
conditions at the free surface are satisfied if and only if the
gradient of temperature vanishes at the free surface. This
boundary value problem has been numerically solved by a
“shooting method.”’

The solutions fall into two categories: Only the two pa-
rameters (e, and tanf) determine which type of flow will occur,
and three boundary values at the wall play no role in deter-
mining the type of flow. The first type has a granular tem-
perature which increases from the wall boundary to the free
surface. The solid fraction monotonically decreases with dis-
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tance from the chute base, and the free surface is not well
defined. The second type exhibits high temperature near the
chute base, and a rapid decrease of the temperature as the free
surface is approached. In this type the solid fraction is low at
both boundaries but high in the center of the flow, and the
free surface is rather clearly defined. A transitional type is also
found which exhibits features of both the first and second
types of flow; the temperature increases near the wall but
decreases thereafter. The solid fraction has a profile similar
to the first type.

These profiles are closely connected to the role of the gran-
ular conduction term in the fluctuation energy equation. The
conduction term, which depends on e, tané, and », determines
the energy flux, and thus the gradients of granular temperature
and solid fraction, causing different profiles to occur. The
conduction term often appears to be significant in magnitude
compared to the dissipation term.

The effect of the variations of the parameter and wall bound-
ary values is also studied. As the chute inclination angle in-
creases, granular temperature, mean velocity, and the depth
of flow increase. A higher granular temperature at the wall
also causes an overall increase in temperature, mean velocity,
and flow depth. An increase in the solid fraction at the wall
also yields the same result.

Comparisons with experiments and computer simulations
have been made. The experiments of Ahn et al. (1989) cor-
respond to Type I flows. The experimental data show that with
distance from the chute base the solid fraction decreases mon-
otonically, and granular temperature increases indicating gran-
ular conduction from the free surface to the wall. The results
of the present analysis are consistent with those data. The
general profiles of flow properties are well predicted, though
some discrepancies in their magnitudes are observed. On the
other hand, the computer simulations by Campbell and Bren-
nen (1985b) correspond to Type II flows. Granular conduction
from the wall to the free surface is observed, and the solid
fraction is low at both boundaries but high in the bulk. Good
agreement between the present analysis and the computer sim-
ulations is found when a slightly different value of the param-
eter tand is used as an input. The decrease of granular
temperature with distance from the wall is well predicted, and
the profile of solid fraction is similar to that of the computer
simulations. Some discrepancies may be due to the fact that
the computer simulations were conducted with two-dimen-
sional disks.

The different types of flow occurring in the experiments and
the computer simulations are the results of the different values
of the coefficient of restitution appropriate to those circum-
stances. A high value of e¢,, such as the value of about 0.95
in the experiments, causes the granular temperature to be con-
ducted from the free surface to the wall; and a low value of
€5, such as the value of 0.6 used in the computer simulations,
results in granular conduction in the opposite direction.
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