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Nomenclature

Roman letters

a Pipe radius
A Cross-sectional area
Aijk Coefficients of pump dynamic characteristics
[A] Rotordynamic force matrix
Ar Cross-sectional area ratio
B Breadth of passage or flow
[B] Rotordynamic moment matrix
c Chord of the blade or foil
c Speed of sound
c Rotordynamic coefficient: cross-coupled damping
cb Interblade spacing
cPL Specific heat of liquid
C Compliance
C Rotordynamic coefficient: direct damping
CD Drag coefficient
CL Lift coefficient
Cp Coefficient of pressure
Cpmin Minimum coefficient of pressure
d Ratio of blade thickness to blade spacing
D Impeller diameter or typical flow dimension
Df Diffusion factor
DT Determinant of transfer matrix [T ]
e Specific internal energy
E Energy flux
E Young’s modulus
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f Friction coefficient
F Force
g Acceleration due to gravity
gs Component of g in the s direction
h Specific enthalpy
h Blade tip spacing
hp Pitch of a helix
hT Total specific enthalpy
h∗ Piezometric head
H Total head rise
H(s, θ, t) Clearance geometry
I Acoustic impulse
I, J Integers such that ω/Ω = I/J

IP Pump impedance
j Square root of −1
k Rotordynamic coefficient: cross-coupled stiffness
kL Thermal conductivity of the liquid
K Rotordynamic coefficient: direct stiffness
KG Gas constant
� Pipe length or distance to measuring point
L Lift
L Inertance
L Axial length
L Latent heat
m Mass flow rate
m Rotordynamic coefficient: cross-coupled added mass
mG Mass of gas in bubble
mD Constant related to the drag coefficient
mL Constant related to the lift coefficient
M Moment
M Mach number, u/c
M Rotordynamic coefficient: direct added mass
n Coordinate measured normal to a surface
N Specific speed
N (RN) Cavitation nuclei number density distribution function
NPSP Net positive suction pressure
NPSE Net positive suction energy
NPSH Net positive suction head
p Pressure
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pA Radiated acoustic pressure
pT Total pressure
pG Partial pressure of gas
pS Sound pressure level
pV Vapor pressure
P Power
q̃n Vector of fluctuating quantities
Q Volume flow rate (or heat)
Q Rate of heat addition
r Radial coordinate in turbomachine
R Radial dimension in turbomachine
R Bubble radius
R Resistance
RN Cavitation nucleus radius
Re Reynolds number
s Coordinate measured in the direction of flow
s Solidity
S Surface tension of the saturated vapor/liquid interface
S Suction specific speed
Si Inception suction specific speed
Sa Fractional head loss suction specific speed
Sb Breakdown suction specific speed
Sf Slip factor
t Time
T Temperature or torque
Tij Transfer matrix elements
[T ] Transfer matrix based on p̃T , m̃

[T ∗] Transfer matrix based on p̃, m̃
[TP ] Pump transfer matrix
[TS] System transfer matrix
u Velocity in the s or x directions
ui Velocity vector
U Fluid velocity
U∞ Velocity of upstream uniform flow
v Fluid velocity in non-rotating frame
V Volume or fluid velocity
w Fluid velocity in rotating frame
Ẇ Rate of work done on the fluid
z Elevation
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ZCF Common factor of ZR and ZS

ZR Number of rotor blades
ZS Number of stator blades

Greek letters

α Angle of incidence
αL Thermal diffusivity of liquid
β Angle of relative velocity vector
βb Blade angle relative to cross-plane
γn Wave propagation speed
Γ Geometric constant
δ Deviation angle at flow discharge
δ Clearance
ε Eccentricity
ε Angle of turn
η Efficiency
θ Angular coordinate
θc Camber angle
θ∗ Momentum thickness of a blade wake
Θ Thermal term in the Rayleigh-Plesset equation
ϑ Inclination of discharge flow to the axis of rotation
κ Bulk modulus of the liquid
μ Dynamic viscosity
ν Kinematic viscosity
ρ Density of fluid
σ Cavitation number
σi Cavitation inception number
σa Fractional head loss cavitation number
σb Breakdown cavitation number
σc Choked cavitation number
σTH Thoma cavitation factor
Σ Thermal parameter for bubble growth
Σ1,2,3 Geometric constants
τ Blade thickness
φ Flow coefficient
ψ Head coefficient
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ψ0 Head coefficient at zero flow
ω Radian frequency of whirl motion or other excitation
ωP Bubble natural frequency
Ω Radian frequency of shaft rotation

Subscripts

On any variable, Q:

Qo Initial value, upstream value or reservoir value
Q1 Value at inlet
Q2 Value at discharge
Qa Component in the axial direction
Qb Pertaining to the blade
Q∞ Value far from the bubble or in the upstream flow
QB Value in the bubble
QC Critical value
QD Design value
QE Equilibrium value
QG Value for the gas
QH1 Value at the inlet hub
QH2 Value at the discharge hub
Qi Components of vector Q
Qi Pertaining to a section, i, of the hydraulic system
QL Saturated liquid value
Qm Meridional component
QM Mean or maximum value
QN Nominal conditions or pertaining to nuclei
Qn, Qt Components normal and tangential to whirl orbit
QP Pertaining to the pump
Qr Component in the radial direction
Qs Component in the s direction
QT 1 Value at the inlet tip
QT 2 Value at the discharge tip
QV Saturated vapor value
Qx, Qy Components in the x and y directions
Qθ Component in the circumferential (or θ) direction
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Superscripts and other qualifiers

On any variable, Q:

Q̄ Mean value of Q or complex conjugate of Q
Q̃ Complex amplitude of Q
Q̇ Time derivative of Q
Q̈ Second time derivative of Q
Q∗ Rotordynamics: denotes dimensional Q
Re{Q} Real part of Q
Im{Q} Imaginary part of Q
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1

INTRODUCTION

1.1 SUBJECT

The subject of this monograph is the fluid dynamics of liquid turbomachines,
particularly pumps. Rather than attempt a general treatise on turboma-
chines, we shall focus attention on those special problems and design issues
associated with the flow of liquid through a rotating machine. There are two
characteristics of a liquid that lead to these special problems, and cause a
significantly different set of concerns than would occur in, say, a gas turbine.
These are the potential for cavitation and the high density of liquids that
enhances the possibility of damaging unsteady flows and forces.

1.2 CAVITATION

The word cavitation refers to the formation of vapor bubbles in regions of
low pressure within the flow field of a liquid. In some respects, cavitation
is similar to boiling, except that the latter is generally considered to occur
as a result of an increase of temperature rather than a decrease of pressure.
This difference in the direction of the state change in the phase diagram
is more significant than might, at first sight, be imagined. It is virtually
impossible to cause any rapid uniform change in temperature throughout
a finite volume of liquid. Rather, temperature change most often occurs by
heat transfer through a solid boundary. Hence, the details of the boiling
process generally embrace the detailed interaction of vapor bubbles with a
solid surface, and the thermal boundary layer on that surface. On the other
hand, a rapid, uniform change in pressure in a liquid is commonplace and,
therefore, the details of the cavitation process may differ considerably from
those that occur in boiling. Much more detail on the process of cavitation
is included in later sections.
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It is sufficient at this juncture to observe that cavitation is generally a
malevolent process, and that the deleterious consequences can be divided
into three categories. First, cavitation can cause damage to the material
surfaces close to the area where the bubbles collapse when they are convected
into regions of higher pressure. Cavitation damage can be very expensive,
and very difficult to eliminate. For most designers of hydraulic machinery,
it is the preeminent problem associated with cavitation. Frequently, one
begins with the objective of eliminating cavitation completely. However,
there are many circumstances in which this proves to be impossible, and the
effort must be redirected into minimizing the adverse consequences of the
phenomenon.

The second adverse effect of cavitation is that the performance of the
pump, or other hydraulic device, may be significantly degraded. In the case
of pumps, there is generally a level of inlet pressure at which the performance
will decline dramatically, a phenomenon termed cavitation breakdown. This
adverse effect has naturally given rise to changes in the design of a pump so
as to minimize the degradation of the performance; or, to put it another way,
to optimize the performance in the presence of cavitation. One such design
modification is the addition of a cavitating inducer upstream of the inlet to
a centrifugal or mixed flow pump impeller. Another example is manifest in
the blade profiles used for supercavitating propellers. These supercavitating
hydrofoil sections have a sharp leading edge, and are shaped like curved
wedges with a thick, blunt trailing edge.

The third adverse effect of cavitation is less well known, and is a con-
sequence of the fact that cavitation affects not only the steady state fluid
flow, but also the unsteady or dynamic response of the flow. This change
in the dynamic performance leads to instabilities in the flow that do not
occur in the absence of cavitation. Examples of these instabilities are “ro-
tating cavitation,” which is somewhat similar to the phenomenon of rotating
stall in a compressor, and “auto-oscillation,” which is somewhat similar to
compressor surge. These instabilities can give rise to oscillating flow rates
and pressures that can threaten the structural integrity of the pump or its
inlet or discharge ducts. While a complete classification of the various types
of unsteady flow arising from cavitation has yet to be constructed, we can,
nevertheless, identify a number of specific types of instability, and these are
reviewed in later chapters of this monograph.
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1.3 UNSTEADY FLOWS

While it is true that cavitation introduces a special set of fluid-structure
interaction issues, it is also true that there are many such unsteady flow
problems which can arise even in the absence of cavitation. One reason
these issues may be more critical in a liquid turbomachine is that the large
density of a liquid implies much larger fluid dynamic forces. Typically, fluid
dynamic forces scale like ρΩ2D4 where ρ is the fluid density, and Ω and D

are the typical frequency of rotation and the typical length, such as the span
or chord of the impeller blades or the diameter of the impeller. These forces
are applied to blades whose typical thickness is denoted by τ . It follows that
the typical structural stresses in the blades are given by ρΩ2D4/τ2, and,
to minimize structural problems, this quantity will have an upper bound
which will depend on the material. Clearly this limit will be more stringent
when the density of the fluid is larger. In many pumps and liquid turbines
it requires thicker blades (larger τ) than would be advisable from a purely
hydrodynamic point of view.

This monograph presents a number of different unsteady flow problems
that are of concern in the design of hydraulic pumps and turbines. For
example, when a rotor blade passes through the wake of a stator blade
(or vice versa), it will encounter an unsteady load which is endemic to all
turbomachines. Recent investigations of these loads will be reviewed. This
rotor-stator interaction problem is an example of a local unsteady flow phe-
nomenon. There also exist global unsteady flow problems, such as the auto-
oscillation problem mentioned earlier. Other global unsteady flow problems
are caused by the fluid-induced radial loads on an impeller due to flow
asymmetries, or the fluid-induced rotordynamic loads that may increase or
decrease the critical whirling speeds of the shaft system. These last issues
have only recently been addressed from a fundamental research perspective,
and a summary of the conclusions is included in this monograph.

1.4 TRENDS IN HYDRAULIC
TURBOMACHINERY

Though the constraints on a turbomachine design are as varied as the almost
innumerable applications, there are a number of ubiquitous trends which al-
low us to draw some fairly general conclusions. To do so we make use of
the affinity laws that are a consequence of dimensional analysis, and relate
performance characteristics to the density of the fluid, ρ, the typical rota-
tional speed, Ω, and the typical diameter, D, of the pump. Thus the volume
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flow rate through the pump, Q, the total head rise across the pump, H , the
torque, T , and the power absorbed by the pump, P , will scale according to

Q α ΩD3 (1.1)

H α Ω2D2 (1.2)

T α ρD5Ω2 (1.3)

P α ρD5Ω3 (1.4)

These simple relations allow basic scaling predictions and initial design
estimates. Furthermore, they permit consideration of optimal characteris-
tics, such as the power density which, according to the above, should scale
like ρD2Ω3.

One typical consideration arising out of the affinity laws relates to opti-
mizing the design of a pump for a particular power level, P , and a particular
fluid, ρ. This fixes the value of D5Ω3. If one wished to make the pump as
small as possible (small D) to reduce weight (as is critical in the rocket
engine context) or to reduce cost, this would dictate not only a higher ro-
tational speed, Ω, but also a higher impeller tip speed, ΩD/2. However,
as we shall see in the next chapter, the propensity for cavitation increases
as a parameter called the cavitation number decreases, and the cavitation
number is inversely proportional to the square of the tip speed or Ω2D2/4.
Consequently, the increase in tip speed suggested above could lead to a cav-
itation problem. Often, therefore, one designs the smallest pump that will
still operate without cavitation, and this implies a particular size and speed
for the device.

Furthermore, as previously mentioned, the typical fluid-induced stresses
in the structure will be given by ρΩ2D4/τ2, and, if D5Ω3 is fixed and if
one maintains the same geometry, D/τ , then the stresses will increase like
D−4/3 as the size, D, is decreased. Consequently, fluid/structure interac-
tion problems will increase. To counteract this the blades are often made
thicker (D/τ is decreased), but this usually leads to a decrease in the hy-
draulic performance of the turbomachine. Consequently an optimal design
often requires a balanced compromise between hydraulic and structural re-
quirements. Rarely does one encounter a design in which this compromise
is optimal.

Of course, the design of a pump, compressor or turbine involves many
factors other than the technical issues discussed above. Many compromises
and engineering judgments must be made based on constraints such as cost,
reliability and the expected life of a machine. This book will not attempt
to deal with such complex issues, but will simply focus on the advances in
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the technical data base associated with cavitation and unsteady flows. For a
broader perspective on the design issues, the reader is referred to engineering
texts such as those listed at the end of this chapter.

1.5 BOOK STRUCTURE

The intention of this monograph is to present an account of both the cav-
itation issues and the unsteady flow issues, in the hope that this will help
in the design of more effective liquid turbomachines. In chapter 2 we review
some of the basic principles of the fluid mechanical design of turbomachines
for incompressible fluids, and follow that, in chapter 3, with a discussion of
the two-dimensional performance analyses based on the flows through cas-
cades of foils. A brief review of three-dimensional effects and secondary flows
follows in chapter 4. Then, in chapter 5, we introduce the parameters which
govern the phenomenon of cavitation, and describe the different forms which
cavitation can take. This is followed by a discussion of the factors which in-
fluence the onset or inception of cavitation. Chapter 6 introduces concepts
from the analyses of bubble dynamics, and relates those ideas to two of the
byproducts of the phenomenon, cavitation damage and noise. The isssues
associated with the performance of a pump under cavitating conditions are
addressed in chapter 7.

The last three chapters deal with unsteady flows and vibration in pumps.
Chapter 8 presents a survey of some of the vibration problems in pumps.
Chapter 9 provides details of the two basic approaches to the analysis of
instabilites and unsteady flow problems in hydraulic systems, namely the
methods of solution in the time domain and in the frequency domain. Where
possible, it includes a survey of the existing information on the dynamic re-
sponse of pumps under cavitating and non-cavitating conditions. The final
chapter 10 deals with the particular fluid/structure interactions associated
with rotordynamic shaft vibrations, and elucidates the fluid-induced rotor-
dynamic forces that can result from the flows through seals and through and
around impellers.
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2

BASIC PRINCIPLES

2.1 GEOMETRIC NOTATION

The geometry of a generalized turbomachine rotor is sketched in figure 2.1,
and consists of a set of rotor blades (number = ZR) attached to a hub
and operating within a static casing. The radii of the inlet blade tip, in-
let blade hub, discharge blade tip, and discharge blade hub are denoted by
RT 1, RH1, RT 2, and RH2, respectively. The discharge blade passage is in-
clined to the axis of rotation at an angle, ϑ, which would be close to 90◦

in the case of a centrifugal pump, and much smaller in the case of an axial
flow machine. In practice, many pumps and turbines are of the “mixed flow”
type , in which the typical or mean discharge flow is at some intermediate
angle, 0 < ϑ < 90◦.

The flow through a general rotor is normally visualized by developing a
meridional surface (figure 2.2), that can either correspond to an axisymmet-

Figure 2.1. Cross-sectional view through the axis of a pump impeller.
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ric stream surface, or be some estimate thereof. On this meridional surface
(see figure 2.2) the fluid velocity in a non-rotating coordinate system is de-
noted by v(r) (with subscripts 1 and 2 denoting particular values at inlet
and discharge) and the corresponding velocity relative to the rotating blades
is denoted by w(r). The velocities, v and w, have components vθ and wθ in
the circumferential direction, and vm and wm in the meridional direction.
Axial and radial components are denoted by the subscripts a and r. The
velocity of the blades is Ωr. As shown in figure 2.2, the flow angle β(r) is
defined as the angle between the relative velocity vector in the meridional
plane and a plane perpendicular to the axis of rotation. The blade angle

Figure 2.2. Developed meridional surface and velocity triangle.
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Figure 2.3. Repeat of figure 2.2 showing the definitions of the incidence
angle at the leading edge and the deviation angle at the trailing edge.

βb(r) is defined as the inclination of the tangent to the blade in the merid-
ional plane and the plane perpendicular to the axis of rotation. If the flow
is precisely parallel to the blades, β = βb. Specific values of the blade angle
at the leading and trailing edges (1 and 2) and at the hub and tip (H and
T ) are denoted by the corresponding suffices, so that, for example, βbT 2 is
the blade angle at the discharge tip.

At the leading edge it is important to know the angle α(r) with which the
flow meets the blades, and, as defined in figure 2.3,

α(r) = βb1(r)− β1(r). (2.1)

This angle, α, is called the incidence angle, and, for simplicity, we shall
denote the values of the incidence angle at the tip, α(RT 1), and at the
hub, α(RH1), by αT and αH , respectively. Since the inlet flow can often
be assumed to be purely axial (v1(r) = va1 and parallel with the axis of
rotation), it follows that β1(r) = tan−1(va1/Ωr), and this can be used in
conjunction with equation 2.1 in evaluating the incidence angle for a given
flow rate.

The incidence angle should not be confused with the “angle of attack”,
which is the angle between the incoming relative flow direction and the chord
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Figure 2.4. Velocity vectors at discharge indicating the slip velocity, vθs.

line (the line joining the leading edge to the trailing edge). Note, however,
that, in an axial flow pump with straight helicoidal blades, the angle of
attack is equal to the incidence angle.

At the trailing edge, the difference between the flow angle and the blade
angle is again important. To a first approximation one often assumes that
the flow is parallel to the blades, so that β2(r) = βb2(r). A departure from
this idealistic assumption is denoted by the deviation angle, δ(r), where, as
shown in figure 2.3:

δ(r) = βb2(r)− β2(r) (2.2)

This is normally a function of the ratio of the width of the passage between
the blades to the length of the same passage, a geometric parameter known
as the solidity which is defined more precisely below. Other angles, that
are often used, are the angle through which the flow is turned, known as
the deflection angle, β2 − β1, and the corresponding angle through which
the blades have turned, known as the camber angle and denoted by θc =
βb2 − βb1.

Deviation angles in radial machines are traditionally represented by the
slip velocity, vθs, which is the difference between the actual and ideal cir-
cumferential velocities of the discharge flow, as shown in figure 2.4. It follows
that

vθs = ΩR2 − vθ2 − vr2 cot βb2 (2.3)

This, in turn, is used to define a parameter known as the slip factor, Sf ,
where

Sf = 1 − vθs

ΩR2
= 1 − φ2 (cotβ2 − cot βb2) (2.4)

Other, slightly different “slip factors” have also been used in the litera-
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ture; for example, Stodola (1927), who originated the concept, defined the
slip factor as 1 − vθs/ΩR2(1− φ2 cotβb2). However, the definition 2.4 is now
widely used. It follows that the deviation angle, δ, and the slip factor, Sf ,
are related by

δ = βb2 − cot−1

(
cotβb2 +

(1− Sf)
φ2

)
(2.5)

where the flow coefficient, φ2, is defined later in equation 2.17.

2.2 CASCADES

We now turn to some specific geometric features that occur frequently in
discussions of pumps and other turbomachines. In a purely axial flow ma-
chine, the development of a cylindrical surface within the machine produces
a linear cascade of the type shown in figure 2.5(a). The centerplane of the
blades can be created using a “generator”, say z = z∗(r), which is a line in
the rz−plane. If this line is rotated through a helical path, it describes a
helicoidal surface of the form

z = z∗(r) +
hpθ

2π
(2.6)

Figure 2.5. Schematics of (a) a linear cascade and (b) a radial cascade.
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where hp is the “pitch” of the helix. Of course, in many machines, the pitch
is also a function of θ so that the flow is turned by the blades. If, however,
the pitch is constant, the development of a cylindrical surface will yield a
cascade with straight blades and constant blade angle, βb. Moreover, the
blade thickness is often neglected, and the blades in figure 2.5(a) then be-
come infinitely thin lines. Such a cascade of infinitely thin, flat blades is
referred to as a flat plate cascade.

It is convenient to use the term “simple” cascade to refer to those geome-
tries for which the blade angle, βb, is constant whether in an axial, radial, or
mixed flow machine. Clearly, the flat plate cascade is the axial flow version
of a simple cascade.

Now compare the geometries of the cascades at different radii within an
axial flow machine. Later, we analyse the cavitating flow occurring at dif-
ferent radii (see figure 7.35). Often the pitch at a given axial position is the
same at all radii. Then it follows that the radial variation in the blade angle,
βb(r), must be given by

βb(r) = tan−1

[
RT tanβbT

r

]
(2.7)

where βbT is the blade angle at the tip, r = RT .
In a centrifugal machine in which the flow is purely radial, a cross-section

of the flow would be as shown in figure 2.5(b), an array known as a radial
cascade. In a simple radial cascade, the angle, βb, is uniform along the length
of the blades. The resulting blade geometry is known as a logarithmic spiral,
since it follows that the coordinates of the blades are given by the equation

θ − θ0 = A ln r (2.8)

where A = cot βb and θ0 are constants. Logarithmic spiral blades are there-
fore equivalent to straight blades in a linear cascade. Note that a fluid par-
ticle in a flow of uniform circulation and constant source strength at the
origin will follow a logarithmic spiral since all velocities will be of the form
C/r where C is a uniform constant.

In any of type of pump, the ratio of the length of a blade passage to its
width is important in determining the degree to which the flow is guided
by the blades. The solidity, s, is the geometric parameter that is used as a
measure of this geometric characteristic, and s can be defined for any simple
cascade as follows. If we identify the difference between the θ coordinates
for the same point on adjacent blades (call this ΔθA) and the difference
between the θ coordinates for the leading and trailing edges of a blade (call
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this ΔθB), then the solidity for a simple cascade is defined by

s =
ΔθB

ΔθA cos βb
(2.9)

Applying this to the linear cascade of figure 2.5(a), we find the familiar

s = c/h (2.10)

In an axial flow pump this corresponds to s = ZRc/2πRT 1, where c is the
chord of the blade measured in the developed meridional plane of the blade
tips. On the other hand, for the radial cascade of figure 2.5(b), equation 2.9
yields the following expression for the solidity:

s = ZR�n (R2/R1) /2π sin βb (2.11)

which is, therefore, geometrically equivalent to c/h in the linear cascade.
In practice, there exist many “mixed flow” pumps whose geometries lie

between that of an axial flow machine (ϑ = 0, figure 2.1) and that of a radial
machine (ϑ = π/2). The most general analysis of such a pump would require
a cascade geometry in which figures 2.5(a) and 2.5(b) were projections of
the geometry of a meridional surface (figure 2.2) onto a cylindrical surface
and onto a plane perpendicular to the axis, respectively. (Note that the βb

marked in figure 2.5(b) is not appropriate when that diagram is used as a
projection). We shall not attempt such generality here; rather, we observe
that the meridional surface in many machines is close to conical. Denoting
the inclination of the cone to the axis by ϑ, we can use equation 2.9 to obtain
an expression for the solidity of a simple cascade in this conical geometry,

s = ZR�n (R2/R1) /2π sin βb sinϑ (2.12)

Clearly, this includes the expressions 2.10 and 2.11 as special cases.

2.3 FLOW NOTATION

The flow variables that are important are, of course, the static pressure, p,
the total pressure, pT , and the volume flow rate, Q. Often the total pressure
is defined by the total head, pT /ρg. Moreover, in most situations of interest
in the context of turbomachinery, the potential energy associated with the
earth’s gravitational field is negligible relative to the kinetic energy of the
flow, so that, by definition

pT = p+
1
2
ρv2 (2.13)
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pT = p+
1
2
ρ
(
v2
m + v2

θ

)
(2.14)

pT = p+
1
2
ρ
(
w2 + 2rΩvθ − Ω2r2

)
(2.15)

using the velocity triangle of figure 2.2. In an incompressible flow, the total
pressure represents the total mechanical energy per unit volume of fluid,
and, therefore, the change in total pressure across the pump, pT

2 − pT
1 , is a

fundamental measure of the mechanical energy imparted to the fluid by the
pump.

It follows that, in a pump with an incompressible fluid, the overall char-
acteristics that are important are the volume flow rate, Q, and the total
pressure rise, ρgH , where H = (pT

2 − pT
1 )/ρg is the total head rise. These

dimensional characteristics are conveniently nondimensionalized by defining
a head coefficient, ψ,

ψ = (pT
2 − pT

1 )/ρR2
T 2Ω

2 = gH/R2
T 2Ω

2 (2.16)

and one of two alternative flow coefficients, φ1 and φ2:

φ1 = Q/A1RT 1Ω or φ2 = Q/A2RT 2Ω (2.17)

where A1 and A2 are the inlet and discharge areas, respectively. The dis-
charge flow coefficient is the nondimensional parameter most often used to
describe the flow rate. However, in discussions of cavitation, which occurs
at the inlet to a pump impeller, the inlet flow coefficient is a more sensi-
ble parameter. Note that, for a purely axial inflow, the incidence angle is
determined by the flow coefficient, φ1:

α(r) = βb1(r)− tan−1(φ1r/RT 1) (2.18)

Furthermore, for a given deviation angle, specifying φ2 fixes the geometry
of the velocity triangle at discharge from the pump.

Frequently, the conditions at inlet and/or discharge are nonuniform and
one must subdivide the flow into annular streamtubes, as indicated in fig-
ure 2.2. Each streamtube must then be analysed separately, using the blade
geometry pertinent at that radius. The mass flow rate, m, through an indi-
vidual streamtube is given by

m = 2πρrvmdn (2.19)

where n is a coordinate measured normal to the meridional surface, and, in
the present text, will be useful in describing the discharge geometry.

Conservation of mass requires that m have the same value at inlet and
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discharge. This yields a relation between the inlet and discharge meridional
velocities, that involves the cross-sectional areas of the streamtube at these
two locations. The total volume flow rate through the turbomachine, Q, is
then related to the velocity distribution at any location by the integral

Q =
∫

2πrvm(r)dn (2.20)

The total head rise across the machine, H , is given by the integral of the
total rate of work done on the flow divided by the total mass flow rate:

H =
1
Q

∫
(pT

2 (r)− pT
1 (r))

ρg
2πrvm(r)dn (2.21)

These integral expressions for the flow rate and head rise will be used in
later chapters.

2.4 SPECIFIC SPEED

At the beginning of any pump design process, neither the size nor the shape
of the machine is known. The task the pump is required to perform is to use a
shaft rotating at a frequency, Ω (in rad/s), to pump a certain flow rate,Q (in
m3/s) through a head rise, H (inm). As in all fluid mechanical formulations,
one should first seek a nondimensional parameter (or parameters) which
distinguishes the nature of this task. In this case, there is one and only one
nondimensional parametric group that is appropriate and this is known as
the “specific speed”, denoted by N . The form of the specific speed is readily
determined by dimensional analysis:

N =
ΩQ

1
2

(gH)
3
4

(2.22)

Though originally constructed to allow evaluation of the shaft speed needed
to produce a particular head and flow, the name “specific speed” is slightly
misleading, because N is just as much a function of flow rate and head
rise as it is of shaft speed. Perhaps a more general name, like “the basic
performance parameter”, would be more appropriate. Note that the specific
speed is a size-independent parameter, since the size of the machine is not
known at the beginning of the design process.

The above definition of the specific speed has employed a consistent set
of units, so that N is truly dimensionless. With these consistent units, the
values of N for most common turbomachines lie in the range between 0.1
and 4.0 (see below). Unfortunately, it has been traditional in industry to use
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an inconsistent set of units in calculating N . In the USA, the g is dropped
from the denominator, and values for the speed, flow rate, and head in
rpm, gpm, and ft are used in calculating N . This yields values that are a
factor of 2734.6 larger than the values of N obtained using consistent units.
The situation is even more confused since the Europeans use another set of
inconsistent units (rpm,m3/s, head inm, and no g) while the British employ
a definition similar to the U.S., but with Imperial gallons rather than U.S.
gallons. One can only hope that the pump (and turbine) industries would
cease the use of these inconsistent measures that would be regarded with
derision by any engineer outside of the industry. In this monograph, we shall
use the dimensionally consistent and, therefore, universal definition of N .

Note that, since Q and gH were separately nondimensionalized in the
definitions 2.16 and 2.17, N can be related to the corresponding flow and
head coefficients by

N =
[

π

cos ϑ

(
1− R2

H2

R2
T 2

)] 1
2 φ

1
2
2

ψ
3
4

(2.23)

In the case of a purely centrifugal discharge (ϑ = π/2), the quantity within
the square brackets reduces to 2πB2/RT 2.

Since turbomachines are designed for specific tasks, the subscripted ND

will be used to denote the design value of the specific speed for a given
machine.

2.5 PUMP GEOMETRIES

Since the task specifications for a pump (or turbine or compressor or other
machine) can be reduced to the single parameter, ND, it is not surprising
that the overall or global geometries of pumps, that have evolved over many
decades, can be seen to fit quite neatly into a single parameter family of
shapes. This family is depicted in figure 2.6. These geometries reflect the
fact that an axial flow machine, whether a pump, turbine, or compressor, is
more efficient at high specific speeds (high flow rate, low head) while a radial
machine, that uses the centrifugal effect, is more efficient at low specific
speeds (low flow rate, high head). The same basic family of geometries is
presented quantitatively in figure 2.7, where the anticipated head and flow
coefficients are also plotted. While the existence of this parametric family
of designs has emerged almost exclusively as a result of trial and error,
some useful perspectives can be obtained from an approximate analysis of
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Figure 2.6. Ranges of specific speeds for typical turbomachines and typ-
ical pump geometries for different design speeds (from Sabersky, Acosta
and Hauptmann 1989).

the effects of the pump geometry on the hydraulic performance (see section
4.3).

Normally, turbomachines are designed to have their maximum efficiency
at the design specific speed, ND. Thus, in any graph of efficiency against
specific speed, each pump geometry will trace out a curve with a maximum
at its optimum specific speed, as illustrated by the individual curves in figure
2.8. Furthermore, Balje (1981) has made note of another interesting feature
of this family of curves in the graph of efficiency against specific speed. First,
he corrects the curves for the different viscous effects which can occur in
machines of different size and speed, by comparing the data on efficiency at
the same effective Reynolds number using the diagram reproduced as figure
2.9. Then, as can be seen in figure 2.8, the family of curves for the efficiency
of different types of machines has an upper envelope with a maximum at a
specific speed of unity. Maximum possible efficiencies decline for values of
ND greater or less than unity. Thus the “ideal” pump would seem to be that
with a design specific speed of unity, and the maximum obtainable efficiency
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Figure 2.7. General design guidelines for pumps indicating the optimum
ratio of inlet to discharge tip radius, RT1/RT2, and discharge width ratio,
B2/RT2, for various design specific speeds, ND. Also shown are approxi-
mate pump performance parameters, the design flow coefficient, φD, and
the design head coefficient, ψD (adapted from Sabersky, Acosta and Haupt-
mann 1989).

Figure 2.8. Compilation by Balje (1981) of maximum efficiencies for var-
ious kinds of pumps as a function of design specific speed, ND . Since effi-
ciency is also a function of Reynolds number the data has been corrected
to a Reynolds number, 2ΩR2

T2/ν , of 108.
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Figure 2.9. The dependence of hydraulic efficiency, ηP , and shaft effi-
ciency, ηS, on Reynolds number, 2ΩR2

T2/ν (from Balje 1981).

seems to be greatest at this specific speed. Fortunately, from a design point
of view, one of the specifications has some flexibility, namely the shaft speed,
Ω. Though the desired flow rate and head rise are usually fixed, it may be
possible to choose the drive motor to turn at a speed, Ω, which brings the
design specific speed close to the optimum value of unity.

2.6 ENERGY BALANCE

The next step in the assessment of the performance of a turbomachine is
to consider the application of the first and second laws of thermodynamics
to such devices. In doing so we shall characterize the inlet and discharge
flows by their pressure, velocity, enthalpy, etc., assuming that these are uni-
form flows. It is understood that when the inlet and discharge flows are
non-uniform, the analysis actually applies to a single streamtube and the
complete energy balance requires integration over all of the streamtubes.

The basic thermodynamic measure of the energy stored in a unit mass
of flowing fluid is the total specific enthalpy (total enthalpy per unit mass)
denoted by hT and defined by

hT = h+
1
2
|u|2 + gz = e+

p

ρ
+

1
2
|u|2 + gz (2.24)

where e is the specific internal energy, |u| is the magnitude of the fluid
velocity, and z is the vertical elevation. This expression omits any energy
associated with additional external forces (for example, those due to a mag-
netic field), and assumes that the process is chemically inert.
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Consider the steady state operation of a fluid machine in which the en-
tering fluid has a total specific enthalpy of hT

1 , the discharging fluid has a
total specific enthalpy of hT

2 , the mass flow rate is m, the net rate of heat
addition to the machine is Q, and the net rate of work done on the fluid
in the machine by external means is Ẇ . It follows from the first law of
thermodynamics that

m(hT
2 − hT

1 ) = Q + Ẇ (2.25)

Now consider incompressible, inviscid flow. It is a fundamental property
of such a flow that it contains no mechanism for an exchange of thermal
and mechanical energy, and, therefore, equation 2.25 divides into two parts,
governing the mechanical and thermal components of the total enthalpy, as
follows

(p/ρ+
1
2
|u|2 + gz)2 − (p/ρ+

1
2
|u|2 + gz)1 =

(pT
2 − pT

1 )
ρ

=
Ẇ

m
(2.26)

e2 − e1 = Q/m (2.27)

Thus, for incompressible inviscid flow, the fluid mechanical problem (for
which equation 2.26 represents the basic energy balance) can be decoupled
from the heat transfer problem (for which the heat balance is represented
by equation 2.27).

It follows that, if T is the torque applied by the impeller to the fluid, then
the rate of work done on the fluid is Ẇ = TΩ. Consequently, in the case
of an ideal fluid which is incompressible and inviscid, equation 2.26 yields
a relation connecting the total pressure rise across the pump, pT

2 − pT
1 , the

mass flow rate, m, and the torque:

m
(pT

2 − pT
1 )

ρ
= TΩ (2.28)

Furthermore, the second law of thermodynamics implies that, in the pres-
ence of irreversible effects such as those caused by viscosity, the equality
in equation 2.28 should be replaced by an inequality, namely a “less than”
sign. Consequently, in a real pump operating with an incompressible fluid,
viscous effects will cause some of the input energy to be converted to heat
rather than to an increase in the stored energy in the fluid. It follows that
the right hand side of equation 2.28 is the actual work done on the fluid by
the impeller, and the left hand side is the fraction of that work which ends
up as mechanical energy stored in the fluid. It is, therefore, appropriate to
define a quantity, ηP , known as the pump hydraulic efficiency, to represent
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that fraction of the work done on the fluid that ends up as an increase in
the mechanical energy stored in the fluid:

ηP = m
(
pT
2 − pT

1

)
/ρTΩ (2.29)

Of course, additional mechanical losses may occur in a pump. These can
cause the rate of work transmitted through the external shaft of the pump
to be greater than the rate at which the impeller does work on the fluid. For
example, losses may occur in the bearings or as a result of the “disk fric-
tion” losses caused by the fluid dynamic drag on other, non-active surfaces
rotating with the shaft. Consequently, the overall (or shaft) efficiency, ηS,
may be significantly smaller than ηP . For approximate evaluations of these
additional losses, the reader is referred to the work of Balje (1981).

Despite all these loss mechanisms, pumps can be surprisingly efficient.
A well designed centrifugal pump should have an overall efficiency in the
neighborhood of 85% and some very large pumps (for example those in the
Grand Coulee Dam) can exceed 90%. Even centrifugal pumps with quite
simple and crude geometries can often be 60% efficient.

2.7 NONCAVITATING PUMP
PERFORMANCE

It is useful at this point to develop an approximate and idealized evaluation
of the hydraulic performance of a pump in the absence of cavitation. This
will take the form of an analytical expression for the head rise (or ψ) as a
function of the flow rate (or φ2).

To simplify this analysis it is assumed that the flow is incompressible,
axisymmetric and steady in the rotating framework of the impeller blades;
that the blades are infinitely thin; and that viscous losses can be neglected.
Under these conditions the flow in any streamtube, such as depicted in figure
2.2, will follow the Bernoulli equation for a rotating system (see, for example,
Sabersky, Acosta and Hauptmann 1989),

2p1

ρ
+w2

1 − r21Ω
2 =

2p2

ρ
+w2

2 − r22Ω
2 (2.30)

This equation can be usefully interpreted as an energy equation as follows.
The terms p+ 1

2ρw
2 on either side are the total pressure or mechanical

energy per unit volume of fluid, and this quantity would be the same at
inlet and discharge were it not for the fact that “potential” energy is stored
in the rotating fluid. The term ρ(r21 − r22)Ω

2/2 represents the difference in
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this “potential” energy at inlet and discharge. Clearly, when there are losses,
equation 2.30 will no longer be true.

Using the definition of the total pressure (equation 2.13) and the relations
between the velocities derived from the velocity triangles of figure 2.2, equa-
tion 2.30 can be manipulated to yield the following expression for the total
pressure rise, (pT

2 − pT
1 ), for a given streamtube:

pT
2 − pT

1 = p2 − p1 +
ρ

2
(
v2
2 − v2

1

)
(2.31)

= ρ(Ωr2vθ2 − Ωr1vθ1) (2.32)

In the absence of inlet swirl (vθ1 = 0), this leads to the nondimensional
performance characteristic

ψ = 1 − φ2 cotβb2 (2.33)

using the definitions in equations 2.16 and 2.17. Here we have assumed that
the inlet and discharge conditions are uniform which, in effect, restricts the
result to a turbomachine in which the widths, B1 and B2 (figure 2.1), are
such that B1 � RT 1, B2 � RT 2, and in which the velocities of the flow and
the impeller are uniform across both the inlet and the discharge. Usually
this is not the case, and the results given by equations 2.32 and 2.33 then
become applicable to each individual streamtube. Integration over all the
streamtubes is necessary to obtain the performance characteristic for the
machine. An example of this integration was given in section 2.3. Even in
these nonuniform cases, the simple expression 2.33 is widely used in combi-
nation with some mean or effective discharge blade angle, βb2, to estimate
the performance of a pump.

It is important to note that the above results can be connected with
those of the preceding section by applying the angular momentum theorem
(Newton’s second law of motion applied to rotational motion) to relate the
torque, T , to the net flux of angular momentum out of the pump:

T = m(r2vθ2 − r1vθ1) (2.34)

where, as before, m is the mass flow rate. Note that this momentum equation
2.34 holds whether or not there are viscous losses. In the absence of viscous
losses, a second expression for the torque, T , follows from equation 2.28.
By equating the two expressions, the result 2.32 for the performance in the
absence of viscous losses is obtained by an alternative method.
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Figure 2.10. A centrifugal pump impeller designated Impeller X.

2.8 SEVERAL SPECIFIC IMPELLERS
AND PUMPS

Throughout this monograph, we shall make reference to experimental data
on various phenomena obtained with several specific impellers and pumps.
It is appropriate at this point to include a brief description of these com-
ponents. The descriptions will also serve as convenient examples of pump
geometries.

Impeller X, which is shown in figure 2.10, is a five-bladed centrifugal pump
impeller made by Byron Jackson Pump Division of Borg Warner Interna-
tional Products. It has a discharge radius, RT 2 = 8.1 cm, a discharge blade
angle, βbT 2, of 23◦, and a design specific speed, ND, of 0.57. Impeller X was
often tested in combination with Volute A (figure 2.11), a single exit, spiral
volute with a base circle of 18.3 cm and a spiral angle of 4◦. It is designed
to match Impeller X at a flow coefficient of φ2 = 0.092. This implies that
the principles of fluid continuity and momentum have been utilized in the
design, so that the volute collects a circumferentially uniform discharge from
the impeller and channels it to the discharge line in such a way that the pres-
sure in the volute is circumferentially uniform, and in a way that minimizes
the viscous losses in the decelerating flow. For given volute and impeller ge-
ometries, these objectives can only by met at one “design” flow coefficient,
as described in section 4.4. We would therefore expect that the hydraulic
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Figure 2.11. A vaneless spiral volute (designated Volute A) designed to
be matched to Impeller X.

losses would increase, and the efficiency decrease, at off-design conditions. It
is valuable to emphasize that the performance of a pump depends not only
on the separate designs of the impeller and volute but also on the matching
of the two components.

Two particular axial flow pumps or inducers, designed to function with
cavitation, will also be referred to frequently. These are shown in figure
2.12. In a number of contexts, data for several simple 9◦ helical inducers
(βbT 1 = 9◦) will be used for illustrative purposes, and a typical geometry
is shown on the left of figure 2.12. Two 7.58 cm diameter versions were
deployed: Impeller III had straight, radial leading edges and Impeller V,
with swept leading edges, is shown in figure 2.12. A 10.2 cm diameter version
with swept leading edges is designated Impeller VII.

The second inducer geometry is pertinent to a somewhat lower specific
speed. Impellers IV (7.58 cm diameter) and VI (10.2 cm diameter) were
scale models of the low pressure liquid oxygen impeller in the Space Shuttle
Main Engine (SSME). These have a design flow coefficient of about 0.076;
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Figure 2.12. Two cavitating inducers for which performance data is pre-
sented. On the left a 7.58 cm diameter, 9◦ helical Impeller V (a 10.2 cm
version is designated Impeller VII). On the right a 7.58 cm diameter scale
model of the impeller in the SSME low pressure LOX turbopump, Impeller
IV (a 10.2 cm version is designated Impeller VI).

other dimensions are given in table 7.1. Furthermore, some detailed data on
blade angles, βb1(r), and blade thickness are given in figure 7.39.
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3

TWO-DIMENSIONAL PERFORMANCE
ANALYSIS

3.1 INTRODUCTION

In this and the following chapter, we briefly survey the more detailed analy-
ses of the flow in axial and centrifugal pumps, and provide a survey of some
of the models used to synthesize the noncavitating performance of these tur-
bomachines. The survey begins in this chapter with a summary of some of
the results that emerge from a more detailed analysis of the two-dimensional
flow in the meridional plane of the turbomachine, while neglecting most of
the three-dimensional effects. In this regard, sections 3.2 through 3.4 ad-
dress the analyses of linear cascades for axial flow machines, and section 3.5
summarizes the analyses of radial cascades for centrifugal machines. Three-
dimensional effects are addressed in the next chapter.

3.2 LINEAR CASCADE ANALYSES

The fluid mechanics of a linear cascade will now be examined in more detail,
so that the role played by the geometry of the blades and information on the
resulting forces on individual blades may be used to supplement the analysis
of section 2.7. Referring to the periodic control volume indicated in figure
3.1, and applying the momentum theorem to this control volume, the forces,
Fx and Fy, imposed by the fluid on each blade (per unit depth normal to
the sketch), are given by

Fx = −(p2 − p1)h (3.1)

Fy = ρhvm(w1 cosβ1 −w2 cosβ2) (3.2)

where, as a result of continuity, vm1 = vm2 = vm. Note that Fy is entirely
consistent with the expression 2.34 for the torque, T .

To proceed, we define the vector mean of the relative velocities, w1 and w2,
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Figure 3.1. Schematic of a linear cascade showing the blade geometry,
the periodic control volume and the definition of the lift, L, and drag, D,
forces on a blade.

as having a magnitude wM and a direction βM , where by simple geometry

cotβM =
1
2

(cotβ1 + cotβ2) (3.3)

wM = vm/ sin βM (3.4)

It is conventional and appropriate (as discussed below) to define the lift,
L, and the drag, D, components of the total force on a blade, (F 2

x + F 2
y )

1
2 ,

as the components normal and tangential to the vector mean velocity, wM .
More specifically, as shown in figure 3.1,

L = −Fx cosβM + Fy sin βM (3.5)

D = Fx sinβM + Fy cos βM (3.6)

where L and D are forces per unit depth normal to the sketch. Nondimen-
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sional lift and drag coefficients are defined as

CL = L/
1
2
ρw2

Mc ; CD = D/
1
2
ρw2

Mc (3.7)

The list of fundamental relations is complete if we write the expression for
the pressure difference across the cascade as

p1 − p2 = ΔpT
L +

ρ

2
(
w2

1 − w2
2

)
(3.8)

where ΔpT
L denotes the total pressure loss across the cascade caused by

viscous effects. In frictionless flow, ΔpT
L = 0, and the relation 3.8 becomes

the Bernoulli equation in rotating coordinates (equation 2.30 with r1 = r2
as is appropriate here). A nondimensional loss coefficient, f , is defined as

f = ΔpT
L/

1
2
ρw2

M (3.9)

Equations 3.1 through 3.9 can be manipulated to obtain expressions for the
lift and drag coefficients as follows

CD = 2f sinβM/s (3.10)

CL =
2
s

[
ψ

φ
sin βM +

f(φ− cosβM sin βM)
sinβM

]
(3.11)

where s = c/h is the solidity, ψ is the head coefficient, (pT
2 − pT

1 )/ρΩ2R2, and
φ is the flow coefficient, vm/ΩR. Note that in frictionless flow CD = 0 and
CL = 2ψ sin βM/φs; then the total force (lift) on the foil is perpendicular
to the direction defined by the βM of equation 3.3. This provides confirma-
tion that the directions we chose in defining L and D (see figure 3.1) were
appropriate for, in frictionless flow, CD must indeed be zero.

Also note that equations 3.1 through 3.9 yield the head/flow characteristic
given by

ψ = φ (cotβ1 − cotβ2) − fφ2
(
1 + cot2 βM

)
(3.12)

which, when there is no inlet swirl or prerotation so that tanβ1 = φ, becomes

ψ = 1 − φ cotβ2 − f

[
φ2 +

1
4

(1 + φ cotβ2)
2

]
(3.13)

In frictionless flow, when the discharge is parallel with the blades (β2 = βb2),
this, of course, reduces to the characteristic equation 2.33. Note that the
use of the relation 3.13 allows us to write the expression 3.11 for the lift
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Figure 3.2. Calculated head/flow characteristics for some linear cascades.

coefficient as

CL =
2
s

[2 sinβM (cotβ1 − cot βM) − f cosβM ] (3.14)

Figure 3.2 presents examples of typical head/flow characteristics resulting
from equation 3.13 for some chosen values of β2 and the friction coefficient,
f . It should be noted that, in any real turbomachine, f will not be constant
but will vary substantially with the flow coefficient, φ, which determines the
angle of incidence and other flow characteristics. More realistic cases are
presented a little later in figure 3.3.

The observant reader will have noted that all of the preceding equations
of this section involve only the inclinations of the flow and not of the blades,
which have existed only as ill-defined objects that achieve the turning of the
flow. In order to progress further, it is necessary to obtain a detailed solution
of the flow, one result of which will be the connection between the flow angles
(βM , β2) and the geometry of the blades, including the blade angles (βb, βb1,
βb2). A large literature exists describing methods for the solutions of these
flows, but such detail is beyond the scope of this text. As in most high
Reynolds number flows, one begins with potential flow solutions, for which
the reader should consult a modern text, such as that by Horlock (1973), or
the valuable review by Roudebush (1965). König (1922) produced one of the
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earliest potential flow solutions, namely that for a simple flat plate cascade
of infinitely thin blades. This was used to generate figure 3.4. Such potential
flow methods must be supplemented by viscous analyses of the boundary
layers on the blades and the associated wakes in the discharge flow. Leiblein
(1965) provided an excellent review of these viscous flow methods, and some
of his basic methodology will be introduced later.

To begin with, however, one can obtain some useful insights by employing
our basic knowledge and understanding of lift and drag coefficients obtained
from tests, both those on single blades (airfoils, hydrofoils) and those on
cascades of blades. One such observation is that the lift coefficient, CL, is
proportional to the sine of the angle of attack, where the angle of attack is
defined as the angle between the mean flow direction, βM , and a mean blade
angle, βbM . Thus

CL = mL sin(βbM − βM ) (3.15)

where mL is a constant, a property of the blade or cascade geometry. In the
case of frictionless flow (f = 0), the expression 3.15 may be substituted into
equation 3.14, resulting in an expression for βM . When this is used with
equation 3.13, the following head/flow characteristic results:

ψ =
2mLs sinβbM

4 +mLs sin βbM

[
1 − φ

(
cotβbM +

vθ1

vm1

)]
(3.16)

where, for convenience, the first factor on the right-hand side is denoted by

ψ0 =
2mLs sinβbM

4 +mLs sinβbM
=
[
1 +

cotβ2 − cotβb2

cotβ1 − cotβ2

]−1

(3.17)

The factor, ψ0, is known as the frictionless shut-off head coefficient, since it
is equal to the head coefficient at zero flow rate. The second expression for
ψ0 follows from the preceding equations, and will be used later. Note that,
unlike equation 3.13, the head/flow characteristic of equation 3.16 is given
in terms of mL and practical quantities, such as the blade angle, βbM , and
the inlet swirl or prerotation, vθ1/vm1.

It is also useful to consider the drag coefficient, CD , for it clearly defines
f and the viscous losses in the cascade. Instead of being linear with angle
of attack, CD will be an even function so an appropriate empirical result
corresponding to equation 3.15 would be

CD = CD0 +mD sin2 (βbM − βM) (3.18)

where CD0 and mD are constants. Some head/flow characteristics resulting
from typical values of CD0 and mD are shown in figure 3.3. Note that these
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Figure 3.3. Calculated head/flow characteristics for a linear cascade us-
ing blade drag coefficients given by equation 3.18 with CD0 = 0.02. The
corresponding characteristics with CD0 = mD = 0 are shown in figure 3.2.

performance curves have a shape that is closer to practical performance
curves than the constant friction factor results of figure 3.2.

3.3 DEVIATION ANGLE

While the simple, empirical approach of the last section has practical and
educational value, it is also valuable to consider the structure of the flow in
more detail, and to examine how higher level solutions to the flow might be
used to predict the performance of a cascade of a particular geometry. In
doing so, it is important to distinguish between performance characteristics
that are the result of idealized inviscid flow and those that are caused by
viscous effects. Consider, first, the inviscid flow effects. König (1922) was
the first to solve the potential flow through a linear cascade, in particular
for a simple cascade of infinitely thin, straight blades. The solution leads
to values of the deviation, δ, that, in turn, allow evaluation of the shut-off
head coefficient, ψ0, through equation 3.17. This is shown as a function of
solidity in figure 3.4. Note that for solidities greater than about unity, the
idealized, potential flow exits the blade passages parallel to the blades, and
hence ψ0 → 1.

Another approach to the same issue of relating the flow angle, β2, to
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Figure 3.4. The performance parameter, ψ0, as a function of solidity, s, for
flat plate cascades with different blade angles, βb. Adapted by Wislicensus
(1947) (see also Sabersky, Acosta and Hauptmann 1989) from the potential
flow theory of König (1922).

the blade angles, is to employ an empirical rule for the deviation angle,
δ = βb2 − β2 (equation 2.2), in terms of other geometric properties of the
cascade. One early empirical relation suggested by Constant (1939) (see
Horlock 1973) relates the deviation to the camber angle, θc, and the solidity,
s, through

δN = C θc/s
1
2 (3.19)

where the subscript N refers to nominal conditions, somewhat arbitrarily
defined as the operating condition at which the deflection (β2 − β1) has a
value that is 80% of that at which stall would occur. Constant suggested a
value of 0.26 for the constant, C. Note that β2 can then be evaluated and the
head rise obtained from the characteristic 3.12. Later investigators explored
the variations in the deviation angle with other flow parameters (see, for
example, Howell 1942), and devised more complex correlations for use in
the design of axial flow rotors (Horlock 1973). However, the basic studies of
Leiblein on the boundary layers in linear cascades, and the role which these
viscous effects play in determining the deviation and the losses, superceded
much of this empirical work.
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3.4 VISCOUS EFFECTS IN LINEAR
CASCADES

It is also of value to examine in more detail the mechanism of viscous loss in a
cascade. Even in two-dimensional cascade flow, the growth of the boundary
layers on the pressure and suction surfaces of the blades, and the wakes
they form downstream of the blades (see figure 3.5), are complex, and not
amenable to simple analysis. However, as the reviews by Roudebush and
Lieblein (1965) and Lieblein (1965) demonstrate, it is nevertheless possible
to provide some qualitative guidelines for the resulting viscous effects on
cascade performance. In this respect, the diffusion factor, introduced by
Lieblein et al. (1953), is a useful concept that is based on the following
approximations. First, we note that under normal operating conditions, the
boundary layer on the suction surface will be much thicker than that on
the pressure surface of the foil, so that, to a first approximation, we may
neglect the latter. Then, the thickness of the wake (and therefore the total
pressure loss) will be primarily determined by that fraction of the suction
surface over which the velocity gradient is adverse, since that is where the
majority of the boundary layer growth occurs. Therefore, Lieblein et al.
argued, the momentum thickness of the wake, θ∗, should correlate with a
parameter they termed the diffusion factor, given by (wmax − w2)/wmax,
where wmax is the maximum velocity on the suction surface. One should
visualize deceleration or diffusion of the flow from wmax to w2, and that this
diffusion is the primary factor in determining the wake thickness. However,
since wmax is not easily determined, Lieblein et al. suggest an approximation

Figure 3.5. Sketch of the boundary layers on the surfaces of a cascade
and the resulting blade wakes.
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Figure 3.6. Correlation of the ratio of the momentum thickness of the
blade wakes, θ∗, to the chord, c, with the diffusion factor, Df , for cascades
of blades with three different profiles: NACA 65 − (A10)10 series (◦) and
two British C.4 parabolic arc profiles (� and �). The maximum thickness
of the blades is 0.1c and the Reynolds number is 2.5 × 105. Adapted from
Lieblein (1965).

to the diffusion factor that is denoted Df , and given by

Df = 1 − w2

w1
+
vθ2 − vθ1

2sw1

= 1 − sinβ1

sinβ2
+

sinβ1(cotβ1 − cotβ2)
2s

(3.20)

Figure 3.6 shows the correlation of the momentum thickness of the wake
(normalized by the chord) with this diffusion factor, Df , for three foil pro-
files. Such correlations are now commonly used to determine the viscous loss
due to blade boundary layers and wakes. Note that, once θ∗/c has been de-
termined from such a correlation, the drag coefficient, CD, and the friction
or loss coefficient follow from equations 3.7, 3.9, and 3.10 and the fact that
D = ρw2

2θ
∗:

CD =
2 sin2 βM

sin2 β2

θ∗

c
; f =

s sin βM

sin2 β2

θ∗

c
(3.21)

The data shown in figure 3.6 were for a specific Reynolds number, Re, and
the correlations must, therefore, be supplemented by a statement on the
variation of the loss coefficient with Re. A number of correlations of this type
exist (Roudebush and Lieblein 1965), and exhibit the expected decrease in
the loss coefficient with increasing Re. For more detail on viscous losses in
a cascade, the reader should consult the aforementioned papers by Lieblein.

In an actual turbomachine, there are several additional viscous loss mech-
anisms that were not included in the cascade analyses discussed above. Most
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obviously, there are additional viscous layers on the inner and outer surfaces
that bound the flow, the hub and the shroud (or casing). These often give
rise to complex, three-dimensional secondary flows that lead to additional
viscous losses (Horlock and Lakshminarayana 1973). Moreover, the rotation
of other, “non-active” surfaces of the impeller will lead to viscous shear
stresses, and thence to losses known as “disk friction losses” in the termi-
nology of turbomachines. Also, leakage flows from the discharge back to the
suction, or from one stage back to a preceding stage in a multistage pump,
constitute effective losses that must be included in any realistic evaluation
of the losses in an actual turbomachine (Balje 1981).

3.5 RADIAL CASCADE ANALYSES

Two-dimensional models for centrifugal or radial turbomachines begin with
analyses of the flow in a radial cascade (section 2.2 and figure 3.7), the

Figure 3.7. Schematic of the radial cascade corresponding to the linear
cascade of figure 3.1.

45



counterpart of the linear cascade for axial flow machines. More specifically,
the counterpart of the linear flat plate cascade is the logarithmic spiral
cascade, defined in section 2.2, and shown in more detail in figure 3.7. There
exist simple conformal mappings that allow potential flow solutions for the
linear cascade to be converted into solutions for the corresponding radial
cascade flow, though the proper interpretation of these solutions requires
special care. The resulting head/flow characteristic for frictionless flow in a
radial cascade of infinitely thin logarithmic spiral blades is given in a classic
paper by Busemann (1928), and takes the form

ψ = SfB − ψ0φ

(
cotβb +

vθ1

vm1

)
(3.22)

The terms SfB and ψ0 result from quite separate and distinct fluid me-
chanical effects. The term involving ψ0 is a consequence of the frictionless,
potential flow head rise through any simple, nonrotating cascade whether of
axial, radial, or mixed flow geometry. Therefore, ψ0 is identical to the quan-
tity, ψ0, defined by equation 3.17 in the context of a linear cascade. The
values for ψ0 for a simple cascade of infinitely thin blades, whether linear,
radial or mixed flow, are as given in figure 3.4. The ψ0 term can be thought
of as the “through flow” effect, and, as demonstrated by figure 3.4, the value
of ψ0 rapidly approaches unity when the solidity increases to a value a little
greater than one.

However, it is important to recognize that the ψ0 term is the result of
a frictionless, potential flow solution in which the vorticity is zero. This
solution would be directly applicable to a static or nonrotating radial cascade
in which the flow entering the cacade has no component of the vorticity
vector in the axial direction. This would be the case for a nonswirling axial
flow that is deflected to enter a nonrotating, radial cascade in which the axial
velocity is zero. But, relative to a rotating radial cascade (or centrifugal pump
impeller), such an inlet flow does have vorticity, specifically a vorticity with
magnitude 2Ω and a direction of rotation opposite to the direction of rotation
of the impeller. Consequently, the frictionless flow through the impeller is
not irrotational, but has a constant and uniform vorticity of −2Ω.

In inviscid fluid mechanics, one frequently obtains solutions for these kinds
of rotational flows in the following way. First, one obtains the solution for
the irrotational flow, which is represented by ψ0 in the current problem.
Mathematically, this is the complementary solution. Then one adds to this a
particular solution that satisfies all the same boundary conditions, but has a
uniform vorticity, −2Ω. In the present context, this particular, or rotational,
solution leads to the term, SfB, which, therefore, has a quite different origin
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Figure 3.8. A sketch of the displacement component of the inviscid flow
through a rotating radial cascade.

from the irrotational term, ψ0. The division into the rotational solution and
the irrotational solution is such that all the net volumetric flow through the
impeller is included in the irrotational (or ψ0) component. The rotational
solution has no through flow, but simply consists of a rotation of the fluid
within each blade passage, as sketched in figure 3.8. Busemann (1928) called
this the displacement flow; other authors refer to its rotating cells as relative
eddies (Balje 1980, Dixon 1978). In his pioneering work on the fluid mechan-
ics of turbomachines, Stodola (1927) was among the first to recognize the
importance of this rotational component of the solution. Busemann (1928)
first calculated its effect upon the head/flow characteristic for the case of
infinitely thin, logarithmic spiral blades, in other words the simple cascade
in the radial configuration. For reasons which will become clear shortly, the
function, SfB, is known as the Busemann slip factor, and Busemann’s so-
lutions lead to the values presented in figure 3.9 when the solidity, s > 1.1.
Note that the values of SfB are invariably less than or equal to unity, and,
therefore, the effect of the displacement flow is to cause a decrease in the
head. This deficiency can, however, be minimized by using a large num-
ber of blades. As the number of blades gets larger, SfB tends to unity as
the rotational flow within an individual blade passage increasingly weakens.
In practice, however, the frictional losses will increase with the number of
blades. Consequently, there is an important compromise that must be made
in choosing the number of blades. As figure 3.9 shows, this compromise will
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Figure 3.9. The Busemann slip factor, SfB , plotted against the blade
angle, βb, for various numbers of blades, ZR. The results shown are for
radial cascades of infinitely thin logarithmic spiral blades with solidities,
s > 1.1. Adapted by Sabersky, Acosta and Hauptmann (1989) and Wisli-
cenus (1947) from Busemann’s (1928) theory.

depend on the blade angle. Furthermore, the compromise must also take into
account the structural requirements for the blades. Thus, radial machines
for use with liquids usually have a smaller number of blades than those used
for gases. The reason for this is that a liquid turbomachine requires much
thicker blades, and, therefore, each blade creates much more flow blockage
than in the case of a gas turbomachine. Consequently, liquid machines tend
to have a smaller number of blades, typically eight for the range of specific
speeds for which radial machines are designed (ND < 1.5) (Stepanoff 1948,
Anderson). Another popular engineering criterion (Stepanoff 1948) is that
ZR should be one third of the discharge blade angle, βb (in degrees).

The decrease in the head induced by the displacement flow is due to the
nonuniformity in the discharge flow; this nonuniformity results in a mean
angle of discharge (denoted by β2) that is different from the discharge blade
angle, βb2, and, therefore, implies an effective deviation angle or slip, Sf
(see section 2.1). In fact, it is clear that the relations 2.16, 2.32, 3.22, and
2.4 imply that Sf = SfB, and, hence, the terminology used above. Stodola
(1927) recognized that slip would be a consequence of the displacement flow,
and estimated the magnitude of the slip velocity, vθs, in the following ap-
proximate way. He argued that the slip velocity could be roughly estimated
as Ωd/2, where d/2 is the radius of the blade discharge circle shown in fig-
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ure 3.8. He visualized this as representative of the rotating cell of fluid in
a blade passage, and that the rotation of this cell at Ω would lead to the
aforementioned vθs. Then, provide ZR is not too small, d ≈ 2πR2 sin βb2, and
it follows that

vθs = πΩR2 sinβb2/ZR (3.23)

and, from equation 2.4, that the estimated slip factor, SfS, is

SfS = 1 − π sin βb2

ZR
(3.24)

Numerical comparisons with the more exact results of Busemann presented
in figure 3.9, show that equation 3.24 gives a reasonable first approximation.
For example, an impeller with four blades, a blade angle of 25◦, and a solidity
greater than unity, has a Stodola slip factor of SfS = 0.668 compared to the
value of SfB = 0.712 from Busemann’s more exact theory.

There is a substantial literature on slip factors for centrifugal pumps.
Some of this focuses on the calculation of slip factors for inviscid flow in
radial cascades with blades that are more complex than the infinitely thin,
logarithmic spiral blades used by Busemann. Useful reviews of some of this
work can be found, for example, in the work of Wislicenus (1947), Stanitz
(1952), and Ferguson (1963). Other researchers attempt to find slip factors
that provide the best fit to experimental data. In doing so, they also attempt
to account for viscous effects in addition to the inviscid effect for which
the slip factor was originally devised. As an example of this approach, the
reader may consult Wiesner (1967), who reviews the existing, empirical slip
factors, and suggests one that seems to yield the best comparison with the
experimental measurements.

3.6 VISCOUS EFFECTS IN RADIAL
FLOWS

We now turn to a discussion of the viscous effects in centrifugal pumps.
Clearly a radial cascade will experience viscous boundary layers on the
blades that are similar to those discussed earlier for axial flow machines
(see section 3.4). However, two complicating factors tend to generate loss
mechanisms that are considerably more complicated. These two factors are
flow separation and secondary flow.

Normally, the flow in a centrifugal pump separates from the suction sur-
face near the leading edge, and produces a substantial wake on the suction
surfaces of each of the blades. Fischer and Thoma (1932) first identified this
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Figure 3.10. A sketch of actual discharge flow from a centrifugal pump
or compressor including the alternating pattern of jets and wakes resulting
from flow separation from the suction surfaces.

phenomenon, and observed that the wake can occur even at design flow.
Normally, it extends all the way to the impeller discharge. Consequently,
the discharge flow consists of a low velocity zone or wake next to the suction
surface, and, necessarily, a flow of increased velocity in the rest of the blade
passage. This “jet-wake structure” of the discharge is sketched in figure 3.10.
Note that this viscous effect tends to counteract the displacement flow of
figure 3.8. Since the work of Fischer and Thoma, many others have studied
this aspect of flows in centrifugal pumps and compressors (see, for example,
Acosta and Bowerman 1957, Johnston and Dean 1966, Eckardt 1976), and
it is now recognized as essential to take these features into account in con-
structing any model of the flow in radial turbomachines. Modern analyses
of the flow in radial turbomachines usually incorporate the basic features
of the jet-wake structure in the blade passages (for example, Sturge and
Cumpsty 1975, Howard and Osborne 1977). Sturge and Cumpsty have cal-
culated the shape of the wake in a typical, two-dimensional radial cascade,
using numerical methods to solve a free streamline problem similar to those
discussed in chapter 7.

At design flow, the wake or boundary layer on the suction surface may be
quite thin, but as the flow coefficient, φ, is decreased, the increased incidence
leads to larger wakes (Fischer and Thoma 1932, Johnston and Dean 1966).
Clearly, the nonuniformity of the discharge flow implies an “effective” slip
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due to these viscous effects. This slip will not only depend on the geometry of
the blades but will also be a function of the flow coefficient and the Reynolds
number. The change with flow coefficient is particularly interesting. As φ is
decreased below the design value and the wake grows in width, an increasing
fraction of the flow is concentrated in the jet. Johnston and Dean (1966)
showed that this results in a flow that more closely follows the geometry of
the pressure surface, and, therefore, to a decrease in the slip. This can be a
major effect in radial compressors. Johnston and Dean made measurements
in an 18-bladed radial compressor impeller with a 90◦ discharge blade angle
(for which SfS = 0.825), and found that the effective slip factor increased
monotonically from a value of about 0.8 at φ2 = 0.5 to a value of 1.0 at φ2 =
0.15. However, this increase in the slip factor did not produce an increase
in the head rise, because the increase in the viscous losses was greater than
the potential gain from the decrease in the slip.

Finally, it is important to recognize that secondary flows can also have
a substantial effect on the development of the blade wakes, and, therefore,
on the jet-wake structure. Moreover, the geometric differences between the
typical radial compressor and the typical centrifugal pump can lead to sig-
nificant differences in the secondary flows, the loss mechanisms, and the jet-
wake structure. The typical centrifugal pump geometry was illustrated in
figure 2.7, to which we should append the typical number of blades, ZR = 8.
A typical example is the geometry at ND = 0.6, namely RT 1/RT 2 ≈ 0.5 and
B2 ≈ 0.2RT 2. Assuming ZR = 8 and a typical blade angle at discharge of
25◦, it follows that the blade passage flow at discharge has cross-sectional
dimensions normal to the relative velocity vector of 0.2RT 2 × 0.3RT 2, while
the length of the blade passage is approximately 1.2RT 2. Thus the blade
passage is fairly wide relative to its length. In contrast, the typical radial
compressor has a much smaller value of B2/RT 2, and a much larger number
of blades. As a result, not only is the blade passage much narrower relative
to its length, but also the typical cross-section of the discharge flow is far
from square, being significantly narrower in the axial direction. The viscous
boundary layers on the suction and pressure surfaces of the blades, and on
the hub and shroud (or casing), will have a greater effect the smaller the
cross-sectional dimensions of the blade passage are relative to its length.
Moreover, the secondary flows that occur in the corners of this passage am-
plify these viscous effects. Consequently, the flow that discharges from a
blade passage of a typical radial compressor is more radically altered by
these viscous effects than the flow discharging from a typical centrifugal
pump.

51



4

OTHER FLOW FEATURES

4.1 INTRODUCTION

In this chapter we briefly survey some of the other important features of
the flows through turbomachines. We begin with a section on the three-
dimensional characteristics of flows, and a discussion of some of the difficul-
ties encountered in adapting the cascade analyses of the last chapter to the
complex geometry of most turbomachines.

4.2 THREE-DIMENSIONAL FLOW
EFFECTS

The preceding chapter included a description of some of the characteristics
of two-dimensional cascade flows in both the axial and radial geometries.

Figure 4.1. Geometry of a meridional streamtube in a pump impeller.
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It was assumed that the flow in the meridional plane was essentially two-
dimensional, and that the effects of the velocities (and the gradients in the
velocity or pressure) normal to the meridional surface were neglible. More-
over, it was tacitly assumed that the flow in a real turbomachine could
be synthesized using a series of these two-dimensional solutions for each
meridional annulus. In doing so it is implicitly assumed that each annulus
corresponds to a streamtube such as depicted in figure 4.1 and that the ge-
ometric relations between the inlet location, r1, and thickness, dr1, and the
discharge thickness, dn, and location, r2, are known a priori. In practice this
is not the case and quasi-three-dimensional methods have been developed
in order to determine the geometrical relation, r2(r1). These methods con-
tinue to assume that the streamsurfaces are axisymmetric, and, therefore,
neglect the more complicated three-dimensional aspects of the flow exempli-
fied by the secondary flows discussed below (section 4.6). Nevertheless, these
methods allow the calculation of useful turbomachine performance charac-
teristics, particularly under circumstances in which the complex secondary
flows are of less importance, such as close to the design condition. When the
turbomachine is operating far from the design condition, the flow within a
blade passage may have streamsurfaces that are far from axisymmetric.

In the context of axial flow machines, several approximate methods have
been employed in order to determine r2(r1) as a part of a quasi-three-
dimensional solution to the flow. Most of these are based on some appli-
cation of the condition of radial equilibrium. In its simplest form, the radial
equilibrium condition assumes that all of the terms in the equation of mo-
tion normal to the axisymmetric streamsurface are negligible, except for the
pressure gradient and the centrifugal acceleration terms, so that

1
ρ

dp

dr
=
v2
θ

r
(4.1)

(The equivalent assumption in a radial machine would be that the axial
pressure gradient is zero.) This assumption is differently embedded in sev-
eral approaches to the solution of the flow. All of these use a condition
like equation 4.1 (or some more accurate version) to relate the pressures
in the different streamtubes upstream of the rotor (or stator), and a sim-
ilar condition to connect the pressures in the streamtubes downstream of
the rotor (or stator). When these relations are combined with the normal
continuity and energy equations for each streamtube (that connect the con-
ditions upstream with those at the downstream location), a complete set
of equations is generated, and a solution to the flow can be obtained. In
this class of meridional streamtube methods, the velocities normal to merid-
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ional streamsurfaces are largely neglected, but the cross-sectional areas of
the streamtubes are adjusted to satisfy a condition based on the equation of
motion normal to the meridional surface. Notable examples of this class of
quasi-three-dimensional solutions are those devised at NASA Lewis by Kat-
sanis and his co-workers (see Stockman and Kramer 1963, Katsanis 1964,
Katsanis and McNally 1977).

The following example will illustrate one use of the “radial equilibrium”
condition. We shall assume that the inlet flow is in radial equilibrium. This
inlet flow is then divided into axisymmetric streamtubes, each with a specific
radial location, r1. Some initial estimate is made of the radial location of
each of the streamtubes at discharge (in other words an estimate of the
function r2(r1)). Then an iterative numerical method is employed, in which
the total pressure rise through each streamtube is evaluated. Hence, the
pressure distribution at discharge can be obtained. Then the width of each
tube at discharge is adjusted (r2(r1) is adjusted) in order to obtain the
required radial pressure gradient between each pair of adjacent streamtubes.
Subsequently, the process is repeated until a converged solution is reached. In
some simple cases, analytical rather than numerical results can be obtained;
an example is given in the next section.

More generally, it should be noted that quasi-three-dimensional analyses
of this kind are often used for the design of axial turbomachines. A common
objective is to achieve a design in which the total pressure is increasing (or
decreasing) with axial position at the same rate at all radii, and, therefore,
should be invariant with radial position. Combining this with the condition
for radial equilibrium, leads to

d

dr

(
v2
m

)
+

1
r2

d

dr

(
r2v2

θ

)
= 0 (4.2)

If, in addition, we stipulate that the axial velocity, vm, must be constant with
radius, then equation 4.2 implies that the circumferential velocity, vθ, must
vary like 1/r. Such an objective is termed a “free vortex” design. Another
basic approach is the “forced vortex” design in which the circumferential
velocity, vθ, is proportional to the radius, r; then, according to the above
equations, the axial velocity must decrease with r. More general designs in
which vθ = ar + b/r (a and b being constants) are utilized in practice for the
design of axial compressors and turbines, with the objective of producing
relatively uniform head rise and velocity at different radii (Horlock 1973).
However, in the context of pumps, most of the designs are of the “forced
vortex” type; Stepanoff (1948) lists a number of reasons for this historical
development. Note that a forced vortex design with a uniform axial velocity
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Figure 4.2. Actuator disc model of an axial blade row with a generic
meridional streamtube.

would imply helical blades satisfying equation 2.7; thus many pumps have
radial distributions of blade angle close to the form of that equation.

Radial equilibrium of the discharge flow may be an accurate assumption
in some machines but not in others. When the blade passage is narrow (in
both directions) relative to its length, the flow has adequate opportunity
to adjust within the impeller or rotor passage, and the condition of radial
equilibrium at discharge is usually reasonable. This is approximately the
case in all pumps except propeller pumps of low solidity. However, in many
compressors and turbines, the blade height is large compared with the chord
and a radial equilibrium assumption at discharge is not appropriate. Under
these circumstances, a very different approach utilizing an “actuator disc”
has been successfully employed. The flows far upstream and downstream of
the blade row are assumed to be in radial equilibrium, and the focus is on
the adjustment of the flow between these locations and the blade row (see
figure 4.2). The flow through the blade row itself is assumed to be so short
that the streamsurfaces emerge at the same radial locations at which they
entered; thus the blade row is modeled by an infinitesmally thin “actuator
disc”. In some respects, the actuator disc approach is the opposite of the
radial equilibrium method; in the former, all the streamline adjustment is
assumed to occur external to the blade passages whereas, in many radial
equilibrium applications, the adjustment all occurs internally.

Since actuator disc methods are rarely applied in the context of pumps
we shall not extend the discussion of them further. More detail can be found
in texts such as Horlock (1973). We shall, however, provide an example of
a radial equilibrium analysis since the results will prove useful in a later
chapter.
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4.3 RADIAL EQUILIBRIUM SOLUTION: AN EXAMPLE

For the purposes of this example of a radial equilibrium solution, the flow
through the pump impeller is subdivided into streamtubes, as shown in
figure 4.1. We choose to examine one generic streamtube with an inlet radius,
r1, and thickness, dr1. Both the position, n, and the thickness, dn, of the
streamtube at discharge are not known a priori, and must be determined as
a part of the solution. Conservation of mass requires that

vm1r1dr1 = vm2(n)(RH2 + n cosϑ)dn (4.3)

where n is a coordinate measured normal to the streamlines at discharge
and n = 0 at the hub so that r2 = RH2 + n cosϑ.

Applying the radial equilibrium assumption, the pressure distribution over
the exit plane is given by

1
ρ

∂p2

∂n
=

v2
θ2 cos ϑ

(RH2 + n cosϑ)
(4.4)

It is also necessary to specify the variation of the discharge blade angle,
βb2(n), with position, and, for the reasons described in section 4.2, we choose
the helical distribution given by equation 2.7. Note that this implies helical
blades in the case of an axial flow pump with ϑ = 0, and a constant βb2 in
the case of a centrifugal pump with ϑ = 90◦. Moreover, we shall assume that
the flow at discharge is parallel with the blades so that β2(n) = βb2(n).

The formulation of the problem is now complete, and it is a relatively
straightforward matter to eliminate p2(n) from equations 2.30 and 4.4, and
then use the velocity triangles and the continuity equation 4.3 to develop
a single differential equation for vm2(n). Assuming that the inlet is free of
swirl, and that vm1 is a constant, this equation for vm2(n) can then be
integrated to obtain the velocity and pressure distributions over the exit.
It remains to evaluate the total energy added to the flow by summing the
energies added to each of the streamtubes according to equation 2.21:

H =
1
Q

∫ T IP

HUB

(pT
2 − pT

1 )
ρg

2πr2vm2dn (4.5)

Nondimensionalizing the result, we finally obtain the following analytical
expression for the performance:

ψ = Σ1 + Σ2φ2 + Σ3/φ2 (4.6)

where Σ1,Σ2, and Σ3 are geometric quantities defined by
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Σ2 =
Γ cotβbT 2

�nΓ∗

[
1 +

Γ sin2 βbT 2 cos2 βbT 2

Γ∗�nΓ∗

]

Σ3 = tan3 βbT 2

[
1 − Γ2 cos4 βbT 2

Γ∗{�nΓ∗}2

]
Σ1 = −Σ3 cot βbT 2 − Σ2 tanβbT 2 (4.7)

where Γ and Γ∗ are given by

Γ = 1−
(
RH2

RT 2

)2

; Γ∗ = 1 − Γ cos2 βbT 2 (4.8)

Thus the geometric quantities, Σ1, Σ2, and Σ3, are functions only of Γ and
βbT 2.

Examples of these analytical performance curves are given later in figures
7.13 and 7.15. Note that this idealized hydraulic performance is a function
only of the geometric variables, Γ and βbT 2, of the discharge. Moreover, it
is readily shown that in the centrifugal limit of Γ → 0 then Σ1 → 1, Σ2 →
− cotβbT 2, Σ3 → 0, and the earlier result of equation 2.33 is recovered.

It is of interest to explore some optimizations based on the hydraulic per-
formance, given by equation 4.6. Though the arguments presented here are
quite heuristic, the results are interesting. We begin with the observation
that two particular geometric factors are important in determining the vis-
cous losses in many internal flows. If the cross-sectional area of the flow
increases at more than a marginal rate, the deceleration-induced boundary
layer separation and turbulence can lead to large viscous losses that might
not otherwise occur. Consequently, the mean value of w2/w1 is an important
design parameter, as implied earlier in section 3.4. In the present analysis,
the mean value of this parameter is given by the area ratio, Ar∗, where,
from geometric considerations,

Ar∗ =
Γ sinβbT 2

cosϑ (RT 1/RT 2)
2 sin{tan−1 (φ2ArRT 2/RT 1)}

(4.9)

We shall also use the ratio, Ar, of the area of the axisymmetric discharge
surface to the area of the inlet surface given by

Ar = Γ/ cosϑ (RT 1/RT 2)
2 (4.10)

In this example it is assumed that RH1 = 0; non-zero values can readily
be accommodated, but do not alter the qualitative nature of the results
obtained.

Many centrifugal pumps are designed with Ar∗ values somewhat greater
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than unity because the flow must subsequently be decelerated in the diffuser
and volute, and smaller values of Ar∗ would imply larger diffusion losses in
those nonrotating components. But, from the point of view of minimizing
losses in the impeller alone, one justifiable optimization would require Ar∗ ≈
1.

The second geometric factor that can influence the magnitude of the vis-
cous losses in an internal flow is the amount of turning imposed on the flow.
In the present analysis, we shall make use of an angle, ε, describing the
“angle of turn” of the flow as it proceeds through the turbomachine. It is
defined as the angle of the discharge relative velocity vector to the conical
discharge surface minus the angle of the inlet relative velocity vector to the
inlet surface:

ε = βbT 2 − tan−1 {φ2ArRT 2/RT 1} (4.11)

Note that, in purely axial flow, the angle of turn, ε, is zero for the case of
a flow with zero incidence through a set of helical blades of constant pitch.
Also note that, in purely radial flow, the angle of turn, ε, is zero for the
case of a flow with zero incidence through a set of logarithmic spiral blades.
Therefore, using somewhat heuristic interpolation, one might argue that ε
may be useful in the general case to describe the degree of turning applied to
the flow by a combination of a nonzero incidence at inlet and the curvature
of the blade passages.

For the purposes of this example, we now postulate that the major hy-
draulic losses encountered in the flow through the pump are minimized when
ε is minimized. Let us assume that this minimum value of ε can be approx-
imated by zero. Referring to this maximum efficiency point of operation as
the “design point” (where conditions are denoted by the suffix, D), it follows
from equation 4.11 that

φ2D =
RT 1

RT 2

tanβbT 2

Ar
(4.12)

and hence that

ψD = Σ1 + Σ2φ2D + Σ3/φ2D (4.13)

Thus the specific speed for which the pump is designed, ND, is given by

ND =

⎡
⎢⎢⎢⎣

π tanβbT 2

(
1 − R2

H1

R2
T1

)
{

Σ1

(
RT2
RT1

)2
+ Σ2 tanβbT2

Ar

(
RT2
RT1

)
+ Σ3Ar

tanβbT2

(
RT2
RT1

)3
} 3

2

⎤
⎥⎥⎥⎦

1
2

(4.14)
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Figure 4.3. Comparison of the results of equation 4.14 with the conven-
tional recommendation from figure 2.7 for the optimum ratio of inlet to
discharge tip radius as a function of design specific speed, ND .

and is a function only of the geometric quantities RT 1/RT 2, RH1/RT 1,
RH2/RT 2, ϑ, and βbT 2.

Examine now the variation of ND with these geometric variables, as man-
ifest by equation 4.14, bearing in mind that the practical design problem
involves the reverse procedure of choosing the geometry best suited to a
known specific speed. The number of geometric variables will be reduced
to four by assuming RH1 = 0. Note also that, at the design point given by
equation 4.12, it follows that Ar∗ = Ar and it is more convenient to use this
area ratio in place of the variable RH2/RT 2. Thus we consider the variations
of ND with ϑ, βbT 2, RT 1/RT 2, and Ar∗.

Calculations of ND from equation 4.14 show that, for specific speeds less
than unity, for sensible values of Ar∗ of the order of unity, and for blade
angles βbT 2 which are less than about 70◦ (which is the case in well-
designed pumps), the results are virtually independent of the angle ϑ, a
feature that simplifies the parametric variations in the results. For conve-
nience, we choose an arbitrary value of ϑ = 50◦. Then typical results for
Ar∗ = 1.0 are presented in figure 4.3, which shows the “optimum” RT 1/RT 2

for various design specific speeds, ND, at various discharge blade angles,
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Figure 4.4. Comparison of the results of equation 4.14 with the conven-
tional recommendation of figure 2.7 for the head coefficient, ψD, and the
flow coefficient, φD, as functions of the design specific speed, ND .

βbT 2. Considering the heuristic nature of some of the assumptions that were
used in this optimization, the agreement between the results and the con-
ventional recommendation (reproduced from figure 2.7) is remarkable. It
suggests that the evolution of pump designs has been driven by processes
minimizing the viscous losses, and that this minimization involves the opti-
mization of some simple geometric variables. The values of ψD and φD, that
correspond to the results of figure 4.3, are plotted in figure 4.4. Again, the
comparison of the traditional expectation and the present analysis is good,
except perhaps at low specific speeds where the discrepancy may be due to
the large values of Ar∗ which are used in practice. Finally, we observe that
one can construct sets of curves, such as those of figure 4.3, for other values
of the area ratio, Ar∗. However, for reasonable values of βbT 2 like 20◦, the
curves for 0.8 < Ar∗ < 2.0 do not differ greatly from those for Ar∗ = 1.0.

The foregoing analysis is intended only as an example of the application of
the radial equilibrium methodology, and the postscript is included because
of the interesting results it produces. Clearly some of the assumptions in
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the postscript are approximate, and would be inappropriate in any accurate
analysis of the viscous losses.

4.4 DISCHARGE FLOW MANAGEMENT

To this point the entire focus has been on the flow within the impeller
or rotor of the pump. However, the flow that discharges from the impeller
requires careful handling in order to preserve the gains in energy imparted
to the fluid. In many machines this requires the conversion of velocity head
to pressure by means of a diffuser. This inevitably implies hydraulic losses,
and considerable care needs to be taken to minimize these losses. The design
of axial and radial diffusers, with and without vanes to recover the swirl
velocity, is a major topic, whose details are beyond the scope of this book.
The reader is referred to the treatise by Japikse (1984).

Such diffusers are more common in compressors than in pumps. Typical
pump configurations are as follows. Axial flow pumps often employ a set of
stator vanes before (or in) the axial diffuser in order to recover the swirl
velocities. Special care needs to be taken to match the swirl angles of the
flow exiting the impeller with the inlet angles of the stator vanes. It is advis-
able, where possible, to measure the impeller discharge flow directly before
finalizing a design. In some designs, the axial diffuser will be followed by a
spiral collector or “volute” in order to recover the energy in the remaining
swirl and axial velocities.

In the case of centrifugal pumps, a radial flow diffuser with vanes may
or may not be used. Often it is not, and the flow discharges directly into
the volute. The proper design of this volute is an important component of
centrifugal pump design (Anderson 1955, Worster 1963, Stepanoff 1948).
The objective is to design a volute in which the flow is carefully matched to
the flow exiting the impeller, so that the losses are minimized and so that
the pressure is uniform around the impeller discharge. The basic concept is
sketched in figure 4.5. The flow discharges from the impeller with a velocity,
vθ2, in the tangential direction and a velocity, vr2, in the radial direction,
given by

vr2 = Q/2πR2B2 (4.15)

where B2 is the impeller discharge width. For simplicity, it will be assumed
that the discharge from the impeller is circumferentially uniform; in fact,
nonuniform volute flow will lead to a nonuniform flow in the impeller that is
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Figure 4.5. Volute flow notation.

unsteady in the rotating frame. Though this complication is often important,
it is omitted from the present, simple analysis.

If we further assume radially uniform velocity at each angular location in
the volute (also an assumption that needs to be modified in a more accurate
analysis), then it follows from the application of conservation of mass to an
element, dθ, of the volute that the discharge flow will be matched to the
flow in the volute if

vθ2
dAV

dθ
= vr2R2B2 (4.16)

This requires a circumferentially uniform rate of increase of the volute area
of dAV /dθ = vr2R2B2/vθ2 over the entire development of the spiral. If the
area of the clearance between the cutwater and the impeller discharge is
denoted by AV C , and the volute exit area is denoted by AV T , then AV

should have the following linear behavior:

AV = AV C +
θ

2π
AV T (4.17)

It follows that dAV /dθ = AV T/2π and hence

φ−1 tanβ2 − 1 =
2πR2B2 tanβ2

AV T
(4.18)
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Consequently, for a given impeller operating at a given design flow co-
efficient, φD, there exists a specific area ratio, 2πR2B2 tanβ2/AV T , for the
volute geometry. This parameter is close to the ratio which Anderson (1955)
used in his design methodology (see also Worster 1963), namely the ratio
of the cross-sectional area of the flow leaving the impeller (2πR2B2 sinβ2)
to the volute throat area (AV T ). For more detailed analyses of the flow in
a volute, the reader is referred to Pfleiderer (1932), Stepanoff (1948), and
Lazarkiewicz and Troskolanski (1965). For example, Pfleiderer explored the
radially nonuniform distributions of velocity within the volute and the con-
sequences for the design methodology.

One of the other considerations during the design of a volute is the lateral
force on the impeller that can develop due to circumferentially nonuniform
flow and pressure in the volute. These, and other related issues, are discussed
in chapter 10.

4.5 PREROTATION

Perhaps no aspect of turbomachinery flow is more misrepresented and
misunderstood than the phenomenon of “prerotation”. While this belongs
within the larger category of secondary flows (dealt with in section 4.6), it
is appropriate to address the issue of prerotation seperately, not only be-
cause of its importance for the hydraulic performance, but also because of
its interaction with cavitation.

It is first essential to distinguish between two separate phenomena both of
which lead to a swirling flow entering the pump. These two phenomena have
very different fluid mechanical origins. Here we shall distinguish them by
the separate terms, “backflow-induced swirl” and “inlet prerotation”. Both
imply a swirl component of the flow entering the pump. In fluid mechanical
terms, the flow has axial vorticity (if the axis of rotation is parallel with the
axis of the inlet duct) with a magnitude equal to twice the rate of angular
rotation of the swirl motion. Moreover, there are some basic properties of
such swirling flows that are important to the understanding of prerotation.
These are derived from the vorticity transport theorem (see, for example,
Batchelor 1967). In the context of the steady flow in an inlet duct, this
theorem tells us that the vorticity will only change with axial location for
two reasons: (a) because vorticity is diffused into the flow by the action of
viscosity, or (b) because the flow is accelerated or decelerated as a result of a
change in the cross-sectional area of the flow. The second mechanism results
in an increase in the swirl velocity due to the stretching of the vortex line,
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Figure 4.6. Lateral view of impeller inlet flow showing tip leakage flow
leading to backflow.

and is similar to the increase in rotation experienced by figure skaters when
they draw their arms in closer to their body. When the moment of inertia is
decreased, conservation of angular momentum results in an increase in the
rotation rate. Thus, for example, a nozzle in the inlet line would increase
the magnitude of any preexisting swirl.

For simplicity, however, we shall first consider inlet ducting of uniform
and symmetric cross-sectional area, so that only the first mechanism exists.
In inviscid flow, it follows that, if there is a location far upstream at which
the swirl (or axial vorticity) is zero, then, in the absence of viscous effects,
the swirl will be everywhere zero. This important result, which is a version
of Kelvin’s theorem (Batchelor 1967), is not widely recognized in discussions
of prerotation. Moreover, the result is not altered by the existence of viscous
effects, since purely axial motion cannot generate axial vorticity. However,
there are two common circumstances in which prerotation can be gener-
ated without violation of the above theorem, and these give rise to the two
phenomena named earlier.

The first of these common circumstances arises because of one of the
most important secondary flows that can occur in pumps, namely the phe-
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Figure 4.7. Axial and swirl velocity profiles in the inlet duct 0.25 di-
ameters (left) and 0.5 diameters (right) upstream of the inlet plane of an
inducer (Impeller VI) for various flow coefficients as shown (from del Valle,
Braisted and Brennen 1992).

nomenon of “backflow”. This is caused by the leakage flow between the tip
of the blades of an impeller (we consider first an unshrouded impeller) and
the pump casing. The circumstances are depicted in figure 4.6. Below a cer-
tain critical flow coefficient, the pressure difference driving the leakage flow
becomes sufficiently large that the tip leakage jet penetrates upstream of
the inlet plane of the impeller, and thus forms an annular region of “back-
flow” in the inlet duct. After penetrating upstream a certain distance, the
fluid of this jet is then entrained back into the main inlet flow. The up-
stream penetration distance increases with decreasing flow coefficient, and
can reach many diameters upstream of the inlet plane. In some pump devel-
opment programs (such as the Rocketdyne J-2 liquid oxygen pump) efforts
have been made to insert a “backflow deflector” in order to improve pump
performance (Jakobsen 1971). The intention of such a device is to prevent
the backflow from penetrating too far upstream, to reduce the distortion of
the inlet flow field, and to recover, as far as is possible, the swirl energy in
the backflow. More recently, a similar device was successfully employed in a
centrifugal pump (Sloteman et al. 1984).

Some measurements of the axial and swirl velocities just upstream of an
axial inducer are presented in figure 4.7. This data is taken from del Valle
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et al (1992), though very similar velocity profiles have been reported by
Badowski (1969, 1970) (see also Janigro and Ferrini 1973), and the over-
all features of the flow are similar whether the pump is shrouded or un-
shrouded, axial or centrifugal (see, for example, Stepanoff 1948, Okamura
and Miyashiro 1978, Breugelmans and Sen 1982, Sloteman et al. 1984). Mea-
surements are shown in figure 4.7 for two distances upstream of the inlet
plane (half a radius and one radius upstream), and for a number of flow
coefficients, φ. Note from the axial flow velocity profiles that, as the flow co-
efficient is decreased, the backflow reaches a half radius upstream at about
φ ≈ 0.066, and one radius upstream at about φ ≈ 0.063. The size of the
backflow region grows as φ is decreased. It is particularly remarkable that
at φ ≈ 0.05, nearly 30% of the inlet area is experiencing reverse flow! We can
further observe from the swirl velocity data that, in the absence of backflow,
the inlet flow has zero swirl. Kelvin’s theorem tells us this must be the case
because the flow far upstream has no swirl.

Obviously the backflow has a high swirl velocity imparted to it by the
impeller blades. But what is also remarkable is that this vorticity is rapidly
spread to the core of the main inlet flow, so that at φ = 0.05, for example,
almost the entire inlet flow has a nonzero swirl velocity. The properties of
swirling flows discussed above are not violated, since the origin of the vor-
ticity is the pump itself and the vorticity is transmitted to the inflow via the
backflow. The rapidity with which the swirl vorticity is diffused to the core of
the incoming flow remains something of a mystery, for it is much too rapid
to be caused by normal viscous diffusion (Braisted 1979). It seems likely
that the inherent unsteadiness of the backflow (with a strong blade pass-
ing frequency component) creates extensive mixing which effects this rapid
diffusion. However it arises, it is clear that this “backflow-induced swirl”,
or “pre-rotation”, will clearly affect the incidence angles and, therefore, the
performance of the pump.

Before leaving the subject of backflow, it is important to emphasize that
this phenomenon also occurs at flow rates below design in centrifugal as
well as axial flow pumps, and with shrouded as well as unshrouded impellers
(see, for example, Okamura and Miyashiro 1978, Makay 1980). The detailed
explanation may differ from one device to another, but the fundamental
tendency for an impeller to exhibit this kind of secondary flow at larger
angles of incidence seems to be universal.

But there is another, quite separate origin for prerotation, and this is
usually manifest in practice when the fluid is being drawn into the pump
from an “inlet bay” or reservoir with a free surface (figure 4.8). Under such
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Figure 4.8. Right: sketch of a typical inlet vortex associated with pre-
rotation. Left: Photograph of an air-filled inlet vortex from Wijdieks (1965)
reproduced with permission of the Delft Hydraulics Laboratory.

circumstances, it is almost inevitable that the large scale flow in the reser-
voir has some nonuniformity that constitutes axial vorticity or circulation
in the frame of reference of the pump inlet. Even though the fluid veloci-
ties associated with this nonuniformity may be very small, when the vortex
lines are stretched as the flow enters the inlet duct, the vorticity is greatly
amplified, and the inlet flow assumes a significant preswirl or “inlet prerota-
tion”. The effect is very similar to the bathtub vortex. Once the flow has
entered an inlet duct of constant cross-sectional area, the magnitude of the
swirl usually remains fairly constant over the short lengths of inlet ducting
commonly used.

Often, the existence of “inlet prerotation” can have unforeseen conse-
quences for the suction performance of the pump. Frequently, as in the case
of the bathtub vortex, the core of the vortex runs from the inlet duct to
the free surface of the reservoir, as shown in figure 4.8. Due to the low pres-
sure in the center of the vortex, air is drawn into the core and may even
penetrate to the depth of the duct inlet, as illustrated by the photograph
in figure 4.8 taken from the work of Wijdieks (1965). When this occurs, the
pump inlet suddenly experiences a two-phase air/water flow rather than the
single-phase liquid inlet flow expected. This can lead, not only to a signif-
icant reduction in the performance of the pump, but also to the vibration
and unsteadiness that often accompany two-phase flow. Even without air
entrainment, the pump performance is almost always deteriorated by these
suction vortices. Indeed this is one of the prime suspects when the expected
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performance is not realized in a particular installation. These intake vortices
are very similar to those which can occur in aircraft engines (De Siervi et
al. 1982).

4.6 OTHER SECONDARY FLOWS

Most pumps operate at high Reynolds numbers, and, in this regime of flow,
most of the hydraulic losses occur as a result of secondary flows and turbulent
mixing. While a detailed analysis of secondary flows is beyond the scope of
this monograph (the reader is referred to Horlock and Lakshminarayana
(1973) for a review of the fundamentals), it is important to outline some
of the more common secondary flows that occur in pumps. To do so, we
choose to describe the secondary flows associated with three typical pump
components, the unshrouded axial flow impeller or inducer, the shrouded
centrifugal impeller, and the vaneless volute of a centrifugal pump.

Secondary flows in unshrouded axial flow inducers have been studied in
detail by Lakshminarayana (1972, 1981), and figure 4.9, which was adapted
from those publications, provides a summary of the kinds of secondary flows
that occur within the blade passage of such an impeller. Dividing the cross-
section into a core region, boundary layer regions on the pressure and suction
surfaces of the blades, and an interference region next to the static casing,
Lakshminarayana identifies the following departures from a simple flow fol-

Figure 4.9. Cross-section of a blade passage in an axial flow impeller show-
ing the tip leakage flow, boundary layer radial flow, and other secondary
flows (adapted from Lakshminarayana 1981).
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Figure 4.10. Photographs of a 10.2 cm, 12◦ helical inducer with a lucite
shroud showing the blade surface flow revealed by the running paint dot
technique. On the left the suction surfaces viewed from the direction of the
inlet. On the right the view of the pressure surfaces and the hub from the
discharge. The flow is for 2000 rpm and φ1 = 0.041. From Bhattacharyya
et al. (1993).

lowing the blades. First, and perhaps most important, there will be a strong
leakage flow (called the tip leakage or tip clearance flow) around the blade
tips driven by the pressure difference between the pressure surface and the
suction surface. Clearly this flow will become even more pronounced at flow
rates below design when the blades are more heavily loaded. This leakage
flow will entrain secondary flow on both surfaces of the blades, as shown by
the dashed arrows in figure 4.9. Second, the flow in the boundary layers will
tend to generate an outward radial component on both the suction and pres-
sure surfaces, though the former may be stronger because of enhancement
by the leakage flow. The photographs of figure 4.10, which are taken from
Bhattacharyya et al. (1993), show a strong outward radial component of
the flow on the blade surface of an inducer. This is particularly pronounced
near the leading edge (left-hand photograph). Incidentally, Bhattacharyya
et al. not only observed the backflow associated with the tip clearance flow,
but also a “backflow” at the hub in which flow reenters the blade passage
from downstream of the inducer. Evidence for this secondary flow can be
seen on the hub surface in the right-hand photograph of figure 4.10. Finally,
we should mention that Lakshminarayana also observed secondary vortices
at both the hub and the casing as sketched in figure 4.9. The vortex near
the hub was larger and more coherent, while a confused interference region
existed near the casing.
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Figure 4.11. Schematic showing secondary flows associated with a typical
centrifugal pump operating at off-design conditions (adapted from Makay
1980).

Figure 4.12. Schematic of a centrifugal pump with a single, vaneless vo-
lute indicating the disturbed and separated flows which can occur in the
volute below (left) and above (right) the design flow rate.
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Additional examples of secondary flows are given in the descriptions by
Makay (1980) of typical flows through shrouded centrifugal impellers. Fig-
ure 4.11, which has been adapted from one of Makay’s sketches, illustrates
the kind of secondary flows that can occur at off-design conditions. Note, in
particular, the backflow in the impeller eye of this shrouded impeller pump.
This backflow may well interact in an important way with the discharge-
to-suction leakage flow that is an important feature of the hydraulics of a
centrifugal pump at all flow rates. As testament to the importance of the
backflow, Makay cites a case in which the inlet guide vanes of a primary
coolant pump in a power plant suffered structural damage due to the re-
peated unsteady loads caused by this backflow. Note should also be made
of the secondary flows that Makay describes occurring in the vicinity of the
impeller discharge.

It is also important to mention the disturbed and separated flows that
can often occur in the volute of a centrifugal pump when that combination
is operated at off-design flow rates (Binder and Knapp 1936, Worster 1963,
Lazarkiewicz and Troskolanski 1965, Johnston and Dean 1966). As described
in the preceding section, and as indicated in figure 4.12, one of the common-
est geometries is the spiral volute, designed to collect the flow discharging
from an impeller in a way that would result in circumferentially uniform
pressure and velocity. However, such a volute design is specific to a partic-
ular design flow coefficient. At flow rates above or below design, disturbed
and separated flows can occur particularly in the vicinity of the cutwater
or tongue. Some typical phenomena are sketched in figure 4.12 which shows
separation on the inside and outside of the tongue at flow coefficients below
and above design, respectively. It also indicates the flow reversal inside the
tongue that can occur above design (Lazarkiewicz and Troskolanski 1965).
Moreover, as Chu et al. (1993) have recently demonstrated, the unsteady
shedding of vortices from the cutwater can be an important source of vibra-
tion and noise.
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5

CAVITATION PARAMETERS AND INCEPTION

5.1 INTRODUCTION

This chapter will deal with the parameters that are used to describe cavita-
tion, and the circumstances that govern its inception. In subsequent chap-
ters, we address the deleterious effects of cavitation, namely cavitation dam-
age, noise, the effect of cavitation on hydraulic performance, and cavitation-
induced instabilities.

5.2 CAVITATION PARAMETERS

Cavitation is the process of the formation of vapor bubbles in low pressure
regions within a flow. One might imagine that vapor bubbles are formed
when the pressure in the liquid reaches the vapor pressure, pV , of the liquid
at the operating temperature. While many complicating factors discussed
later cause deviations from this hypothesis, nevertheless it is useful to adopt
this as a criterion for the purpose of our initial discussion. In practice, it can
also provide a crude initial guideline.

The static pressure, p, in any flow is normally nondimensionalized as a
pressure coefficient, Cp, defined as

Cp = (p− p1)/
1
2
ρU2 (5.1)

where p1 is some reference static pressure for which we shall use the pump
inlet pressure and U is some reference velocity for which we shall use the
inlet tip speed, ΩRT 1. It is important to note that, for the flow of an incom-
pressible liquid within rigid boundaries, Cp is only a function of the geometry
of the boundaries and of the Reynolds number, Re, which, for present pur-
poses, can be defined as 2ΩR2

T 1/ν where ν is the kinematic viscosity of the
fluid. It is equally important to note that, in the absence of cavitation, the
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fluid velocities and the pressure coefficient are independent of the level of the
pressure. Thus, for example, a change in the inlet pressure, p1, will simply
result in an equal change in all the other pressures, so that Cp is unaffected.
It follows that, in any flow with prescribed fluid velocities, geometry and
Reynolds number, there will be a particular location at which the pressure,
p, is a minimum and that the difference between this minimum pressure,
pmin, and the inlet pressure, p1 is given by

Cpmin = (pmin − p1)/
1
2
ρU2 (5.2)

where Cpmin is some negative number which is a function only of the geom-
etry of the device (pump) and the Reynolds number. If the value of Cpmin

could be obtained either experimentally or theoretically, then we could estab-
lish the value of the inlet pressure, p1, at which cavitation would first appear
(assuming that this occurs when pmin = pV ) as p1 is decreased, namely

(p1) CAVITATION
APPEARANCE

= pV +
1
2
ρU2 (−Cpmin) (5.3)

which for a given device, given fluid, and given fluid temperature, would be
a function only of the velocity, U .

Traditionally, several special dimensionless parameters are utilized in eval-
uating the potential for cavitation. Perhaps the most fundamental of these
is the cavitation number, σ, defined as

σ = (p1 − pV )/
1
2
ρU2 (5.4)

Clearly every flow has a value of σ whether or not cavitation occurs. There
is, however, a particular value of σ corresponding to the particular inlet
pressure, p1, at which cavitation first occurs as the pressure is decreased.
This is called the cavitation inception number, and is denoted by σi:

σi =
[
(p1) CAVITATION

APPEARANCE
− pV

]
/
1
2
ρU2 (5.5)

If cavitation inception occurs when pmin = pV , then, combining equations
5.3 and 5.5, it is clear that this criterion corresponds to a cavitation inception
number of σi = −Cpmin. On the other hand, a departure from this criterion
results in values of σi different from −Cpmin.

Several variations in the definition of cavitation number occur in the lit-
erature. Often the inlet tip velocity, ΩRT 1, is employed as the reference
velocity, U , and this version will be used in this monograph unless otherwise
stated. Sometimes, however, the relative velocity at the inlet tip, wT 1, is
used as the reference velocity, U . Usually the magnitudes of wT 1 and ΩRT 1
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do not differ greatly, and so the differences in the two cavitation numbers
are small.

In the context of pumps and turbines, a number of other, surrogate cavi-
tation parameters are frequently used in addition to some special terminol-
ogy. The NPSP (for net positive suction pressure) is an acronym used for
(pT

1 − pV ), where pT
1 is the inlet total pressure given by

pT
1 = p1 +

1
2
ρv2

1 (5.6)

For future purposes, note from equations 5.6, 5.4, and 2.17 that

(
pT
1 − pV

)
=

1
2
ρΩ2R2

T 1

(
σ + φ2

1

)
(5.7)

Also, the NPSE, or net positive suction energy, is defined as (pT
1 − pV )/ρ,

and the NPSH , or net positive suction head, is (pT
1 − pV )/ρg. Furthermore,

a nondimensional version of these quantities is defined in a manner similar
to the specific speed as

S = ΩQ
1
2/(NPSE)

3
4 (5.8)

and is called the “suction specific speed”. Like the specific speed, N , the
suction specific speed, is a dimensionless number, and should be computed
using a consistent set of units, such as Ω in rad/s, Q in ft3/s and NPSE

in ft2/s2. Unfortunately, it is traditional U.S. practice to use Ω in rpm, Q
in gpm, and to use the NPSH in ft rather than the NPSE. As in the
case of the specific speed, one may obtain the traditional U.S. evaluation by
multiplying the rational suction specific speed used in this monograph by
2734.6.

The suction specific speed is similar in concept to the cavitation number in
that it represents a nondimensional version of the inlet or suction pressure.
Moreover, there will be a certain critical value of the suction specific speed
at which cavitation first appears. This special value is termed the inception
suction specific speed, Si. The reader should note that frequently, when a
value of the “suction specific speed” is quoted for a pump, the value being
given is some critical value of S that may or may not correspond to Si. More
frequently, it corresponds to Sa, the value at which the degradation in the
head rise reaches a certain percentage value (see section 5.5).

The suction specific speed, S, may be obtained from the cavitation num-
ber, σ, and vice versa, by noting that, from the relations 2.17, 5.4, 5.6, and
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5.8, it follows that

S =
[
πφ1

(
1− R2

H1/R
2
T 1

)] 1
2 /

[
1
2
(
σ + φ2

1

)] 3
4

(5.9)

We should also make note of a third nondimensional parameter, called
Thoma’s cavitation factor, σTH , which is defined as

σTH =
(
pT
1 − pV

)
/
(
pT
2 − pT

1

)
(5.10)

where (pT
2 − pT

1 ) is the total pressure rise across the pump. Clearly, this is
connected to σ and to S by the relation

σTH =
σ + φ2

1

ψ
=
(
N

S

)4
3

(5.11)

Since cavitation usually occurs at the inlet to a pump, σTH is not a par-
ticularly useful parameter since (pT

2 − pT
1 ) is not especially relevant to the

phenomenon.

5.3 CAVITATION INCEPTION

For illustrative purposes in the last section, we employed the criterion that
cavitation occurs when the minimum pressure in the flow just reaches the
vapor pressure, σi = −Cpmin. If this were the case, the prediction of cavi-
tation would be a straightforward matter. Unfortunately, large departures
from this criterion can occur in practice, and, in this section, we shall try to
present a brief overview of the reasons for these discrepancies. There is, of
course, an extensive body of literature on this subject, and we shall not at-
tempt a comprehensive review. The reader is referred to reviews by Knapp,
Daily and Hammit (1970), Acosta and Parkin (1975), Arakeri (1979) and
Brennen (1994) for more detail.

First, it is important to recognize that vapor does not necessarily form
when the pressure, p, in a liquid falls below the vapor pressure, pV . Indeed,
a pure liquid can, theoretically, sustain a tension, Δp = pV − p, of many
atmospheres before nucleation, or the appearance of vapor bubbles, occurs.
Such a process is termed homogeneous nucleation, and has been observed
in the laboratory with some pure liquids (not water) under very clean con-
ditions. In real engineering flows, these large tensions do not occur because
vapor bubbles grow from nucleation sites either on the containing surfaces
or suspended in the liquid. As in the case of a solid, the ultimate strength
is determined by the weaknesses (stress concentrations) represented by the

75



nucleation sites or “nuclei.” Research has shown that suspended nuclei are
more important than surface nucleation sites in determining cavitation in-
ception. These suspended nuclei may take the form either of microbubbles
or of solid particles within which, perhaps, there are microbubbles. For ex-
ample, a microbubble of radius, RN , containing only vapor, is in equilibrium
when the liquid pressure

p = pV − 2S/RN (5.12)

where S is the surface tension. It follows that such a microbubble would
result in a critical tension of 2S/RN , and the liquid pressure would have to
fall below pV − 2S/RN before the microbubble would grow to a visible size.
For example, a 10 μm bubble in water at normal temperatures leads to a
tension of 0.14 bar.

It is virtually impossible to remove all the particles, microbubbles and
dissolved air from any substantial body of liquid (the catch-all term “liquid
quality” is used to refer to the degree of contamination). Because of this
contamination, substantial differences in the inception cavitation number
(and, indeed, the form of cavitation) have been observed in experiments in
different water tunnels, and even in a single facility with differently pro-

Figure 5.1. The inception numbers measured for the same axisymmetric
headform in a variety of water tunnels around the world. Data collected
as part of a comparative study of cavitation inception by the International
Towing Tank Conference (Lindgren and Johnsson 1966, Johnsson 1969).
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Figure 5.2. Several nuclei number distribution functions measured in wa-
ter tunnels and in the ocean by various methods (adapted from Gates and
Acosta 1978).

cessed water. The ITTC comparative tests (Lindgren and Johnsson 1966,
Johnsson 1969) provided a particularly dramatic example of these differ-
ences when cavitation on the same axisymmetric headform was examined in
many different water tunnels around the world. An example of the variation
of σi in those experiments, is reproduced as figure 5.1.

Because the cavitation nuclei are crucial to an understanding of cavitation
inception, it is now recognized that the liquid in any cavitation inception
study must be monitored by measuring the number of nuclei present in
the liquid. This information is normally presented in the form of a nuclei
number distribution function,N (RN), defined such that the number of nuclei
per unit total volume with radii between RN and RN + dRN is given by
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N (RN)dRN . Typical nuclei number distributions are shown in figure 5.2
where data from water tunnels and from the ocean are presented.

Most of the methods currently used for making these measurements are
still in the development stage. Devices based on acoustic scattering, and on
light scattering, have been explored. Other instruments, known as cavitation
susceptibility meters, cause samples of the liquid to cavitate, and measure
the number and size of the resulting macroscopic bubbles. Perhaps the most
reliable method has been the use of holography to create a magnified three-
dimensional photographic image of a sample volume of liquid that can then
be surveyed for nuclei. Billet (1985) has recently reviewed the current state
of cavitation nuclei measurements (see also Katz et al 1984).

It may be interesting to note that cavitation itself is a source of nuclei
in many facilities. This is because air dissolved in the liquid will tend to
come out of solution at low pressures, and contribute a partial pressure of
air to the contents of any macroscopic cavitation bubble. When that bubble
is convected into a region of higher pressure and the vapor condenses, this
leaves a small air bubble that only redissolves very slowly, if at all. This
unforeseen phenomenon caused great difficulty for the first water tunnels
which were modeled directly on wind tunnels. It was discovered that, after
a few minutes of operating with a cavitating body in the working section,
the bubbles produced by the cavitation grew rapidly in number, and began
to complete the circuit of the facility so that they appeared in the incom-
ing flow. Soon the working section was obscured by a two-phase flow. The
solution had two components. First, a water tunnel needs to be fitted with
a long and deep return leg so that the water remains at high pressure for
sufficient time to redissolve most of the cavitation-produced nuclei. Such a
return leg is termed a “resorber”. Second, most water tunnel facilities have
a “deaerator” for reducing the air content of the water to 20 − 50% of the
saturation level at atmospheric pressure. These comments serve to illustrate
the fact that N (RN) in any facility can change according to the operating
condition, and can be altered both by deaeration and by filtration.

Most of the data of figure 5.2 is taken from water tunnel water that has
been somewhat filtered and degassed, or from the ocean which is surpris-
ingly clean. Thus, there are few nuclei with a size greater than 100 μm. On
the other hand, it is quite possible in many pump applications to have a
much larger number of larger bubbles and, in extreme situations, to have to
contend with a two-phase flow. Gas bubbles in the inflow could grow sub-
stantially as they pass through the low pressure regions within the pump,
even though the pressure is everywhere above the vapor pressure. Such a phe-
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nomenon is called pseudo-cavitation. Though a cavitation inception number
is not particularly relevant to such circumstances, attempts to measure σi

under these circumstances would clearly yield values larger than −Cpmin.
On the other hand, if the liquid is quite clean with only very small nuclei,

the tension that this liquid can sustain means that the minimum pressure
has to fall well below pV for inception to occur. Then σi is much smaller
than −Cpmin. Thus the quality of the water and its nuclei can cause the
cavitation inception number to be either larger or smaller than −Cpmin.

There are, however, at least two other factors that can affect σi, namely
the residence time and turbulence. The residence time effect arises because
the nuclei must remain at a pressure below the critical value for a sufficient
length of time to grow to observable size. This requirement will depend on
both the size of the pump and the speed of the flow. It will also depend on
the temperature of the liquid for, as we shall see later, the rate of bubble
growth may depend on the temperature of the liquid. The residence time
effect requires that a finite region of the flow be below the critical pressure,
and, therefore, causes σi to be lower than might otherwise be expected.

Up to this point we have assumed that the flow and the pressures are
laminar and steady. However, most of the flows with which one must deal
in turbomachinery are not only turbulent but also unsteady. Vortices oc-
cur because they are inherent in turbulence and because of both free and
forced shedding of vortices. This has important consequences for cavitation
inception, because the pressure in the center of a vortex may be significantly
lower than the mean pressure in the flow. The measurement or calculation of
−Cpmin would elicit the value of the lowest mean pressure, while cavitation
might first occur in a transient vortex whose central pressure was lower than
the lowest mean pressure. Unlike the residence time factor, this would cause
higher values of σi than would otherwise be expected. It would also cause
σi to change with Reynolds number, Re. Note that this would be separate
from the effect of Reynolds number on the minimum pressure coefficient,
Cpmin. Note also that surface roughness can promote cavitation by creating
localized low pressure perturbations in the same manner as turbulence.

5.4 SCALING OF CAVITATION
INCEPTION

The complexity of the issues raised in the last section helps to explain why
serious questions remain as to how to scale cavitation inception. This is
perhaps one of the most troublesome issues that the developer of a liquid
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turbomachine must face. Model tests of a ship’s propeller or large turbine (to
quote two common examples) may allow the designer to accurately estimate
the noncavitating performance of the device. However, he will not be able to
place anything like the same confidence in his ability to scale the cavitation
inception data.

Consider the problem in more detail. Changing the size of the device
will alter not only the residence time effect but also the Reynolds number.
Furthermore, the nuclei will now be a different size relative to the impeller.
Changing the speed in an attempt to maintain Reynolds number scaling
may only confuse the issue by also altering the residence time. Moreover,
changing the speed will also change the cavitation number, and, to recover
the modeled condition, one must then change the inlet pressure which may
alter the nuclei content. There is also the issue of what to do about the
surface roughness in the model and in the prototype.

The other issue of scaling that arises is how to anticipate the cavitation
phenomena in one liquid based on data in another. It is clearly the case that
the literature contains a great deal of data on water as the fluid. Data on
other liquids is quite meager. Indeed the author has not located any nuclei
number distributions for a fluid other than water. Since the nuclei play such
a key role, it is not surprising that our current ability to scale from one
liquid to another is quite tentative.

It would not be appropriate to leave this subject without emphasizing that
most of the remarks in the last two sections have focused on the inception
of cavitation. Once cavitation has become established, the phenomena that
occur are much less sensitive to special factors, such as the nuclei content.
Hence the scaling of developed cavitation can be anticipated with much more
confidence than the scaling of cavitation inception. This is not, however, of
much solace to the engineer charged with avoiding cavitation completely.

5.5 PUMP PERFORMANCE

The performance of a pump when presented nondimensionally will take the
generic form sketched in figure 5.3. As discussed earlier, the noncavitat-
ing performance will consist of the head coefficient, ψ, as a function of the
flow coefficient, φ, where the design conditions can be identified as a par-
ticular point on the ψ(φ) curve. The noncavitating characteristic should be
independent of the speed, Ω, though at lower speeds there may be some
deviation due to viscous or Reynolds number effects. The cavitating perfor-
mance, as illustrated on the right in figure 5.3, is presented as a family of
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Figure 5.3. Schematic of noncavitating performance, ψ(φ), and cavitating
performance, ψ(φ, σ), showing the three key cavitation numbers.

curves, ψ(φ, σ), each for a specific flow coefficient, in a graph of the head
coefficient against cavitation number, σ. Frequently, of course, both perfor-
mance curves are presented dimensionally; then, for example, the NPSH is
often used instead of the cavitation number as the abscissa for the cavitation
performance graph.

It is valuable to identify three special cavitation numbers in the cavita-
tion performance graph. Consider a pump operating at a particular flow rate
or flow coefficient, while the inlet pressure, NPSH , or cavitation number is
gradually reduced. As discussed in the previous chapter, the first critical cav-
itation number to be reached is that at which cavitation first appears; this
is called the cavitation inception number, σi. Often the occurrence of cavi-
tation is detected by the typical crackling sound that it makes (see section
6.5). As the pressure is further reduced, the extent (and noise) of cavitation
will increase. However, it typically requires a further, substantial decrease in
σ before any degradation in performance is encountered. When this occurs,
the cavitation number at which it happens is often defined by a certain per-
centage loss in the head rise, H , or head coefficient, ψ, as shown in figure
5.3. Typically a critical cavitation number, σa, is defined at which the head
loss is 2, 3 or 5%. Further reduction in the cavitation number will lead to
major deterioration in the performance; the cavitation number at which this
occurs is termed the breakdown cavitation number, and is denoted by σb.

It is important to emphasize that these three cavitation numbers may take
quite different values, and to confuse them may lead to serious misunder-
standing. For example, the cavitation inception number, σi, can be an order
of magnitude larger than σa or σb. There exists, of course, a correspond-
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Table 5.1. Inception and breakdown suction specific speeds for some typical
pumps (from McNulty and Pearsall 1979).

PUMP TYPE ND Q/QD Si Sb Sb/Si

Process pump with 0.31 0.24 0.25 2.0 8.0
volute and diffuser 1.20 0.8 2.5 3.14

Double entry pump 0.96 1.00 <0.6 2.1 >3.64
with volute 1.20 0.8 2.1 2.67

Centrifugal pump w. 0.55 0.75 0.6 2.41 4.02
diffuser and volute 1.00 0.8 2.67 3.34

Cooling water pump 1.35 0.50 0.65 3.40 5.24
(1/5 scale model) 0.75 0.60 3.69 6.16

1.00 0.83 3.38 4.07

Cooling water pump 1.35 0.50 0.55 2.63 4.76
(1/8 scale model) 0.75 0.78 3.44 4.40

1.00 0.99 4.09 4.12
1.25 1.07 2.45 2.28

Cooling water pump 1.35 0.50 0.88 3.81 4.35
(1/12 scale model) 0.75 0.99 4.66 4.71

1.00 0.75 3.25 4.30
1.25 0.72 1.60 2.22

Volute pump 1.00 0.60 0.76 1.74 2.28
1.00 0.83 2.48 2.99
1.20 1.21 2.47 2.28

ing set of critical suction specific speeds that we denote by Si, Sa, and Sb.
Some typical values of these parameters are presented in table 5.1 which has
been adapted from McNulty and Pearsall (1979). Note the large differences
between Si and Sb.

Perhaps the most common misunderstanding concerns the recommenda-
tion of the Hydraulic Institute that is reproduced in figure 5.4. This suggests
that a pump should be operated with a Thoma cavitation factor, σTH , in
excess of the value given in the figure for the particular specific speed of the
application. The line, in fact, corresponds to a critical suction specific speed
of 3.0. Frequently, this is erroneously interpreted as the value of Si. In fact,
it is more like Sa; operation above the line in figure 5.4 does not imply the
absence of cavitation, or of cavitation damage.

Data from McNulty and Pearsall (1979) for σi and σa in a typical pump

82



Figure 5.4. The Hydraulic Institute standards for the operation of pumps
and turbines (Hydraulic Institute 1965).

is presented graphically in figure 5.5 as a function of the fraction of design
flow and the Reynolds number (or velocity). Note the wide scatter in the
inception data, and that no clear trend with Reynolds number seems to be
present.

The next section will include a qualitative description of the various forms
of cavitation that can occur in a pump. Following that, the detailed devel-
opment of cavitation in a pump will be described, beginning in section 5.7
with a discussion of inception.

5.6 TYPES OF IMPELLER CAVITATION

Since cavitation in a pump impeller can take a variety of forms (see, for
example, Wood 1963), it is appropriate at this stage to attempt some de-
scription and classification of these types of cavitation. It should be borne in
mind that any such classification is necessarily somewhat arbitrary, and that
types of cavitation may occur that do not readily fall within the classification
system. Figure 5.6 includes sketches of some of the forms of cavitation that

83



Figure 5.5. Inception and 3% head loss cavitation numbers plotted
against a Reynolds number (based on wT1 and blade chord length) for
four flow rates (from McNulty and Pearsall 1979).

can be observed in an unshrouded axial flow impeller. As the inlet pressure
is decreased, inception almost always occurs in the tip vortex generated by
the corner where the leading edge meets the tip. Figure 5.7 includes a photo-
graph of a typical cavitating tip vortex from tests of Impeller IV (the scale
model of the SSME low pressure LOX turbopump shown in figure 2.12).
Note that the backflow causes the flow in the vicinity of the vortex to have
an upstream velocity component. Careful smoothing of the transition from
the leading edge to the tip can reduce σi, but it will not eliminate the vortex,
or vortex cavitation.

Usually the cavitation number has to be lowered quite a bit further before

84



the next development occurs, and often this takes the form of traveling
bubble cavitation on the suction surfaces of the blades. Nuclei in the inflow
grow as they are convected into the regions of low pressure on the suction
surfaces of the blades, and then collapse as they move into regions of higher
pressure. For convenience, this will be termed “bubble cavitation.” It is
illustrated in figure 5.8 which shows bubble cavitation on a single hydrofoil.

With further reduction in the cavitation number, the bubbles may com-
bine to form large attached cavities or vapor-filled wakes on the suction
surfaces of the blades. In a more general context, this is known as “attached
cavitation”. In the context of pumps, it is often called “blade cavitation”.
Figure 5.9 presents an example of blade cavitation in a centrifugal pump.

When blade cavities (or bubble or vortex cavities) extend to the point on
the suction surface opposite the leading edge of the next blade, the increase
in pressure in the blade passage tends to collapse the cavity. Consequently,
the surface opposite the leading edge of the next blade is a location where
cavitation damage is often encountered.

Blade cavitation that collapses on the suction surface of the blade is also
referred to as “partial cavitation”, in order to distinguish it from the cir-

Figure 5.6. Types of cavitation in pumps.
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Figure 5.7. Tip vortex cavitation on Impeller IV, the scale model of the
SSME low pressure LOX turbopump (see figure 2.12) at an inlet flow co-
efficient, φ1, of 0.07 and a cavitation number, σ, of 0.42 (from Braisted
1979).

Figure 5.8. Bubble cavitation on the surface of a NACA 4412 hydrofoil
at zero incidence angle, a speed of 13.7 m/s and a cavitation number of
0.3. The flow is from left to right and the leading edge of the foil is just to
the left of the white glare patch on the surface (Kermeen 1956).
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Figure 5.9. Blade cavitation on the suction surface of a blade in a cen-
trifugal pump. The relative flow is from left to right and the cavity begins
at the leading edge of the blade which is toward the left of the photograph.
From Sloteman, Cooper, and Graf (1991), courtesy of Ingersoll-Dresser
Pump Company.

cumstances that occur at very low cavitation numbers, when the cavity may
extend into the discharge flow downstream of the trailing edge of the blade.
These long cavities, which are clearly more likely to occur in lower solidity
machines, are termed “supercavities”. Figure 5.10 illustrates the difference
between partial cavitation and supercavitation. Some pumps have even been
designed to operate under supercavitating conditions (Pearsall 1963). The
potential advantage is that bubble collapse will then occur downstream of
the blades, and cavitation damage might thus be minimized.

Finally, it is valuable to create the catch-all term “backflow cavitation”
to refer to the cavitating bubbles and vortices that occur in the annular
region of backflow upstream of the inlet plane when the pump is required to
operate in a loaded condition below the design flow rate (see section 4.5).
The increased pressure rise across the pump under these circumstances may
cause the tip clearance flow to penetrate upstream and generate a backflow
that can extend many diameters upstream of the inlet plane. When the pump
also cavitates, bubbles and vortices are swept up in this backflow and, to
the observer, can often represent the most visible form of cavitation. Figure
5.11 includes a photograph illustrating the typical appearance of backflow
cavitation upstream of the inlet plane of an inducer.
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Figure 5.10. Partially cavitating cascade (left) and supercavitating cas-
cade (right).

Figure 5.11. As figure 5.7, but here showing typical backflow cavitation.
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5.7 CAVITATION INCEPTION DATA

In section 5.3 the important role played by cavitation nuclei in determining
cavitation inception was illustrated by reference to the comparitive ITTC
tests (figure 5.1). It is now clear that measurements of cavitation inception
are of little value unless the nuclei population is documented. Unfortunately,
this calls into question the value of most of the cavitation inception data
found in the literature. And, even more important in the present context,
is the fact that this includes just about all of the observations of cavitation
inception in pumps. To illustrate this point, we reproduce in figure 5.12
data obtained by Keller (1974) who measured cavitation inception numbers
for flows around hemispherical bodies. The water was treated in different
ways so that it contained different populations of nuclei, as shown on the
left in figure 5.12. As one might anticipate, the water with the higher nuclei
population had a substantially larger inception cavitation number.

One of the consequences of this dependence on nuclei population is that it
may cause the cavitation number at which cavitation disappears when the
pressure is increased (known as the “desinent” cavitation number, σd) to be
larger than the value at which the cavitation appeared when the pressure
was decreased, namely σi. This phenomenon is termed “cavitation hystere-

Figure 5.12. Histograms of nuclei populations in treated and untreated
tap water and the corresponding cavitation inception numbers on hemi-
spherical headforms of three different diameters (Keller 1974).
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Figure 5.13. Head rise and suction line noise as a function of the Thoma
cavitation factor, σTH , for a typical centrifugal pump (adapted from Mc-
Nulty and Pearsall 1979).

sis” (Holl and Treaster 1966), and is often the result of the fact mentioned
previously (section 5.3) that the cavitation itself can increase the nuclei pop-
ulation in a recirculating facility. An example of cavitation hysteresis in tests
on an axial flow pump in a closed loop is given in figure 7.8.

One of the additional complications is the subjective nature of the judg-
ment that cavitation has appeared. Visual inspection is not always possible,
nor is it very objective, since the number of “events” (an event is a single
bubble growth and collapse) tends to increase over a range of cavitation num-
bers. If, therefore, one made a judgment based on a certain critical event
rate, it is inevitable that the inception cavitation number would increase
with nuclei population, as in figure 5.12. Experiments have found, however,
that the production of noise is a simpler and more repeatable measure of
inception than visual observation. While still subject to the variations with
nuclei population, it has the advantage of being quantifiable. Figure 5.13,
from McNulty and Pearsall (1979), illustrates the rapid increase in the noise
from a centrifugal pump when cavitation inception occurs (the data on in-
ception in figure 5.5 and table 5.1 was obtained acoustically).

Though information on the nuclei are missing in most experiments, the
total air content of the water is frequently monitored. One would suppose
that the nuclei population would increase with the air content, and this is
usually the case. Some data on the dependence of the critical cavitation
numbers for a centrifugal pump on the total air content is included in figure
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Figure 5.14. The effect of air content on the critical cavitation numbers
for a centrifugal pump (Schoeneberger 1965, Pearsall 1972).

Figure 5.15. Cavitation inception characteristics of a NACA 4412 hydro-
foil (Kermeen 1956).

5.14. As expected, the cavitation inception number, σi, increases with air
content. Note, however, that the breakdown cavitation number, σb, is quite
independent of air content, an illustration of the fact that, once it has been
initiated, cavitation is much less dependent on the nuclei population.

Having begun by questioning the value of much of the cavitation incep-
tion data, we will nevertheless proceed to review some of the important
trends in that data base. In doing so we might take refuge in the thought
that each investigator probably applied a consistent criterion in assessing
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Figure 5.16. Calculated cavitation inception number, σi (or −Cpmin), as
a function of blade angle, βb1, solidity, s, and incidence angle, α, for a
cascade of NACA-65-010 hydrofoils (Herrig et al. 1957, Pearsall 1972).

cavitation inception, and that the nuclei content in a given facility might
be fairly constant (though the latter is very doubtful). Then, though the
data from different investigators and facilties may be widely scattered, one
would hope that the trends exhibited in a particular research project would
be qualitatively significant.

Consider first the inception characteristics of a single hydrofoil as the
angle of incidence is varied. Typical data, obtained by Kermeen (1956) for
a NACA 4412 hydrofoil, is reproduced in figure 5.15. At positive angles of
incidence, the regions of low pressure and cavitation inception will occur on
the suction surface; at negative angles of incidence, these phenomena will
shift to what is normally the pressure surface. Furthermore, as the angle of
incidence is increased in either direction, the value of −Cpmin will increase,
and hence the inception cavitation number will also increase.

When such hydrofoils are used to construct a cascade, the results will also
depend on the cascade solidity, s. Data on the pressure distributions around
a blade in a cascade (such as that of Herrig et al. 1957) can be used to
determine Cpmin as a function of blade angle, βb1, solidity, s, and angle of
incidence, α. Consequently, one can anticipate the variation in the inception
number with these variables, assuming the first-order approximation, σi =
−Cpmin. An example of such data is presented in figure 5.16; this was derived
by Pearsall (1972) from the cascade data of Herrig et al. (1957). Note that
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Figure 5.17. Variation in the inception number with flow rate for a typical
centrifugal pump (adapted from McNulty and Pearsall 1979).

a particular cascade will have a particular positive angle of incidence of,
typically, a few degrees, at which σi is a minimum. The optimum angle of
incidence changes with different s and βb1; however, it seems to lie within a
fairly narrow range between 1 and 5 degrees for a wide range of those design
variables. In a pump, the incidence angle is usually small in the vicinity of
the design flow rate, but will increase substantially above or below the design
value. Consequently, in a pump, the cavitation inception number tends to
have a minimum at the design flow rate. This is illustrated in figure 5.17
which includes some data from a typical centrifugal pump, and by the data
in figure 7.7 for an axial flow pump.

As we discussed in section 5.4, the scaling of cavitation phenomena with
size and with speed can be an important issue. Typical data for cavita-
tion inception on a single hydrofoil is that obtained by Holl and Wislicenus
(1961); it is reproduced in figure 5.18. Data for three different sizes of 12%
Joukowski hydrofoil (at zero angle of incidence) were obtained at different
speeds. It was plotted against Reynolds number in the hope that this would
reduce the data to a single curve. The fact that this does not occur demon-
strates that there is a size or speed effect separate from that due to the
Reynolds number. It seems plausible that the missing parameter is the ratio
of the nuclei size to chord length; however, in the absence of information on
the nuclei, such a conclusion is speculative.

To complete the list of those factors that may influence cavitation incep-
tion, it is necessary to mention the effects of surface roughness and of the
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Figure 5.18. The desinent cavitation numbers for three geometrically
similar Joukowski hydrofoils at zero angle of incidence as a function of
Reynolds number, Uc/ν (Holl and Wislicenus 1961). Note the theoretical
Cpmin = −0.54.

turbulence level in the flow. The two effects are connected to some degree,
since roughness will affect the level of turbulence. But roughness can also
affect the flow by delaying boundary layer separation and therefore modi-
fying the pressure and velocity fields in a more global manner. The reader
is referred to Arndt and Ippen (1968) for details of the effects of surface
roughness on cavitation inception.

Turbulence affects cavitation inception since a nucleus may find itself in
the core of a vortex where the pressure level is lower than the mean. It
could therefore cavitate when it might not do so under the influence of the
prevailing mean pressure level. Thus turbulence may promote cavitation,
but one must also allow for the fact that it may alter the global pressure
field by altering the location of flow separation. These complicated viscous
effects on cavitation inception were first examined in detail by Arakeri and
Acosta (1974) and Gates and Acosta (1978) (see also Arakeri 1979). The
implications for cavitation inception in the highly turbulent environment of
most pump flows have yet to be examined in detail.

In unshrouded turbomachinery, cavitation usually begins in the vortices
associated with the tip clearance flows, and so it is important to investigate
how the tip clearance will affect the inception number. In figures 5.19 and
5.20 observed cavitation inception numbers for the tip clearance flows in
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Figure 5.19. The cavitation inception number, σi, as a function of tip
clearance, δ (τmax is the maximum blade thickness), in an unshrouded
axial flow pump at various flow coefficients, φ (adapted from Rains 1954).

Figure 5.20. The cavitation inception number as a function of radial tip
clearance in an axial inducer (Janigro and Ferrini 1973 from data of Acosta
1958 and Henderson and Tucker 1962).

axial flow impellers are plotted against nondimensional tip clearance. The
typical variation with incidence angle or flow coefficients is illustrated in fig-
ure 5.19 (Rains 1954). Since the pressure difference between the two sides of
the blade increases with incidence angle, the velocities of the tip clearance
flow must also increase, and it follows that σi should increase correspond-
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ingly, as is the case in figure 5.19. A second feature that is not clear in Rains’
data, but is manifest in the data of Acosta (1958) and Henderson and Tucker
(1962), is that there appears to be an optimum tip clearance of about 1%
of the blade height. At this optimum, the cavitation inception number is a
minimum. This is illustrated in the figure 5.20.
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6

BUBBLE DYNAMICS, DAMAGE AND NOISE

6.1 INTRODUCTION

We now turn to the characteristics of cavitation for σ < σi. To place the
material in context, we begin with a discussion of bubble dynamics, so that
reference can be made to some of the classic results of that analysis. This
leads into a discussion of two of the deleterious effects that occur as soon as
there is any cavitation, namely cavitation damage and cavitation noise. In
the next chapter, we address another deleterious consequence of cavitation,
namely its effect upon hydraulic performance.

6.2 CAVITATION BUBBLE DYNAMICS

Two fundamental models for cavitation have been extensively used in the
literature. One of these is the spherical bubble model which is most relevant
to those forms of bubble cavitation in which nuclei grow to visible, macro-
scopic size when they encounter a region of low pressure, and collapse when
they are convected into a region of higher pressure. For present purposes, we
give only the briefest outline of these methods, while referring the reader to
the extensive literature for more detail (see, for example, Knapp, Daily and
Hammitt 1970, Plesset and Prosperetti 1977, Brennen 1994). The second
fundamental methodology is that of free streamline theory, which is most
pertinent to flows consisting of attached cavities or vapor-filled wakes; a brief
review of this methodology is given in chapter 7.

Virtually all of the spherical bubble models are based on some version
of the Rayleigh-Plesset equation (Plesset and Prosperetti 1977) that defines
the relation between the radius of a spherical bubble, R(t), and the pres-
sure, p(t), far from the bubble. In an otherwise quiescent incompressible
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Newtonian liquid, this equation takes the form

pB(t) − p(t)
ρL

= R
d2R

dt2
+

3
2

(
dR

dt

)2

+
4ν
R

dR

dt
+

2S
ρLR

(6.1)

where ν, S, and ρL are respectively the kinematic viscosity, surface tension,
and density of the liquid. This equation (without the viscous and surface
tension terms) was first derived by Rayleigh (1917) and was first applied to
the problem of a traveling cavitation bubble by Plesset (1949).

The pressure far from the bubble, p(t), is an input function that could
be obtained from a determination of the pressure history that a nucleus
would experience as it travels along a streamline. The pressure, pB(t), is
the pressure inside the bubble. It is often assumed that the bubble contains
both vapor and noncondensable gas, so that

pB(t) = pV (TB) +
3mGKGTB

4πR3
= pV (T∞) − ρLΘ +

3mGKGTB

4πR3
(6.2)

where TB is the temperature inside the bubble, pV (TB) is the vapor pressure,
mG is the mass of gas in the bubble, and KG is the gas constant. However,
it is convenient to use the ambient liquid temperature far from the bubble,
T∞, to evaluate pV . When this is done, it is necessary to introduce the term,
Θ, into equation 6.1 in order to correct for the difference between pV (TB)
and pV (T∞). It is this term, Θ, that is the origin of the thermal effect in
cavitation. Using the Clausius-Clapeyron relation,

Θ ∼= ρV L
ρLT∞

(T∞ − TB(t)) (6.3)

where ρV is the vapor density and L is the latent heat.
Note that in using equation 6.2 for pB(t), we have introduced the addi-

tional unknown function, TB(t), into the Rayleigh-Plesset equation 6.1. In
order to determine this function, it is necessary to construct and solve a heat
diffusion equation, and an equation for the balance of heat in the bubble.
Approximate solutions to these equations can be written in the following
simple form. If the heat conducted into the bubble is equated to the rate of
use of latent heat at the interface, then(

∂T

∂r

)
r=R

=
ρV L
kL

dR

dt
(6.4)

where (∂T/∂r)r=R is the temperature gradient in the liquid at the interface
and kL is the thermal conductivity of the liquid. Moreover, an approximate
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Figure 6.1. Typical solution, R(t), of the Rayleigh-Plesset equation for a
spherical bubble originating from a nucleus of radius, R0. The nucleus en-
ters a low pressure region at a dimensionless time of 0 and is convected back
to the original pressure at a dimensionless time of 500. The low pressure
region is sinusoidal and symmetric about a dimensionless time of 250.

solution to the thermal diffusion equation in the liquid is(
∂T

∂r

)
r=R

=
(T∞ − TB(t))

(αLt)
1
2

(6.5)

where αL is the thermal diffusivity of the liquid (αL = kL/ρLcPL where cPL

is the specific heat of the liquid) and t is the time from the beginning of
bubble growth or collapse. Using equations 6.4 and 6.5 in equation 6.3, the
thermal term can be approximated as

Θ = Σ(T∞)t
1
2
dR

dt
(6.6)

where

Σ(T∞) =
ρ2

V L2

ρ2
LcPLT∞α

1
2
L

(6.7)

In section 7.7, we shall utilize these relations to evaluate the thermal sup-
pression effects in cavitating pumps.

For present purposes, it is useful to illustrate some of the characteristic
features of solutions to the Rayleigh-Plesset equation in the absence of ther-
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mal effects (Θ = 0 and TB(t) = T∞). A typical solution of R(t) for a nucleus
convected through a low pressure region is shown in figure 6.1. Note that
the response of the bubble is quite nonlinear; the growth phase is entirely
different in character from the collapse phase. The growth is steady and con-
trolled; it rapidly reaches an asymptotic growth rate in which the dominant
terms of the Rayleigh-Plesset equation are the pressure difference, pV − p,
and the second term on the right-hand side so that

dR

dt
⇒

[
2(pV − p)

3ρL

] 1
2

(6.8)

Note that this requires the local pressure to be less than the vapor pressure.
For traveling bubble cavitation, the typical tension (pV − p) will be given
nondimensionally by (−Cpmin − σ) (see equations 5.2 and 5.4) so the typical
growth rate is given by

dR

dt
∝ (−Cpmin − σ)

1
2 U (6.9)

While this growth rate may appear, superficially, to represent a relatively
gentle process, it should be recognized that it corresponds to a volume that
is increasing like t3. Cavitation growth is therefore an explosive process to
be contrasted with the kind of boiling growth that occurs in a kettle on the
stove in which dR/dt typically behaves like t−

1
2 . The latter is an example of

the kind of thermally inhibited growth discussed in section 7.7.
It follows that we can estimate the typical maximum size of a cavitation

bubble, RM , given the above growth rate and the time available for growth.
Numerical calculations using the full Rayleigh-Plesset equation show that
the appropriate time for growth is the time for which the bubble experiences
a pressure below the vapor pressure. In traveling bubble cavitation we may
estimate this by knowing the shape of the pressure distribution near the
minimum pressure point. We shall represent this shape by

Cp = Cpmin +Cp∗(s/D)2 (6.10)

where s is a coordinate measured along the surface, D is the typical dimen-
sion of the body or flow, and Cp∗ is some known constant of order one. Then,
the time available for growth, tG, is given approximately by

tG ≈ 2D (σ −Cpmin)
1
2

C
1
2
p∗U (1 + Cpmin)

1
2

(6.11)
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Figure 6.2. The maximum size to which a cavitation bubble grows (ac-
cording to the Rayleigh-Plesset equation), RM , as function of the original
nuclei size, R0, and the cavitation number, σ, in the flow around an axisym-
metric headform of radius, RH , with S/ρLRHU

2 = 0.000036 (from Ceccio
and Brennen 1991).

and therefore
RM

D
≈ 2 (−σ − Cpmin)

C
1
2
p∗ (1 +Cpmin)

1
2

(6.12)

Note that this is independent of the size of the original nucleus.
One other feature of the growth process is important to mention. It tran-

spires that because of the stabilizing influence of the surface tension term,
a particular tension, (pV − p), will cause only bubbles larger than a certain
critical size to grow explosively (Blake 1949). This means that, for a given
cavitation number, only nuclei larger than a certain critical size will achieve
the growth rate necessary to become macroscopic cavitation bubbles. A de-
crease in the cavitation number will activate smaller nuclei, thus increasing
the volume of cavitation. This phenomenon is illustrated in figure 6.2 which
shows the maximum size of a cavitation bubble, RM , as a function of the
size of the original nucleus and the cavitation number for a typical flow
around an axisymmetric headform. The vertical parts of the curves on the
left of the figure represent the values of the critical nuclei size, RC , that are,
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Figure 6.3. Photograph of localized cavitation damage on the blade of a
mixed flow pump impeller made from an aluminium-based alloy.

incidentally, given simply by the expression

RC ≈ κS/ρLU
2 (−σ −Cpmin) (6.13)

where the factor κ is roughly unity (Ceccio and Brennen 1991). Note also
from figure 6.2 that all the unstable nuclei grow to roughly the same size as
anticipated earlier.

Turning now to the collapse, it is readily seen from figure 6.1 that cavi-
tation bubble collapse is a catastrophic phenomenon in which the bubble,
still assumed spherical, reaches a size very much smaller than the original
nucleus. Very high accelerations and pressures are generated when the bub-
ble becomes very small. However, if the bubble contains any noncondensable
gas at all, this will cause a rebound as shown in figure 6.1. Theoretically,
the spherical bubble will undergo many cycles of collapse and rebound. In
practice, a collapsing bubble becomes unstable to nonspherical disturbances,
and essentially shatters into many smaller bubbles in the first collapse and
rebound. The resulting cloud of smaller bubbles rapidly disperses. Whatever
the deviations from the spherical shape, the fact remains that the collapse is
a violent process that produces noise and the potential for material damage
to nearby surfaces. We proceed to examine both of these consequences in
the two sections which follow.
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Figure 6.4. Cavitation damage on the blades at the discharge from a
Francis turbine.

Figure 6.5. Cavitation damage to the concrete wall of the 15.2m diameter
Arizona spillway at the Hoover Dam. The hole is 35 m long, 9 m wide and
13.7 m deep. Reproduced from Warnock (1945).

6.3 CAVITATION DAMAGE

Perhaps the most ubiquitous problem caused by cavitation is the material
damage that cavitation bubbles can cause when they collapse in the vicinity
of a solid surface. Consequently, this aspect of cavitation has been inten-
sively studied for many years (see, for example, ASTM 1967, Knapp, Daily,
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and Hammitt 1970, Thiruvengadam 1967, 1974). The problem is complex
because it involves the details of a complicated unsteady flow combined with
the reaction of the particular material of which the solid surface is made.

As we have seen in the previous section, cavitation bubble collapse is a
violent process that generates highly localized, large amplitude disturbances
and shocks in the fluid at the point of collapse. When this collapse occurs
close to a solid surface, these intense disturbances generate highly localized
and transient surface stresses. Repetition of this loading due a multitude of
bubble collapses can cause local surface fatigue failure, and the detachment
of pieces of material. This is the generally accepted explanation for cavita-
tion damage. It is consistent with the appearance of cavitation damage in
most circumstances. Unlike the erosion due to solid particles in the flow, for
which the surface appears to be smoothly worn with scratches due to larger
particles, cavitation damage has the crystalline and jagged appearance of
fatigue failure. To illustrate this, a photograph of localized cavitation dam-
age on the blade of a mixed flow pump, fabricated from an aluminium-based
alloy, is included as figure 6.3. More extensive damage is illustrated in figure
6.4 which shows the blades at discharge from a Francis turbine; here the
cavitation damage has penetrated the blades. Cavitation damage can also
occur in much larger scale flows. As an example, figure 6.5 shows cavitation
damage suffered by a spillway at the Hoover dam (Warnock 1945, Falvey
1990).

In hydraulic devices such as pump impellers or propellers, cavitation dam-
age is often observed to occur in quite localized areas of the surface. This
is frequently the result of the periodic and coherent collapse of a cloud of
cavitation bubbles. Such is the case in magnetostrictive cavitation testing
equipment (Knapp, Daily, and Hammitt 1970). In many pumps, the peri-
odicity may occur naturally as a result of regular shedding of cavitating
vortices, or it may be a response to a periodic disturbance imposed on the
flow. Examples of the kinds of imposed fluctuations are the interaction be-
tween a row of rotor vanes and a row of stator vanes, or the interaction
between a ship’s propeller and the nonuniform wake behind the ship. In al-
most all such cases, the coherent collapse of the cloud can cause much more
intense noise and more potential for damage than in a similar nonfluctuating
flow. Consequently, the damage is most severe on the solid surface close to
the location of cloud collapse. An example of this phenomenon is included
in figure 6.6 taken from Soyama, Kato and Oba (1992). In this instance,
clouds of cavitation are being shed from the leading edge of a centrifugal
pump blade, and are collapsing in a specific location as suggested by the pat-
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Figure 6.6. Axial views from the inlet of the cavitation and cavitation
damage on the hub or base plate of a centrifugal pump impeller. The two
photographs are of the same area, the left one showing the typical cavitation
pattern during flow and the right one the typical cavitation damage. Parts
of the blades can be seen in the upper left and lower right corners; relative
to these blades the flow proceeds from the lower left to the upper right.
The leading edge of the blade is just outside the field of view on the upper
left. Reproduced from Soyama, Kato and Oba (1992) with permission of
the authors.

tern of cavitation in the left-hand photograph. This leads to the localized
damage shown in the right-hand photograph.

Currently, several research efforts are focussed on the dynamics of cavi-
tation clouds. These studies suggest that the coherent collapse can be more
violent than that of individual bubbles, but the basic explanation for the
increase in the noise and damage potential is not clear.

6.4 MECHANISM OF CAVITATION
DAMAGE

The intense disturbances that are caused by cavitation bubble collapse can
have two separate origins. The first is related to the fact that a collapsing
bubble may be unstable in terms of its shape. When the collapse occurs near
a solid surface, Naude and Ellis (1961) and Benjamin and Ellis (1966) ob-
served that the developing spherical asymmetry takes the form of a rapidly
accelerating jet of fluid, entering the bubble from the side furthest from
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the wall (see figure 6.7). Plesset and Chapman (1971) carried out numer-
ical calculations of this “reentrant jet”, and found good agreement with
the experimental observations of Lauterborn and Bolle (1975). Since then,
other analytical methods have explored the parametric variations in the flow.
These methods are reviewed by Blake and Gibson (1987). The “microjet”
achieves very high speeds, so that its impact on the other side of the bubble
generates a shock wave, and a highly localized shock loading of the surface
of the nearby wall.

Parenthetically, we might remark that this is also the principle on which
the depth charge works. The initial explosion creates little damage, but does
produce a very large bubble which, when it collapses, generates a reentrant
jet directed toward any nearby solid surface. When this surface is a sub-
marine, the collapse of the bubble can cause great damage to that vessel.
It may also be of interest to note that a bubble, collapsing close to a very
flexible or free surface, develops a jet on the side closest to this boundary,
and, therefore, traveling in the opposite direction. Some researchers have
explored the possibility of minimizing cavitation damage by using surface
coatings with a flexibility designed to minimize the microjet formation.

The second intense disturbance occurs when the remnant cloud of bub-

Figure 6.7. The collapse of a cavitation bubble close to a solid bound-
ary. The theoretical shapes of Plesset and Chapman (1971) (solid lines)
are compared with the experimental observations of Lauterborn and Bolle
(1975) (points) (adapted from Plesset and Prosperetti 1977).
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bles, that remains after the microjet disruption, collapses to its minimum
gas/vapor volume, and generates a second shock wave that impinges on the
nearby solid surface. The generation of a shock wave during the rebound
phase of bubble motion was first demonstrated by the calculations of Hick-
ling and Plesset (1964). More recently, Shima et al. (1981) have made inter-
esting observations of the spherical shock wave using Schlieren photography,
and Fujikawa and Akamatsu (1980) have used photoelastic solids to examine
the stress waves developed in the solid. Though they only observed stress
waves resulting from the remnant cloud collapse and not from the microjet,
Kimoto (1987) has subsequently shown that both the microjet and the rem-
nant cloud create stress waves in the solid. His measurements indicate that
the surface loading resulting from the remnant cloud is about two or three
times that due to the microjet.

Until very recently, virtually all of these detailed observations of collapsing
cavitation bubbles had been made in a quiescent fluid. However, several re-
cent observations have raised doubts regarding the relevance of these results
for most flowing systems. Ceccio and Brennen (1991) have made detailed
observations of the collapse of cavitating bubbles in flows around bodies,
and have observed that typical cavitation bubbles are distorted and often
broken up by the shear in the boundary layer or by the turbulence before
the collapse takes place. Furthermore, Chahine (personal communication)
has performed calculations similar to those of Plesset and Chapman, but
with the addition of rotation due to shear, and has found that the microjet
is substantially modified and reduced by the flow.

The other important facet of the cavitation damage phenomenon is the
reaction of the material of the solid boundary to the repetitive shock (or
“water hammer”) loading. Various measures of the resistance of particu-
lar materials to cavitation damage have been proposed (see, for example,
Thiruvengadam 1967). These are largely heuristic and empirical, and will
not be reviewed here. The reader is referred to Knapp, Daily, and Hammitt
(1970) for a detailed account of the relative resistance of different materials
to cavitation damage. Most of these comparisons are based, not on tests in
flowing systems, but on results obtained when material samples are vibrated
at high frequency (about 20 kHz) in a bath of quiescent liquid. The samples
are weighed at regular intervals to determine the loss of material, and the
results are presented in the form typified by figure 6.8. Note that the relative
erosion rates, according to this data, can be approximately correlated with
the structural strength of the material. Furthermore, the erosion rate is not
necessarily constant with time. This may be due to the differences in the
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Figure 6.8. Examples of cavitation damage weight loss as a function of
time. Data from vibratory tests with different materials (Hobbs, Laird and
Brunton 1967).

response of a collapsing bubble to a smooth surface as opposed to a surface
already roughened by damage. Finally, note that the weight loss in many
materials only begins after a certain incubation time.

The data on erosion rates in pumps is very limited because of the length
of time necessary to make such measurements. The data that does exist
(Mansell 1974) demonstrates that the rate of erosion is a strong function
of the operating point as given by the cavitation number and the flow co-
efficient. The influence of the latter is illustrated in figure 6.9. This curve

Figure 6.9. Cavitation erosion rates in a centrifugal pump as a function
of the flow rate relative to the design flow rate (Pearsall 1978 from Grist
1974).
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Figure 6.10. Bubble natural frequency, ωP , in Hz as a function of the
bubble radius and the difference between the equilibrium pressure and the
vapor pressure (in kg/m sec2) for water at 300◦K.

essentially mirrors those of figures 5.16 and 5.17. At off-design conditions,
the increased angle of incidence leads to increased cavitation and, therefore,
increased weight loss.

6.5 CAVITATION NOISE

The violence of cavitation bubble collapse also produces noise. In many prac-
tical circumstances, the noise is important not only because of the vibration
that it may cause, but also because it advertizes the presence of cavitation
and, therefore, the likelihood of cavitation damage. Indeed, the magnitude
of cavitation noise is often used as a crude measure of the rate of cavitation
erosion. For example, Lush and Angell (1984) have shown that, in a given
flow at a given cavitation number, the rate of weight loss due to cavitation
damage is correlates with the noise as the velocity of the flow is changed.

Prior to any discussion of cavitation noise, it is useful to identify the natu-
ral frequency with which individual bubbles will oscillate a quiescent liquid.
This natural frequency can be obtained from the Rayleigh-Plesset equation
6.1 by substituting an expression for R(t) that consists of a constant, RE,
plus a small sinusoidal perturbation of amplitude, R̃, at a general frequency,
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Figure 6.11. Typical acoustic signal from a single collapsing bubble (from
Ceccio and Brennen 1991).

ω. Steady state oscillations like this would only be maintained by an applied
pressure, p(t), consisting of a constant, p̄, plus a sinusoidal perturbation of
amplitude, p̃, and frequency, ω. Obtaining the relation between the linear
perturbations, R̃ and p̃, from the Rayleigh-Plesset equation, it is found that
the ratio, R̃/p̃, has a maximum at a resonant frequency, ωP , given by

ωP =
[
3(p̄− pV )
ρLR2

E

+
4S

ρLR3
E

− 8ν2

R4
E

]1
2

(6.14)

The results of this calculation for bubbles in water at 300◦K are presented in
figure 6.10 for various mean pressure levels, p̄. Note that the bubbles below
about 0.02 μm are supercritically damped, and have no resonant frequency.
Typical cavitation nuclei of size 10 → 100 μm have resonant frequencies in
the range 10 → 100 kHz. Even though the nuclei are excited in a highly
nonlinear way by the cavitation, one might expect that the spectrum of the
noise that this process produces would have a broad maximum at the peak
frequency corresponding to the size of the most numerous nuclei partici-
pating in the cavitation. Typically, this would correspond to the radius of
the critical nucleus given by the expression 6.13. For example, if the criti-
cal nuclei size were of the order of 10− 100 μm, then, according to figure
6.10, one might expect to see cavitation noise frequencies of the order of
10− 100 kHz. This is, indeed, the typical range of frequencies produced by
cavitation.

Fitzpatrick and Strasberg (1956) were the first to make extensive use of
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Figure 6.12. The acoustic impulse, I, produced by the collapse of a sin-
gle cavitation bubble. Data is shown for two axisymmetric bodies (the
ITTC and Schiebe headforms) as a function of the maximum volume prior
to collapse. Also shown are the equivalent results from solutions of the
Rayleigh-Plesset equation (from Ceccio and Brennen 1991).

Figure 6.13. Typical spectra of noise from bubble cavitation for various
cavitation numbers as indicated (Ceccio and Brennen 1991).
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Figure 6.14. Typical spectra showing the increase in noise with increasing
cavitation in an axial flow pump (Lee 1966).

the Rayleigh-Plesset equation to predict the noise from individual collapsing
bubbles and the spectra that such a process would produce. More recently,
Ceccio and Brennen (1991) have recorded the noise from individual cavita-
tion bubbles in a flow. A typical acoustic signal is reproduced in figure 6.11.
The large positive pulse at about 450 μs corresponds to the first collapse
of the bubble. Since the radiated acoustic pressure, pA, in this context is
related to the second derivative of the volume of the bubble, V (t), by

pA =
ρL

4π�
d2V

dt2
(6.15)

(where � is the distance of the measurement from the center of the bubble),
the pulse corresponds to the very large and positive values of d2V/dt2 that
occur when the bubble is close to its minimum size in the middle of the
collapse. The first pulse is followed in figure 6.11 by some facility-dependent
oscillations, and by a second pulse at about 1100 μs. This corresponds to
the second collapse; no further collapses were observed in these particular
experiments.

A good measure of the magnitude of the collapse pulse in figure 6.11 is
the acoustic impulse, I , defined as the area under the curve or

I =
∫ t2

t1

pAdt (6.16)

where t1, t2 are the times before and after the pulse when pA = 0. The
acoustic impulses for cavitation on two axisymmetric headforms (ITTC and
Schiebe headforms) are compared in figure 6.12 with impulses predicted from
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Figure 6.15. The relation between the cavitation performance, the noise
and vibration produced at three frequency levels in a centrifugal pump,
namely the shaft frequency (�), the blade passage frequency (	) and
40 kHz (◦) (Pearsall 1966-67).

integration of the Rayleigh-Plesset equation. Since these theoretical calcu-
lations assume that the bubble remains spherical, the discrepancy between
the theory and the experiments is not too surprising. Indeed, the optimistic
interpretation of figure 6.12 is that the theory can provide an order of mag-
nitude estimate of the noise produced by a single bubble. This could then be
combined with the nuclei number density distribution to obtain a measure
of the amplitude of the noise (Brennen 1994).

The typical single bubble noise shown in figure 6.11 leads to the spectrum
shown in figure 6.13. If the cavitation events are randomly distributed in
time, this would also correspond to the overall cavitation noise spectrum. It
displays a characteristic frequency content in the range of 1 → 50 kHz (the
rapid decline at about 80 kHz represents the limit of the hydrophone used to
make these measurements). Typical measurements of the noise produced by
cavitation in an axial flow pump are illustrated in figure 6.14, and exhibit
the same features demonstrated in figure 6.13. The signal in figure 6.14
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also clearly contains some shaft or blade passage frequencies that occur in
the absence of cavitation, but may be amplified or attenuated by cavitation.
Figure 6.15 contains data obtained for cavitation noise in a centrifugal pump.
Note that the noise at a frequency of 40 kHz shows a sharp increase with
the onset of cavitation; on the other hand, the noise at the shaft and blade
passage frequencies show only minor changes with cavitation number. The
decrease in the 40 kHz cavitation noise as breakdown is approached is also
a common feature in cavitation noise measurements.

The level of the sound produced by a cavitating flow is the result of two
factors, namely the impulse, I , produced by each event (equation 6.16) and
the event rate or number of events per second, ṄE. Therefore, the sound
pressure level, pS , will be

pS = IṄE (6.17)

Here, we will briefly discuss the scaling of the two components, I , and ṄE,
and thus the scaling of the cavitation noise, pS. We emphasize that the
following equations omit some factors of proportionality necessary for quan-
titative calculations.

Both the experimental observations and the calculations based on the
Rayleigh-Plesset equation, show that the nondimensional impulse from a
single cavitation event, defined by

I∗ = 4πI�/ρUD2 (6.18)

(where U and D are the reference velocity and length in the flow), is strongly
correlated with the maximum volume of the cavitation bubble (maximum
equivalent volumetric radius = RM), and appears virtually independent of
the other flow parameters. In dimensionless terms,

I∗ ≈ R2
M/D2 (6.19)

It follows that

I ≈ ρUR2
M/� (6.20)

The evaluation of the impulse from a single event is then completed by
some estimate of the maximum bubble size, RM . For example, we earlier
estimated RM for traveling bubble cavitation (equation 6.12), and found it
to be independent of U for a given cavitation number. In that case I is linear
in U .

Modeling the event rate, ṄE, can be considerably more complicated than
might, at first sight, be visualized. If all the nuclei flowing through a certain
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known streamtube (say with a cross-sectional area, AN , in the upstream
reference flow), were to cavitate similarly then, clearly, the result would be

ṄE = N AN U (6.21)

where N is the nuclei concentration (number/unit volume). Then the sound
pressure level resulting from substituting the expressions 6.21, 6.20, and 6.12
into equation 6.17, is

pS ≈ ρU2 (−σ − Cpmin)2 ANND
2/� (6.22)

where we have omitted some of the constants of order unity. For the sim-
ple circumstances outlined, equation 6.22 yields a sound pressure level that
scales with U2 and with D4 (because AN ∝ D2). This scaling with velocity
does correspond to that often observed (for example, Blake, Wolpert, and
Geib 1977, Arakeri and Shangumanathan 1985) in simple traveling bubble
flows. There are, however, a number of complicating factors. First, as we
have discussed earlier in section 6.2, only those nuclei larger than a certain
critical size, RC , will actually grow to become cavitation bubbles, and, since
RC is a function of both σ and the velocity U , this means that N will be
a function of RC and U . Since RC decreases as U increases, the power law
dependence of pS on velocity will then be Um where m is greater than 2.

Different scaling laws will apply when the cavitation is generated by tur-
bulent fluctuations, such as in a turbulent jet (see, for example, Ooi 1985,
Franklin and McMillan 1984). Then the typical tension and the typical du-
ration of the tension experienced by a nucleus, as it moves along an approx-
imately Lagrangian path in the turbulent flow, are very much more difficult
to estimate. Consequently, estimates of the sound pressure due to cavitation
in turbulent flows, and the scaling of that sound with velocity, are more
poorly understood.
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7

CAVITATION AND PUMP PERFORMANCE

7.1 INTRODUCTION

In this chapter we turn our attention to another of the deleterious con-
sequences of cavitation, namely its effect upon the steady state hydraulic
performance of a pump. In the next section we present several examples of
the effect of cavitation on conventional pumps. This is followed by a discus-
sion of the performance and design of cavitating inducers which are devices
added to conventional pumps for the purpose of improving the cavitation
performance. Subsequent sections deal with the analytical methods available
for the evaluation of cavitation performance and with the thermodynamic
effects of the phase change process on that performance.

7.2 TYPICAL PUMP PERFORMANCE
DATA

A typical non-cavitating performance characteristic for a centrifugal pump
is shown in figure 7.1 for the Impeller X/Volute A combination (Chamieh
1983) described in section 2.8. The design flow coefficient for this pump is
φ2 = 0.092 but we note that it performs reasonably well down to about 30%
of this design flow. This flexibility is characteristic of centrifugal pumps.
Data is presented for three different shaft speeds, namely 600, 800 and
1200rpm; since these agree closely we can conclude that there is no per-
ceptible effect of Reynolds number for this range of speeds. The effect of a
different volute is also illustrated by the data for Volute B which is a circu-
lar volute of circumferentially uniform area. In theory this circular volute is
not well matched to the impeller discharge flow and the result is that, over
most of the range of flow coefficient, the hydraulic performance is inferior to
that with Volute A. However, Volute B is superior at high flow coefficients.
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Figure 7.1. Typical non-cavitating performance for a centrifugal pump,
namely Impeller X (see section 2.8) with Volute A and a circular volute of
uniform cross-section (from Chamieh 1983).

This suggests that the flow in Volute A may be more pathological than one
would like at these high flow coefficients (see sections 4.4 and 4.6). It further
serves to emphasize the importance of a volute (or diffuser) and the need
for an understanding of the flow in a volute at both design and off-design
conditions.

Typical cavitation performance characteristics for a centrifugal pump are
presented in figure 7.2 for the Impeller X/Volute A combination. The break-
down cavitation numbers in the range σ = 0.1 → 0.4 are consistent with the
data in table 5.1. Note that the cavitation head loss occurs more gradually
at high flow coefficients than at low values. This is a common feature of the
cavitation performance of many pumps, both centrifugal and axial.

Now consider some examples of axial and mixed flow pumps. Typical
non-cavitating performance characteristics are shown in figure 7.3 for a Peer-
less axial flow pump. This unshrouded pump has a design flow coefficient
φ2 = 0.171. The maximum efficiency at this design point is about 85%. Axial
flow pumps are more susceptible to flow separation and stall than centrifugal
pumps and could therefore be considered less versatile. The depression in
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Figure 7.2. Cavitation performance for the Impeller X/Volute A combi-
nation (from Franz et al. 1989, 1990). The flow separation rings of figure
10.17 have been installed so the non-cavitating performance is slightly bet-
ter than in figure 7.1.

Figure 7.3. Typical non-cavitating performance characteristics for a
20.3cm diameter, 3-bladed axial flow pump with a hub-tip ratio, RH/RT ,
of 0.45 running at about 1500rpm. At the blade tip the chord is 7.3cm, the
solidity is 0.344 and the blade angle, βbT , is 11.9◦. Adapted from Guinard
et al. (1953).
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Figure 7.4. Typical non-cavitating performance characteristics for a four-
bladed axial flow pump with tip blade angle, βbT , of about 18◦, a hub-tip
ratio, RH/RT , of 0.483, a solidity of 0.68 and four different blade profiles
(yielding the set of four performance curves). Adapted from Oshima and
Kawaguchi (1963).

Figure 7.5. Characteristics of a mixed flow pump (Myles 1966).
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Figure 7.6. Head and efficiency characteristics for an axial flow pump
with different tip blade angles, βbT (from Peck 1966).

the head curve of figure 7.3 in the range φ2 = 0.08 → 0.12 is indicative of
flow separation and this region of the head/flow curve can therefore be quite
sensitive to the details of the blade profile since small surface irregularities
can often have a substantial effect on separation. This is illustrated by the
data of figure 7.4 which presents the non-cavitating characteristics for four
similar axial flow pumps with slightly different blade profiles. The kinks in
the curves are more marked in this case and differ significantly from one
profile to another. Note also that there are small regions of positive slope
in the head characteristics. This often leads to instability and to fluctuating
pressures and flow rates through the excitation of the surge and stall mech-
anisms discussed in the following chapters. Sometimes the region of positive
slope in the head characteristic can be even more marked as in the example
presented in figure 7.5 in which the stall occurs at about 80% of the design
flow. As a final example of non-cavitating performance we include in figure
7.6, the effect of the blade angle in an axial flow pump; note that angles of
the order of 20◦ to 30◦ seem to be optimal for many purposes.

The cavitation characteristics for some of the above axial flow pumps are
presented in figures 7.7 through 7.10. The data of Guinard et al. (1953)
provides a particularly well-documented example of the effect of cavitation
on an axial flow pump. Note first from figure 7.7 that the cavitation inception
number is smallest at the design flow and increases as φ is decreased; the
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Figure 7.7. Cavitation performance characteristics of the axial flow pump
of figure 7.3. Adapted from Guinard et al. (1953).

Figure 7.8. Inception and desinent cavitation numbers (based on wT1) as
a function of φ/φD for the axial flow pump of figures 7.3 and 7.7. Adapted
from Guinard et al. (1953).
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Figure 7.9. Effect of cavitation on the head coefficient and efficiency of
one of the axial flow pumps of figure 7.4. The cavitation number is based
on wT1. Adapted from Oshima and Kawaguchi (1963).

decrease at very low φ does not, however, have an obvious explanation. Since
Guinard et al. (1953) noticed the hysteretic effect described in section 5.7
we present figure 7.8 as an example of that phenomenon.

The cavitation data of figure 7.7 also help to illustrate several other char-
acteristic phenomena. Note the significant increase in the head just prior
to the decrease associated with breakdown. In the case of the pump tested
by Guinard et al., this effect occurs at low flow coefficients. However, other
pumps exhibit this phenomenon at higher flows and not at low flows as il-
lustrated by the data of Oshima and Kawaguchi (1963) presented in figure
7.9. The effect is probably caused by an improved flow geometry due to a
modest amount of cavitation.

The cavitation data of figure 7.7 also illustrates the fact that breakdown
at low flow coefficients occurs at higher cavitation numbers and is usually
more abrupt than at higher flow coefficients. It is accompanied by a de-
crease in efficiency as illustrated by figure 7.9. Finally we include figure 7.10
which shows that the effect of blade profile changes on the head breakdown
cavitation number is quite small.
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Figure 7.10. The critical cavitation number (based on wT1 and 0.5% head
loss) for the axial flow pumps of figure 7.4. Adapted from Oshima and
Kawaguchi (1963).

7.3 INDUCER DESIGNS

Axial flow inducers are intended to improve the cavitation performance of
centrifugal or mixed flow pumps by increasing the inlet pressure to the pump
to a level at which it can operate without excessive loss of performance
due to cavitation. Typically they consist of an axial flow stage placed just
upstream of the inlet to the main impeller. They are designed to operate
at small incidence angles and to have thin blades so that the perturbation
to the flow is small in order to minimize the production of cavitation and

Figure 7.11. Comparison of the suction specific speed at 3% head drop for
process pumps with and without inducer (from Janigro and Ferrini 1973).
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Table 7.1. Typical rocket engine inducer geometry and performance
(from Jakobsen 1971 and other sources). Key: (a) Main + Partial or
Main/Tandem (b) Radial (RAD), Swept Backwards (SWB) or Swept For-
ward (SWF)

Rocket: THOR J-2 X-8 X-8 J-2 J-2 SSME
Fluid: LOX LOX LOX LOX LH2 LH2 LOX

No. of Blades (a) 4 3 3 2 4+4 4+4 4/12
RH1/RT1 0.31 0.20 0.23 ∼0.19 0.42 0.38 0.29
RT2/RT1 1.0 1.0 ∼0.9 ∼0.8 1.0 ∼0.9 1.0
RH2/RH1 1.0 ∼2 ∼1.5 1.5 ∼2 ∼2 2.6
Leading Edge (b) RAD SWB SWB SWF SWB SWB SWB
βbT1 (deg.) 14.15 9.75 9.8 5.0 7.9 7.35 7.3
φ1D 0.116 0.109 0.106 0.05 0.094 0.074 0.076
ψ1D 0.075 0.11 0.10 0.063 0.21 0.20 0.366
N1D 4.21 3.06 3.25 3.15 1.75 1.61 0.68
αT1 (deg.) 7.5 3.5 3.7 2.1 2.5 3.1 4.3
σD 0.028 0.021 0.025 0.007 0.011 0.011
SD 10.4 12.5 11.4 21.2 15.8 16.2

its deleterious effect upon the flow. The objective is to raise the pressure
very gradually to the desired level. The typical advantage gained by the
addition of an inducer is illustrated in figure 7.11 taken from Janigro and
Ferrini (1973). This compares the cavitation performance of a class of process
pumps with and without an inducer.

Various types of inducer design are documented in figure 7.12 and in
table 7.1, both taken from Jakobsen (1971). Data on the low pressure LOX
pump in the Space Shuttle Main Engine (SSME) has been added to table
7.1. Most inducers of recent design seem to be of types (a) or (b). They
are unshrouded, with a swept leading edge and often with a forward cant
to the blades as in the case of the low pressure LOX pump in the SSME
(figure 2.12). This blade cant has the effect of causing the leading edge to be
located at a single axial plane counteracting the effect of the sweep given to
the leading edge. They are also designed to function at an incidence angle
of a few degrees. The reason that the design incidence angle is not zero is
that under these conditions cavitation could form on either the pressure or
suction surfaces or it could oscillate between the two. It is preferable to use
a few degrees of incidence to eliminate this uncertainity and ensure suction
surface cavitation.
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Figure 7.12. Various geometries of cavitating inducers (from Jakobsen 1971).

7.4 INDUCER PERFORMANCE

Typical inducer performance characteristics are presented in figures 7.13
to 7.16. The non-cavitating performance of simple 9◦ helical inducers (see
figure 2.12) is presented in figure 7.13. The data for the 5.1 cm and 7.6 cm
diameter models appear to coincide indicating very little Reynolds number
effect. Furthermore, the non-cavitating performance is the same whether the
leading edge is swept or straight. Also included in the figure are the results
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Figure 7.13. Non-cavitating performance of 9◦ helical inducers of two
different sizes and with and without swept leading edges (the 7.58 cm
inducers are Impellers III and V). Also shown is the theoretical performance
prediction in the absence of losses (from Ng and Brennen 1978).

Figure 7.14. Cavitation performance for Impeller V at various flow coef-
ficients and rotating speeds (from Ng and Brennen 1978).
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Figure 7.15. Non-cavitating performance of Impeller IV (7.58 cm, with
stator) and Impeller VI (10.2 cm, without stator) at various rotational
speeds. Also shown are full scale test data from Rocketdyne and a theoret-
ical performance prediction (solid line) (from Ng and Brennen 1978).

of the lossless performance prediction of equation 4.6. The agreement with
the experiments is about as good as one could expect. It is most satisfactory
close to the zero incidence flow coefficient of about 0.09 → 0.10 where one
would expect the viscous losses to be a minimum. The comparison also
suggests that the losses increase as one either increases or decreases the flow
from that zero incidence value.

The cavitation performance of the 7.58 cm model of the 9◦ helical inducer
is presented in figure 7.14. These curves for different flow coefficients exhibit
the typical pattern of a more gradual head loss at the higher flow coeffi-
cients. Notice that the breakdown cavitation number is smaller for non-zero
incidence (for example, φ = 0.052) than it is for zero incidence (φ = 0.095).
One would expect the breakdown cavitation number to be a minimum at
zero incidence. The fact that the data do not reflect this expectation may
be due to the complications at low flow coefficients caused by backflow and
the prerotation which backflow induces (see section 4.5).

Another example of inducer performance is presented in figures 7.15 and
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Figure 7.16. Cavitation performance of Impeller IV at 9000 rpm and var-
ious flow coefficients. Also shown are full scale test data from Rocketdyne
(from Ng and Brennen 1978).

7.16, in this case for the SSME low pressure LOX pump model designated
Impeller IV (see figure 2.12). In figure 7.15, non-cavitating performance
characteristics are shown for two models with diameters of 7.58 cm and
10.2 cm. The difference in the two characteristics is not related to the size
as much as it is to the fact that the 7.58 cm model was tested with a set
of diffuser (stator) vanes in the axial flow annulus just downstream of the
impeller discharge whereas the 10.2 cm model was tested without such a
diffuser. Note the substantial effect that this has upon the performance. Be-
low the design flow (φ1 ≈ 0.076) the stator vanes considerably improve the
diffusion process. However, above the design flow, the negative angle of inci-
dence of the flow encountering the stator vanes appears to cause substantial
loss and results in degradation of the performance. Some full scale test data
(with diffuser) obtained by Rocketdyne is included in figure 7.15 and shows
quite satisfactory agreement with the 7.58 cm model tests. The results of
the theoretical performance given by equation 4.6 are also shown and the
comparison between the lossless theory and the experimental data is similar
to that of figure 7.13.

The cavitation performance of Impeller IV in water is shown in figure
7.16 along with some data from full scale tests. Note that the head tends
to be somewhat erratic at the lower cavitation numbers. Such behavior is
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typical of most axial flow inducer data and is probably due to hydraulic
losses caused by unsteadiness in the flow (see section 8.7).

7.5 EFFECTS OF INDUCER GEOMETRY

In this section we comment on several geometric factors for which the data
suggests optimum values. Clearly, the solidity, s, needs to be as small as
possible and yet large enough to achieve the desired discharge flow angle.
Data on the effect of the solidity on the performance of a 3-bladed, 9◦ helical
inducer has been obtained by Acosta (1958) and on a 4-bladed, 81

2

◦ helical
inducer by Henderson and Tucker (1962). This data is shown in figures 7.17
and 7.18. The effect on the non-cavitating performance (extreme right of
the figures) seems greater for Acosta’s inducer than for that of Henderson
and Tucker. The latter data suggests that, as expected, the non-cavitating
performance is little affected unless the solidity is less than unity. Both sets
of data suggest that the cavitating performance is affected more than the
non-cavitating performance by changes in the solidity when the latter is less
than about unity. Consequently, this data suggests an optimum value of s
of about 1.5.

The same two studies also investigated the effect of the tip clearance and
the data of Henderson and Tucker (1962) is reproduced in figure 7.19. As was
the case with the solidity, the non-cavitating performance is less sensitive
to changes in the tip clearance than is the cavitation performance. Note
from figure 7.19 that the non-cavitating performance is relatively insensitive
to the clearance unless the latter is increased above 2% of the chord when
the performance begins to decline more rapidly. The cavitating performance

Figure 7.17. The effect of solidity on the cavitation performance of a 9◦
helical inducer (from Acosta 1958).
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Figure 7.18. The effect of solidity on the cavitation performance of a
cavitating inducer (Janigro and Ferrini 1973 from Henderson and Tucker
1962).

Figure 7.19. The effect of tip clearance on the cavitation performance of
a cavitating inducer (from Henderson and Tucker 1962 as given by Janigro
and Ferrini 1973).
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Figure 7.20. Non-cavitating performance of three 9.4◦ helical inducers
with different leading edges as shown. Tests performed with liquid hydrogen
(from Moore and Meng 1970b).

Figure 7.21. The breakdown cavitation numbers, σb (defined in this case
by a 30% head drop) as a function of temperature for three shapes of
leading edge (see figure 7.20) on 9.4◦ helical inducers operating in liquid
hydrogen (from Moore and Meng 1970a,b).

shows a similar dependence though the fractional changes in the performance
are larger. Note that the performance near the knee of the curve indicates an
optimum clearance of about 1% of the chord which is in general qualitative
agreement with the effect of tip clearance on cavitation inception discussed
earlier (see figure 5.20).
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Moore and Meng (1970a,b) have made a study of the effect of the leading
edge geometry on inducer performance and their results are depicted graph-
ically in figures 7.20 and 7.21. Note that the leading edge geometry has a
significant effect on the non-cavitating performance and on the breakdown
cavitation number. Simply stated, the sharper the leading edge the better
the hydraulic performance under both cavitating and non-cavitating condi-
tions. There is, however, a trade-off to be made here for very thin leading
edges may flutter. This phenomenon is discussed in section 8.12. Incidentally,
figure 7.21 also demonstrates the thermal effect on cavitation performance
which is discussed in section 7.7.

7.6 ANALYSES OF CAVITATION IN
PUMPS

In this and the sections which follow we shall try to give a brief overview
of the various kinds of models which have been developed for the analysis
of developed cavitation in a pump. Clearly different types of cavitation re-
quire different analytical models. We begin in this section with the various
attempts which have been made to model traveling bubble cavitation in a
pump and to extract from such a model information regarding the damage
potential, noise or performance decrement caused by that cavitation. In a
later section we shall outline the methods developed for attached blade cav-
itation. As for the other types of cavitation which are typically associated
with the secondary flows (e.g., tip vortex cavitation, backflow cavitation)
there is little that can be added to what has already been described in the
last chapter. Much remains to be understood concerning secondary flow cav-
itation, perhaps because some of the more important effects involve highly
unsteady and transient cavitation.

To return to a general discussion of traveling bubble cavitation, it is clear
that, given the pressure and velocity distribution along a particular stream-
line in a reference frame fixed in the impeller, one can input that information
into the Rayleigh-Plesset equation 6.1 as discussed in section 6.2. The equa-
tion can then be integrated to find the size of the bubble at each point
along its trajectory (see examples in section 6.2). Such programs are equally
applicable to two-phase flows or to two-component gas/liquid flows.

Since the first applications of the Rayleigh-Plesset equation to traveling
bubble cavitation by Plesset (1949) and Parkin (1952) there have been many
such investigations, most of which are reviewed by Holl (1969). A notable
example is the work of Johnson and Hsieh (1966) who included the motion
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of the bubble relative to the liquid and demonstrated the possibility of some
screening effects because of the motion of the bubbles across streamlines due
to centripetal forces. While most of the literature discusses single bubble
solutions of this type for flows around simple headforms the same programs
can readily be used for the flow around a pump blade provided the pressure
distributions on streamlines are known either from an analytic or numerical
solution or from experimental measurements of the flow in the absence of
cavitation. Such investigations would allow one to examine both the location
and intensity of bubble collapse in order to learn more about the potential
for cavitation damage.

These methods, however, have some serious limitations. First, the
Rayleigh-Plesset equation is only valid for spherical bubbles and collapsing
bubbles lose their spherical symmetry as discussed in section 6.4. Conse-
quently any investigation of damage requires considerations beyond those
of the Rayleigh-Plesset equation. Secondly, the analysis described above as-
sumes that the concentration of bubbles is sufficiently small so that bubbles
do not interact and are not sufficiently numerous to change the flow field
from that for non-cavitating flow. This means that they are of little value in
predicting the effect of cavitation on pump performance since such an effect
implies interactions between the bubbles and the flow field.

It follows that to model the performance loss due to traveling bubble
cavitation one must use a two-phase or two-component flow model which
implicitly includes interaction between the bubbles and the liquid flow field.
One of the first models of this kind was investigated by Cooper (1967) and
there have been a number of similar investigations for two-component flows
in pumps, for example, that by Rohatgi (1978). While these investigations
are useful, they are subject to serious limitations. In particular, they as-
sume that the two-phase mixture is in thermodynamic equilibrium. Such
is certainly not the case in cavitation flows where an expression like the
Rayleigh-Plesset equation is needed to describe the dynamics of disequilib-
rium. Nevertheless the models of Cooper and others have value as the first
coherent attempts to evaluate the effects of traveling bubble cavitation on
pump performance.

Rather than the assumption of thermodynamic equilibrium, two-phase
bubble flow models need to be developed in which the bubble dynamics are
included through appropriate use of the Rayleigh-Plesset equation. In recent
years a number of investigators have employed such models to investigate
the dynamics and acoustics of clouds of cavitation bubbles in which the bub-
bles and the flow interact (see, for example, Chahine 1982, d’Agostino and
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Brennen 1983, 1989, d’Agostino et al. 1988, Biesheuval and van Wijngaar-
den 1984, Omta 1987). Among other things these investigations demonstrate
that a cloud of bubbles has a set of natural frequencies of its own, separate
from (but related to) the bubble natural frequency and that the bubble and
flow interaction effects become important when the order of magnitude of
the parameter αA2/R2 exceeds unity where α is the void fraction and A

and R are the dimensions of the cloud and bubbles respectively. These more
appropriate models for travelling bubble cavitation have not, as yet, been
used to investigate cavitation effects in pumps.

Several other concepts should be mentioned before we leave the subject
of bubbly cavitation in pumps. One such concept which has not received
the attention it deserves was put forward by Jakobsen (1964). He attempted
to merge the free streamline models (which are discussed later in section
7.8) with his observations that attached cavities on the suction surfaces of
impeller blades tend to break up into bubbly mixtures near the closure or
reattachment point of the attached cavity. Jakobsen suggested that conden-
sation shocks occur in this bubbly mixture and constitute a mechanism for
head breakdown.

There are also a number of results and ideas that emerge from studies
of the pumping of bubbly gas/liquid mixtures. One of the most important
of these is found in the measurements of bubble size made by Murakami
and Minemura (1977, 1978). It transpires that, in most practical pumping
situations, the turbulence and shear at inlet tend to break up all the gas

Figure 7.22. The bubble diameters observed in the blade passages of cen-
trifugal and axial flow pumps as a function of Weber number (adapted from
Murakami and Minemura 1978).
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bubbles larger than a certain size during entry to the blade passages. The
ratio of the force tending to cause fission to the surface tension, S, which
tends to resist fission will be a Weber number and Murakami and Minemura
(1977, 1978) suggest that the ratio of the diameter of the largest bubbles
to survive the inlet shear, 2RM , to the blade spacing, h1, will be a function
of a Weber number, We = ρΩ2R2

T 1h1/S. Figure 7.22 presents some data on
2RM/h1 taken by Murakami and Minemura for both centrifugal and axial
flow pumps.

The size of the bubbles in the blade passages is important because it is the
migration and coalesence of these bubbles that appears to cause degradation
in the performance. Since the velocity of the relative motion between the
bubbles and the liquid is proportional to the bubble size raised to some power
which depends on the Reynolds number regime, it follows that the larger
the bubbles the more likely it is that large voids will form within the blade
passage due to migration of the bubbles toward regions of lower pressure
(Furuya 1985, Furuya and Maekawa 1985). As Patel and Runstadler (1978)
observed during experiments on centrifugal pumps and rotating passages,
regions of low pressure occur not only on the suction sides of the blades but
also under the shroud of a centrifugal pump. These large voids can cause
substantial changes in the deviation angle of the flow leaving the impeller
and hence alter the pump performance in a significant way. This mechanism
of head degradation is probably significant not only for gas/liquid flows
but also for cavitating flows. In gas/liquid flows the higher the velocity the
greater the degree of bubble fission at inlet and the smaller the bubbles.
But the force acting on the bubbles is also greater for the higher velocity
flows and so the net result is not obvious. One can only conclude that both
processes, inlet fission and blade passage migration, may be important and
deserve further study along the lines begun by Murakami and Minemura.

At the beginning of this section we discussed the application of the
Rayleigh-Plesset equation to study the behavior of individual cavitating
bubbles. One area in which such an analysis has been useful is in evalu-
ating the differences in the cavitation occurring in different liquids and in
the same liquid at different temperatures. These issues will be addressed in
the next section. In the subsequent section we turn our attention to the free
streamline methods which have been developed to model the flows which
occur when large attached cavities or gas-filled voids occur on the blades of
a turbomachine.
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7.7 THERMAL EFFECT ON PUMP
PERFORMANCE

Changes in the temperature of the liquid being pumped will clearly affect
the vapor pressure, pV , and therefore the NPSH or cavitation number. This
effect has, of course, already been incorporated in the analysis or presenta-
tion of the performance by using the difference between the inlet pressure
and the vapor pressure rather than the absolute value of the inlet pressure
as a flow parameter. But there is another effect of the liquid temperature
which is not so obvious and requires some discussion and analysis. It is il-
lustrated by figure 7.23 which includes cavitation performance data for a
centrifugal pump (Arndt 1981 from Chivers 1969) operating with water at
different inlet temperatures. Note that the cavitation breakdown decreases
substantially with increasing temperature. Somewhat counter-intuitively the
performance actually improves as the temperature gets greater! The varia-
tion of the breakdown cavitation number, σb, with the inlet temperature in
Chivers’ (1969) experiments is shown in figure 7.24 which includes data for
two different speeds and shows a consistent decrease in σb with increasing
temperature. The data for the two speeds deviate somewhat at the lowest
temperatures. To illustrate that the thermal effect occurs in other liquids
and in other kinds of pumps, we include in figure 7.25 data reported by
Gross (1973) from tests of the Saturn J-2 liquid oxygen inducer pump. This

Figure 7.23. Typical cavitation performance characteristics for a centrifu-
gal pump pumping water at various temperatures as indicated (Arndt 1981
from Chivers 1969).
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Figure 7.24. Thermodynamic effect on cavitation breakdown for a com-
mercial centrifugal pump (data from Chivers 1969).

Figure 7.25. Effect of temperature on the cavitation performance of the
J-2 liquid oxygen inducer pump (adapted from Gross 1973).

shows the same pattern manifest in figure 7.24. Other data of this kind has
been obtained by Stepanoff (1961), Spraker (1965) and Salemann (1959) for
a variety of other liquids.

The explanation for this effect is most readily given by making reference
to traveling bubble cavitation though it can be extended to other forms
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of cavitation. However, for simplicity, consider a single bubble (or nucleus)
which begins to grow when it enters a region of low pressure. Liquid on
the surface of the bubble will vaporize to provide the increase in volume
of vapor filling the bubble. Consider, now, what happens at two different
temperatures, one “high” and one “low.” At “low” temperatures the density
of the saturated vapor is low and, therefore, the mass rate of evaporation
of liquid needed is small. Consequently, the rate at which heat is needed as
latent heat to effect this vaporization is low. Since the heat will be conducted
from the bulk of the liquid and since the rate of heat transfer is small, this
means that the amount by which the temperature of the interface falls below
the bulk liquid temperature is also small. Consequently the vapor pressure in
the cavity only falls slightly below the value of the vapor pressure at the bulk
liquid temperature. Therefore, the driving force behind the bubble growth,
namely the difference between the internal pressure (vapor pressure) and
the pressure far from the bubble, is not much influenced by thermal effects.

Now, consider the same phenomenon occuring at the “high” temperature.
Since the vapor density can be many orders of magnitude larger than at the
“low” temperature, the mass rate of evaporation for the same volume growth
rate is much larger. Thus the heat which must be conducted to the interface
is much larger which means that a substantial thermal boundary layer builds
up in the liquid at the interface. This causes the temperature in the bubble
to fall well below that of the bulk liquid and this, in turn, means that
the vapor pressure within the bubble is much lower than otherwise might
be expected. Consequently, the driving force behind the bubble growth is
reduced. This reduction in the rate of bubble growth due to thermal effects
is the origin of the thermal effect on the cavitation performance in pumps.
Since the cavitation head loss is primarily due to disruption of the flow by
volumes of vapor growing and collapsing within the pump, any reduction in
the rate of bubble growth will lessen the disruption and result in improved
performance.

This thermal effect can be extended to attached or blade cavities with
only minor changes in the details. At the downstream end of a blade cavity,
vapor is entrained by the flow at a certain volume rate which will depend on
the flow velocity and other geometric parameters. At higher temperatures
this implies a larger rate of entrainment of mass of vapor due to the larger
vapor density. Since vaporization to balance this entrainment is occurring
over the surface of the cavity, this implies a larger temperature difference at
the higher temperature. And this implies a lower vapor pressure in the cavity
than might otherwise be expected and hence a larger “effective” cavitation
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number. Consequently the cavitation performance is improved at the higher
temperature.

Both empirical and theoretical arguments have been put forward in at-
tempts to quantify these thermal effects. We shall begin with the theoretical
arguments put forward by Ruggeri and Moore (1969) and by Brennen (1973).
These explicitly apply to bubble cavitation and proceed as follows.

At the beginning of bubble growth, the rate of growth rapidly approaches
the value given by equation 6.8 and the important (dR/dt)2 term in the
Rayleigh-Plesset equation 6.1 is roughly constant. On the other hand, the
thermal term, Θ, which is initially zero, will grow like t

1
2 according to equa-

tion 6.6. Consequently there will be a critical time, tC , at which the thermal
term, Θ, will approach the magnitude of (pB(T∞)− p)/ρL and begin to re-
duce the rate of growth. Using the expression 6.6, this critical time is given
by

tC ≈ (pB − p) /ρLΣ2 (7.1)

For t� tC , the dominant terms in equation 6.1 are (pB − p)/ρL and
(dR/dt)2 and the bubble growth rate is as given by equation 6.8. For t
 tC ,
the dominant terms in equation 6.1 become (pB − p)/ρL and Θ so that, using
equations 6.4 and 6.5, the bubble growth rate becomes

dR

dt
=
cPL (T∞ − TB(t))

L
(αL

t

) 1
2 (7.2)

which is typical of the expressions for the bubble growth rate in boiling. Now
consider a nucleus or bubble passing through the pump which it will do in a
time of order 1/Ωφ. It follows that if Ωφ
 1/tC then the bubble growth will
not be inhibited by thermal effects and explosive cavitating bubble growth
will occur with the potential of causing substantial disruption of the flow
and degradation of pump performance. On the other hand, if Ωφ� 1/tC ,
most of the bubble growth will be thermally inhibited and the cavitation
performance will be much improved.

To calculate tC we need values of Σ which by its definition (equation 6.7)
is a function only of the liquid temperature. Typical values of Σ for a variety
of liquids are presented in figure 7.26 as a function of temperature (the ratio
of temperature to critical temperature is used in order to show all the fluids
on the same graph). Note that the large changes in the value of Σ are caused
primarily by the change in the vapor density with temperature.

As an example, consider a cavitating flow of water in which the tension,
(pB − p), is of the order of 104kg/m s2 or 0.1bar. Then, since water at 20◦C
has a value of Σ of about 1m/s

3
2 , the value of tC is of the order of 10s. Thus,
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Figure 7.26. Thermodynamic parameter, Σ, as a function of temperature
for various saturated fluids.

in virtually all pumps, Ωφ will be much greater than 1/tC and no thermal
effect will occur. On the other hand at 100◦C, the value of Σ for water is
about 103m/s

3
2 and it follows that tC = 10μs. Thus in virtually all cases

Ωφ� 1/tC and a strong thermal effect can be expected. In fact, in a given
application there will exist a “critical” temperature above which one should
expect a thermal effect on cavitation. For a water pump rotating at 3000rpm
this “critical” temperature is about 70◦C, a value which is consistent with
the experimental measurements of pump performance.

The principal difficulty with the above approach is in finding some way
to evaluate the tension, pB − p, for use in equation 7.1 in order to calculate
tC . Alternatively, the experimental data could be examined for guidance in
establishing a criterion based on the above model. To do so equation 7.1 is
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rewritten in terms of dimensionless groups as follows:

ΩφtC =
1
2

{
pB − p

1
2ρLΩ2R2

T

}{
R2

TΩ3φ

Σ2

}
(7.3)

where the expression in the first curly brackets on the right hand side could
be further approximated by (−Cpmin − σ) where Cpmin is a characteristic
minimum pressure coefficient. It follows that the borderline between a flow
which is broken down due to cavitation in the absence of thermal effects and
a flow which is not broken down due to a beneficial thermal effect occurs
when the ratio of times, ΩφtC , takes some critical value which we will denote
by β. Equation 7.3 with ΩφtC set equal to β would then define a critical
breakdown cavitation number, σx (σa or σb) as follows:

σx = −Cpmin − 2β
Σ2

R2
TΩ3φ

(7.4)

The value of σx in the absence of thermal effects should then be (σx)0 =
−Cpmin and equation 7.4 can be presented in the form

σx

(σx)0
= 1 − 2β

Σ2

R2
TΩ3φ(σx)0

(7.5)

It would then follow that the ratio of critical cavitation numbers, σx/(σx)0,
should be a simple function of the modified thermal effect parameter, Σ∗,
defined by

Σ∗ = Σ/
{
R2

TΩ3φ(σx)0
} 1

2 (7.6)

To test this hypothesis, data from a range of different experiments is pre-
sented in figure 7.27. It can be seen that the data correspond very roughly
to some kind of common curve for all these different pumps and liquids.
The solid line corresponds to equation 7.5 with an arbitrarily chosen value
of β = 5 × 10−6. Consequently this attempt to model the thermal effect has
succeeded to a limited degree. It should however be noted that the horizon-
tal scatter in the data in figure 7.27 is more than a decade, though such
scatter may be inevitable given the range of impeller geometries. We have
also omitted one set of data, namely that of Chivers (1969), since it lies well
to the left of the data included in the figure.

A number of purely empirical approaches to the same problem have been
suggested in the past. All these empirical methods seek to predict the change
in NPSH , say ΔNPSH , due to the thermal effect. This quantity ΔNPSH
is the increment by which the cavitation performance characteristic would
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Figure 7.27. The ratio of the critical cavitation number σx (σa or σb) to
(σx)0 (the value of σx in the absence of any thermal effect) as a function
of the thermal effect parameter, Σ∗. Data is shown for a variety of pumps
and liquids.

be shifted to the left as a result of the thermal effect. The method suggested
by Stahl and Stepanoff (1956) and Stepanoff (1961, 1964) is widely used;
it is based on the premise that the cavitation characteristic of a particular
pump operating at a particular speed with two different liquids (or with two
different temperatures in the same liquid) would be horizontally shifted by

ΔNPSH = HT 1 −HT 2 (7.7)

where the quantitiesHT 1 and HT 2 only depend on the thermodynamic prop-
erties of the two individual fluids considered separately. This generic prop-
erty is denoted by HT . For convenience, Stepanoff also uses the symbol B′

to denote the group ρ2
LcPLT∞/ρ2

V L2 which also occurs in Σ and almost all
analyses of the thermal effect. Then, by examining data from a number of
single-stage 3500 rpm pumps, Stahl and Stepanoff arrived at an empirical
relation between HT and the thermodynamic properties of the following
form:

HT (in m) = 28.9ρLg/pV (B′)
4
3 (7.8)

where pV /gρL is the vapor pressure head (in m) and B′ is in m−1. This
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Figure 7.28. The parameter, B′ (in m−1), for several liquids and HT (in
m) for centrifugal pumps operating at design flow rate and at a 3% head
drop (adapted from Knapp et al. 1970 and Stepanoff 1964).

relation is presented graphically in figure 7.28. Clearly equation 7.8 (or figure
7.28) can be used to findHT for the desired liquid and operating temperature
and for the reference liquid at the reference operating temperature. Then
the cavitation performance under the desired conditions can be obtained
by application of the shift given by equation 7.7 to the known cavitation
performance under the reference conditions.

7.8 FREE STREAMLINE METHODS

The diversity of types of cavitation in a pump and the complexity of the
two-phase flow which it generates mean that reliable analytical methods
for predicting the cavitating performance characteristics are virtually non-
existent. However if the cavity flow can be approximated by single, fully
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developed or attached cavities on each blade, then this allows recourse to the
methods of free streamline theory for which the reader may wish to consult
the reviews by Tulin (1964) and Wu (1972) or the books by Birkhoff and
Zarantonello (1957) and Brennen (1994). The analytical approaches can be
subdivided into linear theories which are applicable to slender, streamlined
flows (Tulin 1964) and non-linear theories which are more accurate but can
be mathematically much more complex (Wu 1972). Both approaches to free
streamline flows have been used in a wide range of cavity flow problems and
it is necessary to restrict the present discussion to some of the solutions of
relevance to attached cavitation in pumps.

It is instructive to begin by quoting some of the results obtained for sin-
gle hydrofoils for which the review by Acosta (1973) provides an excellent
background. In particular we will focus on the results of approximate linear
theories for a partially cavitating or supercavitating flat plate hydrofoil. The
partially cavitating solution (Acosta 1955) yields a lift coefficient

CL = πα
[
1 + (1 − �)−

1
2

]
(7.9)

where � is the ratio of the cavity length to the chord of the foil and is related
to the cavitation number, σ, by

σ

2α
=

2 − �+ 2(1− �)
1
2

�
1
2 (1 − �)

1
2

(7.10)

Thus, for a given cavity length, �, and a given angle of incidence, α, the
cavitation number follows from equation 7.10 and the lift coefficient from
equation 7.9. Note that as �→ 0 the value of CL tends to the theoretical
value for a non-cavitating flat plate, namely 2πα. The corresponding solution
for a supercavitating flat plate was given by Tulin (1953) in his pioneering
paper on linearized cavity flows. In this case

CL = πα�
[
�

1
2 (�− 1)−

1
2 − 1

]
(7.11)

α

(
2
σ

+ 1
)

= (�− 1)
1
2 (7.12)

where now, of course, � > 1.
The lift coefficient and the cavity length from equations 7.9 to 7.12 are

plotted against cavitation number in figure 7.29 for a typical angle of in-
cidence of α = 4◦. Note that as σ → ∞ the fully wetted lift coefficient,
namely 2πα, is recovered from the partial cavitation solution and that as
σ → 0 the lift coefficient tends to πα/2. Notice also that both the solutions
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Figure 7.29. Typical results from the linearized theories for a cavitating
flat plate at an angle of incidence of 4◦. The lift coefficients, CL (solid
lines), and the ratios of cavity length to chord, � (dashed lines), are from
the supercavitation theory of Tulin (1953) and the partial cavitation theory
of Acosta (1955). Also shown are the experimental results of Wade and
Acosta (1966) for � (	) and for CL (◦ and •) where the open symbols
represent points of stable operation and the solid symbols denote points of
unstable cavity operation.

become pathological when the length of the cavity approaches the chord
length (�→ 1). However, if some small portion of each curve close to � = 1
were eliminated, then the characteristic decline in the performance of the
hydrofoil as the cavitation number is decreased is readily observed. It also
compares well with the experimental observations as illustrated by the fa-
vorable comparison with the data of Wade and Acosta (1966) included in
figure 7.29. Consequently, as the cavitation number is decreased, a single foil
exhibits only a small change in the performance or lift coefficient until some
critical value of σ (about 0.7 in the case of figure 7.29) is reached. Below this
critical value the performance begins to “breakdown” quite rapidly. Thus,
even a single foil mirrors the typical cavitation performance experienced in
a pump. On a more detailed level, note that the small increase in the super-
cavitating lift coefficient which occurs as the cavitation number is decreased
toward the critical value of σ is, in fact, observed experimentally with many
single hydrofoils (for example, Wade and Acosta 1966) as well as in some
pumps.

The peculiar behaviour of the analytical solutions close to the critical
cavitation number is related to an instability which is observed when the
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Figure 7.30. Lift coefficients for a flat plate from the non-linear theory of
Wu (1962). The experimental data (Parkin 1958) is for angles of incidence
as follows: 8◦ (�), 10◦ (�), 15◦ (	), 20◦ (⊕), 25◦ (⊗), and 30◦ (�). Also
shown is some data of Silberman (1959) in a free jet tunnel: 20◦ (+) and
25◦ (×).

cavity length is of the same order as the chord of the foil. However, we delay
further discussion of this until the appropriate point in the next chapter (see
section 8.10). Some additional data on the variation of the lift coefficient with
angle of incidence is included in that later section.

Before leaving the subject of the single cavitating foil we should note that
more exact, non-linear solutions for a flat plate or an arbitrarily shaped pro-
file have been generated by Wu (1956, 1962), Mimura (1958) and others.
As an example of these non-linear results, the lift and drag coefficients at
various cavitation numbers and angles of incidence are presented in figures
7.30 and 7.31 where they are compared with the experimental data of Parkin
(1958) and Silberman (1959). Data both for supercavitating and partially
cavitating conditions are shown in these figures, the latter occurring at the
higher cavitation numbers and lower incidence angles (the dashed parts of
the curves represent a somewhat arbitrary smoothing through the critical
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Figure 7.31. Drag coefficients corresponding to the lift coefficients of fig-
ure 7.30.

region in which the cavity lengths are close to the chord length). This com-
parison demonstrates that the non-linear theory yields values which are in
good agreement with the experimental measurements. In the case of circular-
arc hydrofoils, Wu and Wang (1964) have shown similar agreement with the
data of Parkin (1958) for this type of profile. For a recent treatment of su-
percavitating single foils the reader is referred to the work of Furuya and
Acosta (1973).

7.9 SUPERCAVITATING CASCADES

We now turn to the free streamline analyses which are most pertinent to
turbomachines, namely solutions and data for cavitating cascades. Both
partially cavitating and supercavitating cascades (see figure 5.10) have been
analysed using free streamline methods. Clearly cavities initiated at the lead-
ing edge are more likely to extend beyond the trailing edge when the solidity
and the stagger angle are small. Such cascade geometries are more charac-
teristic of propellers and, therefore, the supercavitating cascade results are
more often applied in that context. On the other hand, most cavitating
pumps have large solidities (> 1) and large stagger angles. Consequently,
partial cavitation is the more characteristic condition in pumps, particu-
larly since the pressure rise through the pump is likely to collapse the cavity
before it emerges from the blade passage. In this section we will discuss
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the supercavitating analyses and data; the next section will deal with the
partially cavitating results.

Free streamline methods were first applied to the problems of a cavitat-
ing cascade by Betz and Petersohn (1931) who used a linearized method to
solve the problem of infinitely long, open cavities produced by a cascade of
flat plate hydrofoils. Extensions to this linear, supercavitating solution were
generated by Sutherland and Cohen (1958) who solved the problem of finite
supercavities behind a flat plate cascade and by Acosta (1960) who general-
ized this to a cascade of circular arc hydrofoils. Other early contributions to
linear cascade theory for supercavitating foils include the models of Duller
(1966) and Hsu (1972) and the inclusion of the effect of rounded leading
edges by Furuya (1974). Non-linear solutions were first obtained by Woods
and Buxton (1966) for the case of a cascade of flat plates. Later Furuya
(1975) expanded this work to include foils of arbitrary geometry.

A substantial body of data on the performance of cavitating cascades has
been accumulated through the efforts of Numachi (1961, 1964), Wade and
Acosta (1967) and others. This allows comparison with the analytical mod-
els, in particular the supercavitating theories. Figure 7.32 provides such a
comparison between measured lift and drag coefficients (defined as normal
and parallel to the direction of the incident stream) for a particular cas-
cade and the theoretical results from the supercavitating theories of Furuya
(1975) and Duller (1966). Note that the measured lift coefficients exhibit
a clear decline in cascade performance as the cavitation number is reduced
and the supercavities grow. However, it is important to observe that this
degradation does not occur until the cavitation is quite extensive. The cav-
itation inception numbers for the experiments were σi = 2.35 (for 8◦) and
σi = 1.77 (for 9◦). However the cavitation number must be lowered to about
0.5 before the performance is adversely affected. Consequently there is a
significant range of intermediate cavitation numbers within which partial
cavitation is occurring and within which the performance is little changed.

For the cascades and incidence angles used in the example of figure 7.32,
Furuya (1975) shows that the linear and non-linear supercavitation theories
yield similar results which are close to those of the experiments. This is il-
lustrated in figure 7.32. However, Furuya also demonstrates that there are
circumstances in which the linear theories can be substantially in error and
for which the non-linear results are clearly needed. The effect of the solid-
ity on the results is also important because it is a major design factor in
determining the number of blades in a pump or propeller. Figure 7.33 illus-
trates the effect of solidity when large supercavities are present (σ = 0.18).
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Figure 7.32. Lift and drag coefficients as functions of the cavitation num-
ber for cascades of solidity, 0.625, and blade angle, βb = 45◦ + α, operating
at angles of incidence, α, of 8◦ (	) and 9◦ (�). The points are from the
experiments of Wade and Acosta (1967) and the analytical results for a su-
percavitating cascade are from the linear theory of Duller (1966) (dashed
lines) and the non-linear theory of Furuya (1975) (solid lines).

Figure 7.33. Lift and drag coefficients as functions of the solidity for
cascades of blade angle, βb = 45◦ + α, operating at the indicated angles of
incidence, α, and at a cavitation number, σ = 0.18. The points are from
the experiments of Wade and Acosta (1967) and the lines are from the
non-linear theory of Furuya (1975). Reproduced from Furuya (1975).
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Note that the solidity has remarkably little effect at the smaller angles of
incidence.

7.10 PARTIALLY CAVITATING
CASCADES

In the context of pumps, the solutions by Acosta and Hollander (1959) and
Stripling and Acosta (1962) of partial cavitation in a semi-infinite cascade
of infinitely thin blades and the solution by Wade (1967) of a finite cas-
cade of partially cavitating foils provide a particularly valuable means of
analyzing the performance of two-dimensional cascades with blade cavities.
More recently the three dimensional aspects of these solutions have been
explored by Furuya (1974). As a complement to purely analytical methods,
more heuristic approaches are possible in which the conventional cascade
analyses (see sections 3.2, 3.5) are supplemented by lift and drag data for
blades operating under cavitating conditions.

Partly for the purposes of example and partly because the results are
useful, we shall recount here the results of the free-streamline solution of
Brennen and Acosta (1973). This is a slightly modified version of the Acosta
and Hollander solution for partial cavitation in a cascade of infinitely thin,
flat blades. The modification was to add finite thickness to the blades. As
we shall see, this can be important in terms of the relevance of the theory.

A sketch of the cascade geometry is shown in figure 7.34. A single pa-
rameter is introduced to the solution in order to yield finite blade thickness.
This parameter implies a ratio, d, of the blade thickness far downstream to
the normal spacing between the blades. It also implies a radius of curvature

Figure 7.34. Schematic of partially cavitating cascade of flat blades of
thickness nd (Brennen and Acosta 1973).
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of the parabolic leading edge of the blade, κ, given by

1
κ
≈ d2β3

b

πh(1 + σc)
(7.13)

where σc is the choked cavitation number (see below). Equation 7.13 and
the fact that the ultimate thickness is not reached until about half a blade
spacing downstream, both imply very sharp leading edges.

One of the common features of all of these free streamline solutions is that
there exists a certain minimum cavitation number at which the cavity be-
comes infinitely long and below which there are no solutions. This minimum
cavitation number is called the choked cavitation number, σc. Were such a
flow to occur in practice, it would permit large deviation angles at discharge
and a major degradation of performance. Consequently the choked cavita-
tion number, σc, is often considered an approximation to the breakdown
cavitation number, σb, for the pump flow which the cascade solution repre-
sents. The Brennen and Acosta solution yields a choked cavitation number
given by

σc =
[
1 + 2 sin

α

2
sec

βb

2
sin

(βb − α)
2

+ 2d sin2 βb

2

]2

− 1 (7.14)

which, since the solution is only valid for small incidence angles, α, and since
βb is normally small, yields

σc ≈ α(βb − α) + β2
bd (7.15)

Furthermore, at a general cavitation number, σ, the maximum thickness, b,
of the cavity is given by

b

n
= 2π

[
d− (1 + σ)

1
2 + sin(βb − α)/ sinβb

]
(7.16)

or

b

n
≈ 2π

[
d− α

βb
− σ

2

]
(7.17)

As a rough example, consider a 10◦ helical inducer (βb = 10◦) with a
fractional blade thickness of d = 0.15 operating at a flow coefficient, φ =
0.08, so that the incidence angle, α = 4◦ (see figure 7.38). Then, according
to the relation 7.15, the choked cavitation number is σc = 0.0119 which is
close to the observed breakdown cavitation number (see figure 7.40). It is
important to note the role played by the blade thickness in this typical
calculation because with d = 0 the result is σc = 0.0073. Note also that with
infinitely thin blades, the expression 7.15 predicts σc = 0 at zero incidence.
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Figure 7.35. The subdivision of the flow through an axial inducer into
radial annuli for cascade analysis.

Figure 7.36. Radial variations of the blade angle, βb, blade thickness to
normal spacing ratio, d, and incidence angle α (for φ = 0.097) for the ox-
idizer turbopumps in the Saturn J1 and F1 engines (from Brennen and
Acosta 1973).

Thus, the blade thickness is important in estimating the choked cavitation
number in any pump.

Most pumps or inducer designs incorporate significant variations in α, βb

and d over the inlet plane and hence the above analysis has to be performed
as a function of the inlet radial position as indicated in figure 7.35. Typical
input data for such calculations are shown in figures 7.36, 7.38 and 7.39 for
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Figure 7.37. The tip cavitation numbers at which the flow at each radial
location becomes choked. Data is shown for the Saturn J2 and F1 oxidizer
turbopumps (see figure 7.36); experimentally observed breakdown cavita-
tion numbers in water and propellant are also shown (from Brennen and
Acosta 1973).

Figure 7.38. Radial variations of the blade angle, βb, blade thickness to
normal spacing ratio, d, and incidence angle, α, for the 9◦ helical inducer,
Impeller III (from Brennen and Acosta 1976).
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Figure 7.39. Radial variations of the blade angle, βb, blade thickness to
normal spacing ratio, d, and incidence angle, α, at inlet to the SSME low
pressure liquid oxygen pump, Impeller IV (from Brennen and Acosta 1976).

the Saturn J2 and F1 liquid oxygen turbopumps, for the 9◦ helical inducer,
Impeller III, and for the SSME low pressure liquid oxygen impeller, Impeller
IV. To proceed with an evaluation of the flow, the cascade at each radial
annulus must then be analyzed in terms of the cavitation number, σ(r),
pertaining to that particular radius, namely

σ(r) = (p1 − pV )/
1
2
ρLΩ2r2 (7.18)

Specific values of this cavitation number at which choking occurs in each
cascade can then be obtained from equations 7.14 or 7.15; we denote these
by σc(r). It follows that the overall pump cavitation number at which the
flow in each annulus will be choked is given by σcT (r) where

σcT (r) = σc(r)r2/R2
T 1 (7.19)

Typical data for σcT (r) for the Saturn J2 and F1 oxidizer pumps are plotted
in figure 7.37; additional examples for Impellers III and IV are shown in
figure 7.40. Note that, in theory, the flow at one particular radial location
will become choked before that at any other radius. The particular location
will depend on the radial distributions of blade angle and blade thickness
and may occur near the hub (as in the cases shown in figure 7.37) or near
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Figure 7.40. The tip cavitation numbers at which the flow at each radial
location becomes choked for Impellers III and IV (see figures 7.38 and 7.39)
and different flow coefficients, φ1 (from Brennen and Acosta 1976).

Table 7.2. Theoretical predictions of breakdown cavitation numbers com-
pared with those observed during water tests with various inducer pumps.

Inducer Theory σc Observed σb

Saturn J2 Oxidizer Inducer 0.019 0.020
Saturn F1 Oxidizer Inducer 0.012 0.013
SSME Low Pressure LOX Pump 0.011 0.012
9◦ Helical Impeller III 0.009 0.012

the tip. However, one might heuristically argue that once the flow at any
radius becomes choked, the flow through the pump will reach breakdown.
On this basis, the data of figure 7.37 would predict breakdown in the J2-O
turbopump at σb ≈ 0.019 and at 0.0125 for the F1-O turbopump. In table
7.2 and figure 7.37 these predictions are compared with the observed values
from tests in which water is used. The agreement appears quite satisfactory.
Some data obtained from tests with propellant rather than water is also
shown in figure 7.37 and exhibits less satisfactory agreement; this is probably
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the result of thermal effects in the propellant which are not present in the
water tests. Moreover, as expected, the predicted results do change with flow
coefficient (since this alters the angle of incidence) as illustrated in figure
7.40.

Perhaps the most exhaustive experimental investigationof breakdown cav-
itation numbers for inducers is the series of experiments reported by Stripling
(1962) in which inducers with blade angles at the tip, βbT 1, varying from 5.6◦

to 18◦, various leading edge geometries, blade numbers of 3 and 4 and two
hub-to-tip ratios were investigated. Some of Stripling’s experimental data
is presented in figure 7.41 where the σb values are plotted against the flow
coefficient, φ1. In his paper Stripling argues that the data correlate with the
parameter φ1 sinβbT 1/(1 + cosβbT 1) but, in fact, the experimental data are
much better correlated with φ1 alone as demonstrated in figure 7.41. There
is no satisfactory explanation for the fact that σb correlates better with φ1.

Stripling correlates his data with the theoretical values of the choked
cavitation number which one would obtain from the above theory in the case

Figure 7.41. The breakdown cavitation numbers for a series of inducers
by Stripling (1962) plotted against inlet flow coefficient. The inducers have
inlet blade angles at the tip, βbT1 (in degrees), as indicated. Also shown
are the results of the cascade analysis (equation 7.15) applied at the rms
radius, RRMS , with blade thickness (solid line) and without blade thickness
(dashed line).
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of infinitely thin blades. (In this limit the expression for σc is more easily
obtained by simultaneous solution of the Bernoulli equation and an equation
for the momentum parallel with the blades as Stripling demonstrates.) More
specifically, Stripling uses the blade angles, βb1, and incidence angles at the
rms radius, RRMS, where

RRMS =
[
1
2
(
R2

T 1 + R2
H1

)] 1
2

(7.20)

His theoretical results then correspond to the dashed lines in figure 7.41.
When the blade thickness term is added as in equation 7.15 the choked
cavitation numbers are given by the solid lines in figure 7.41 which are
considerably closer to the experimental values of σb than the dashed lines.
The remaining discrepancy could well be due to the fact that the σc values
are larger at some radius other than RRMS and hence breakdown occurs
first at that other radius.

Up to this point we have only discussed the calculation of the choked or
breakdown cavitation number from the analysis of a partially cavitating cas-
cade. There remains the issue of how to predict the degradation in the head
or the cavitation head losses prior to breakdown. The problem here is that
calculation of the lift from these analyses produces little for, as one could
anticipate, a small partial cavity will not significantly alter the performance
of a cascade of higher solidity since the discharge, with or without the cavity,
is essentially constrained to follow the direction of the blades. The hydraulic
losses which one seeks are additional (or possibly negative) frictional losses
generated by the disruption to the flow caused by the cavitation. A number
of authors, including Stripling and Acosta (1962), have employed modifica-
tions to cascade analyses in order to evaluate the loss of head, ΔH , due to
cavitation. One way to view this loss is to recognize that the presence of
a cavity in the blade passage causes a reduction in the cross-sectional area
available to the liquid flow. When the cavity collapses this area increases
creating a “diffuser” which is not otherwise present. Hydraulic losses in this
“diffuser” flow could be considered responsible for the cavitation head loss
and could be derived from knowledge of the cavity blockage, b/n.

7.11 CAVITATION PERFORMANCE
CORRELATIONS

Finally we provide brief mention of several of the purely empirical meth-
ods which are used in practice to generate estimates of the cavitation head
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Figure 7.42. Some data on the cavitation head loss parameter, P =
ΔH/NPSH , for axial inducer pumps. The two symbols are for two dif-
ferent pumps.

loss in pumps. These often consist of an empirical correlation between the
cavitation head loss, ΔH , the net positive suction head, NPSH , and the
suction specific speed, S. Commonly this correlation is written as

ΔH = P (S)×NPSH (7.21)

where the dimensionless parameter, P (S), is established by prior experience.
A typical function, P (S), is presented in figure 7.42. Such methods can only
be considered approximate; there is no fundamental reason to believe that
ΔH/NPSH is a function only of the suction specific speed, S, for all pumps
though it will certainly correlate with that parameter for a given pump and
a given liquid at a given Reynolds number and a given temperature. A more
informed approach is to select a value of the cavitation number, σW , which is
most fundamental to the interaction of the flow and the pump blade namely

σW = (p1 − pV )/
1
2
ρLw

2
1 (7.22)

Then, using the definition of NPSH (section 5.2) and the velocity triangle,

NPSH =
(
(1 + σW )v2

m1 + σW Ω2R2
T 1

)
/2g (7.23)
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It is interesting to observe that the estimate of the cavitation-free NPSH
for mixed flow pumps obtained empirically by Gongwer (1941) namely(

1.8v2
m1 + 0.23Ω2R2

T 1

)
/2g (7.24)

and his estimate of the breakdown NPSH namely(
1.49v2

m1 + 0.085Ω2R2
T 1

)
/2g (7.25)

correspond quite closely to specific values of σW , namely σW ≈ 0.3 and σW ≈
0.1 respectively.
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8

PUMP VIBRATION

8.1 INTRODUCTION

The trend toward higher speed, high power density liquid turbomachinery
has inevitably increased the potential for fluid/structure interaction prob-
lems, and the severity of those problems. Even in the absence of cavitation
and its complications, these fluid structure interaction phenomena can lead
to increased wear and, under the worst conditions, to structural failure. Ex-
emplifying this trend, the Electrical Power Research Institute (Makay and
Szamody 1978) has recognized that the occurrence of these problems in
boiler feed pumps has contributed significantly to downtime in conventional
power plants.

Unlike the cavitation issues, unsteady flow problems in liquid turboma-
chines do not have a long history of research. In some ways this is ironic
since, as pointed out by Ek (1957) and Dean (1959), the flow within a tur-
bomachine must necessarily be unsteady if work is to be done on or by the
fluid. Yet many of the classical texts on pumps or turbines barely make
mention of unsteady flow phenomena or of design considerations that might
avoid such problems. In contrast to liquid turbomachinery, the literature on
unsteady flow problems in gas turbomachinery is considerably more exten-
sive, and there are a number of review papers that provide a good survey
of the subject (for example, McCroskey 1977, Cumpsty 1977, Mikolajczak
et al. 1975, Platzer 1978, Greitzer 1981). We will not attempt a review of
this literature but we will try, where appropriate, to indicate areas of use-
ful cross-reference. It is also clear that this subject incorporates a variety
of problems ranging, for example, from blade flutter to fluid-induced rotor-
dynamic instability. Because of this variety and the recent vintage of the
fundamental research, no clear classification system for these problems has
yet evolved and there may indeed be some phenomena that have yet to
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be properly identified. It follows that the classification system that we will
attempt here will be tentative, and not necessarily comprehensive. Never-
theless, it seems that three different categories of flow oscillation can occur,
and that there are a number phenomena within each of the three categories.
We briefly list them here and return to some in the sections that follow.

[A] Global Flow Oscillations. A number of the identified vibration
problems involve large scale oscillations of the flow. Specific examples
are:

[A1] Rotating stall or rotating cavitation occurs when a turbomachine
is required to operate at a high incidence angle close to the value at
which the blades may stall. It is often the case that stall will first be
manifest on a small number of adjacent blades and that this “stall
cell” will propagate circumferentially at some fraction of the main im-
peller rotation speed. This phenomenon is called rotating stall and is
usually associated with turbomachines having a substantial number
of blades (such as compressors). It has, however, also been reported in
centrifugal pumps. When the turbomachine cavitates the same phe-
nomenon may still occur, perhaps in some slightly altered form. Such
circumstances will be referred to as “rotating stall with cavitation.”
But there is also a different phenomenon which can occur in which
one or two blades manifest a greater degree of cavitation and this
“cell” propagates around the rotor in a manner superficially similar
to the propagation of rotating stall. This phenomenon is known as
“rotating cavitation.”

[A2] Surge is manifest in a turbomachine that is required to oper-
ate under highly loaded circumstances where the slope of the head
rise/flow rate curve is positive. It is a system instability to which the
dynamics of all the components of the system (reservoirs, valves, inlet
and suction lines and turbomachine) contribute. It results in pressure
and flow rate oscillations throughout the system. When cavitation is
present the phenomenon is termed “auto-oscillation” and can occur
even when the slope of the head rise/flow rate curve is negative.

[A3] Partial cavitation or supercavitation can become unstable when
the length of the cavity approaches the length of the blade so that the
cavity collapses in the region of the trailing edge. Such a circumstance
can lead to violent oscillations in which the cavity length oscillates
dramatically.

[A4] Line resonance occurs when one of the blade passing frequencies
in a turbomachine happens to coincide with one of the acoustic modes
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of the inlet or discharge line. The pressure oscillation magnitudes
associated with these resonances can often cause substantial damage.

[A5] It has been speculated that an axial balance resonance could
occur if the turbomachine is fitted with a balance piston (designed to
equalize the axial forces acting on the impeller) and if the resonant
frequency of the balance piston system corresponds with the rotating
speed or some blade passing frequency. Though there exist several
apocryphal accounts of such resonances, the phenomenon has yet to
be documented experimentally.

[A6] Cavitation noise can sometimes reach a sufficient amplitude to
cause resonance with structural frequencies of vibration.

[A7] The above items all assume that the turbomachine is fixed in
a non-accelerating reference frame. When this is not the case the
dynamics of the turbomachine may play a crucial role in generating
an instability that involves the vibration of that machine as a whole.
Such phenomena, of which the Pogo instabilities are, perhaps, the
best documented examples, are described further in section 8.13.

[B] Local Flow Oscillations. Several other vibration problems involve
more localized flow oscillations and vibration of the blades:

[B1] Blade flutter. As in the case of airfoils, there are circumstances
under which an individual blade may begin to flutter (or diverge)
as a consequence of the particular flow condition (incidence angle,
velocity), the stiffness of the blade, and its method of support.

[B2] Blade excitation due to rotor-stator interaction. While [B1] would
occur in the absence of excitation it is also true that there are a
number of possible mechanisms of excitation in a turbomachine that
can cause significant blade vibration. This is particularly true for a
row of stator blades operating just downstream of a row of impeller
blades or vice versa. The wakes from the upstream blades can cause a
serious vibration problem for the downstream blades at blade passing
frequency or some multiple thereof. Non-axisymmetry in the inlet, the
volute, or housing can also cause excitation of impeller blades at the
impeller rotation frequency.

[B3] Blade excitation due to vortex shedding or cavitation oscillations.
In addition to the excitation of [B2], it is also possible that vortex
shedding or the oscillations of cavitation could provide the excitation
for blade vibrations.

[C] Radial and Rotordynamic Forces. Global forces perpendicular to
the axis of rotation can generate several types of problem:
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[C1] Radial forces are forces perpendicular to the axis of rotation
caused by circumferential nonuniformities in the inlet flow, casing,
or volute. While these may be stationary in the frame of the pump
housing, the loads that act on the impeller and, therefore, the bear-
ings can be sufficient to create wear, vibration, and even failure of
the bearings.

[C2] Fluid-induced rotordynamic forces occur as the result of move-
ment of the axis of rotation of the impeller-shaft system of the turbo-
machine. Contributions to these rotordynamic forces can arise from
the seals, the flow through the impeller, leakage flows, or the flows
in the bearings themselves. Sometimes these forces can cause a re-
duction in the critical speeds of the shaft system, and therefore an
unforeseen limitation to its operating range. One of the common char-
acteristics of a fluid-induced rotordynamic problem is that it often
occurs at subsynchronous frequency.

Two of the subjects included in this list have a sufficiently voluminous
literature to merit separate chapters. Consequently, chapter 10 is devoted
to radial and rotordynamic forces, and chapter 9 to the subject of system
dynamic analysis and instabilities. The remainder of this chapter will briefly
describe some of the other unsteady problems encountered in liquid turbo-
machines.

Before leaving the issue of classification, it is important to emphasize that
many of the phenomena that cause serious vibration problems in turboma-
chines involve an interaction between two or more of the above mentioned
items. Perhaps the most widely recognized of these resonance problems is
that involving an interaction between blade passage excitation frequencies
and acoustic modes of the suction or discharge lines. But the literature
contains other examples. For instance, Dussourd (1968) describes flow os-
cillations which involve the interaction of rotating stall and acoustic line
frequencies. Another example is given by Marscher (1988) who investigated
a resonance between the rotordynamic motions of the shaft and the subsyn-
chronous unsteady flows associated with flow recirculation at the inlet to a
centrifugal impeller.

8.2 FREQUENCIES OF OSCILLATION

One of the diagnostics which is often, but not always, useful in addressing a
turbomachine vibration problem is to examine the dominant frequencies and
to investigate how they change with rotating speed. Table 8.1 is intended as a
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Table 8.1. Typical frequency ranges of pump vibration problems.

VIBRATION CATEGORY FREQUENCY RANGE

A2 Surge System dependent,
3 − 10 Hz in compressors

A2 Auto-oscillation System dependent, 0.1 − 0.4Ω
A1 Rotor rotating stall 0.5Ω− 0.7Ω
A1 Vaneless diffuser stall 0.05Ω− 0.25Ω
A1 Rotating cavitation 1.1Ω− 1.2Ω
A3 Partial cavitation oscillation < Ω
C1 Excessive radial force Some fraction of Ω
C2 Rotordynamic vibration Fraction of Ω when critical speed

is approached.
A4 Blade passing excitation ZRΩ/ZCF , ZRΩ, mZRΩ

(or B2) (in stator frame)
ZSΩ/ZCF , ZSΩ, mZSΩ

(in rotor frame)
B1 Blade flutter Natural frequencies of blade in liquid
B3 Vortex shedding Frequency of vortex shedding
A6 Cavitation noise 1 kHz − 20 kHz

rough guide to the kinds of frequencies at which the above problems occur.
We have attempted to place the phenomena in rough order of increasing
frequency partly in order to illustrate the fact that the frequencies can range
all the way from a few Hz up to tens of kHz. Some of the phenomena
scale with the impeller rotating speed, Ω. Others, such as surge, may vary
somewhat with Ω but not linearly; still others, like cavitation noise, will be
largely independent of Ω.

Of the frequencies listed in table 8.1, the blade passing frequencies need
some further clarification. We will denote the numbers of blades on an ad-
jacent rotor and stator by ZR and ZS , respectively. Then the fundamental
blade passage frequency in so far as a single stator blade is concerned is ZRΩ
since that stator blade will experience the passage of ZR rotor blades each
revolution of the rotor. Consequently, this will represent the fundamental
frequency of blade passage excitation insofar as the inlet or discharge lines
or the static structure is concerned. Correspondingly, ZSΩ is the fundamen-
tal frequency of blade passage excitation insofar as the rotor blades (or the
impeller structure) are concerned. However, the excitation is not quite as
simple as this for both harmonics and subharmonics of these fundamental
frequencies can often be important. Note first that, while the phenomenon
is periodic, it is not neccessarily sinusoidal, and therefore the excitation will
contain higher harmonics, mZRΩ and mZSΩ where m is an integer. But
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Figure 8.1. Typical spectra of vibration for a centrifugal pump (Impeller
X/Volute A) operating at 300 rpm (Chamieh et al. 1985).

more importantly, when the integers ZR and ZS have a common factor, say
ZCF , then, in the framework of the stator, a particular pattern of excita-
tion is repeated at the subharmonic, ZRΩ/ZCF , of the fundamental, ZRΩ.
Correspondingly, in the framework of the rotor, the structure experiences
subharmonic excitation at ZSΩ/ZCF . These subharmonic frequencies can be
more of a problem than the fundamental blade passage frequencies because
the fluid and structural damping is smaller for these lower frequencies. Con-
sequently, turbomachines are frequently designed with values of ZR and ZS

which have no common factors, in order to eliminate subharmonic excita-
tion. Further discussion of blade passage excitation frequencies is included
in section 8.8.

Before proceeding to a discussion of the specific vibrational problems out-
lined above, it may be valuable to illustrate the spectral content of the shaft
vibration of a typical centrifugal pump in normal, nominally steady opera-
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Figure 8.2. Typical frequency content of F1, F2, F3,M1,M2,M3 for Im-
peller X/Volute A for tests at 3000rpm, φ = 0.092, and I/J = 3/10. Note
the harmonics Ω, (J ± I)Ω/J and the blade passing frequency, 5Ω.

tion. Figure 8.1 presents examples of the spectra (for two frequency ranges)
taken from the shaft of the five-bladed centrifugal Impeller X operating in
the vaneless Volute A (no stator blades) at 300 rpm (5 Hz). Clearly the
synchronous vibration at the shaft fundamental of 5 Hz dominates the low
frequencies; this excitation may be caused by mechanical imperfections in
the shaft such as an imbalance or by circumferential nonuniformities in the
flow such as might be generated by the volute. It is also clear that the most
dominant harmonic of shaft frequency occurs at 5Ω because there are 5
impeller blades. Note, however, that there are noticeable peaks at 2Ω and
3Ω arising from significantly nonsinusoidal excitation at the shaft frequency,
Ω. The other dominant peaks labelled 1 → 4 represent structural resonant
frequencies unaffected by shaft rotational speed.

At higher rotational speeds, more coincidence with structural frequencies
occurs and the spectra contain more noise. However, interesting features can
still be discerned. Figure 8.2 presents examples, taken from Miskovish and
Brennen (1992), of the spectra for all six shaft forces and moments as mea-
sured in the rotating frame of Impeller X by the balance onto which that
impeller was mounted. F1, F2 are the two rotating radial forces, M1,M2 are
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the corresponding bending moments, F3 is the thrust and M3 is the torque.
In this example, the shaft speed is 3000 rpm (Ω = 100π rad/sec) and the
impeller is also being whirled at a frequency, ω = IΩ/J, where I/J = 3/10.
Note that there is a strong peak in all the forces and moments at the shaft
frequency, Ω, because of the steady radial forces caused by volute asymme-
try. Rotordynamic forces would be manifest in this rotating frame at the
beat frequencies (J ± I)Ω/J; note that the predominant rotordynamic ef-
fect occurs at the lower of these beat frequencies, (J − I)Ω/J. The moments
M1 and M2 are noisy because the line of action of the forces F1 and F2 is
close to the chosen axial location of the origin of the coordinate system, the
mid-point of the impeller discharge. Consequently, the magnitudes of the
moments are small. One of the more surprising features in this data is the
fact that the unsteady thrust contains a significant component at the blade
passing frequency, 5Ω. Miskovish and Brennen (1992) indicate that the mag-
nitude of this unsteady thrust is about 0.2 → 0.5% of the steady thrust and
that the peaks occur close to the times when blades pass the volute cutwater.
While this magnitude may not seem large, it could give rise to significant
axial vibration at the blade passing frequency in some applications.

8.3 UNSTEADY FLOWS

Many of the phenomena listed in section 8.1 require some knowledge of the
unsteady flows corresponding to the steady cascade flows discussed in sec-
tions 3.2 and 3.5. In the case of non-cavitating axial cascades, a large volume
of literature has been generated in the context of gas turbine engines, and
there exist a number of extensive reviews including those by Woods (1961),
McCroskey (1977), Mikolajczak et al. (1975) and Platzer (1978). Much of the
analytical work utilizes linear cascade theory, for example, Kemp and Sears
(1955), Woods (1955), Schorr and Reddy (1971), and Kemp and Ohashi
(1975). Some of this has been applied to the analysis of unsteady flows in
pumps and extended to cover the case of radial or mixed flow machines. For
example, Tsukamoto and Ohashi (1982) utilized these methods to model the
start-up transients in centifugal pumps and Tsujimoto et al. (1986) extended
the analysis to evaluate the unsteady torque in mixed flow machines.

However, most of the available methods are restricted to lightly loaded
cascades and impellers at low angles of incidence. Other, more complex, the-
ories (for example, Adamczyk 1975) are needed at larger angles of incidence
and for highly cambered cascades when there is a strong coupling between
the steady and unsteady flow (Platzer 1978). Moreover, most of the early
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theories were only applicable to globally uniform unsteady flows in which
the blades all move in unison. Samoylovich (1962) appears to have been the
first to consider oscillations with arbitrary interblade phase differences, the
kind of analysis needed for flutter investigations (see below).

When the incidence angles are large so that the blades stall, one must
resort to unsteady free streamline methods in order to model the flows
(Woods 1961). Apart from the work of Sisto (1967), very little analytical
work has been done on this problem which is of considerable importance in
the context of turbomachinery. One of the fluid mechanical complexities is
the unsteady or dynamic response of a separated flow that may lead to sig-
nificant departures from the sucession of events one might construct based
on a quasistatic approach. Some progress has been made in understanding
the “dynamic stall” for a single foil (see, for example, Ham 1968). How-
ever, it would appear that more work is needed to understand the complex
dynamic stall phenomena in turbomachines.

Unsteady free streamline analyses can be more confidentally applied to the
analysis of cavitating cascades because the cavity or free streamline pressure
is usually known and constant whereas the corresponding pressure for the
wake flows may be varying with time in a way that is difficult to predict.
Thus, for example, the unsteady response for a single supercavitating foil
(Woods 1957, Martin 1962, Parkin 1962) has been compared with exper-
imental measurements by Acosta and DeLong (1971). As an example, we
present (figure 8.3) some data from Acosta and DeLong on the unsteady
forces on a single foil undergoing heave oscillations at various reduced fre-
quencies, ω∗ = ωc/2U . The oscillating heave motion, d, is represented by

d = Re
{
d̃ejωt

}
(8.1)

where the complex quantity, d̃, contains the amplitude and phase of the
displacement. The resulting lift coefficient, CL, is decomposed (using the
notation of the next chapter) into

CL = C̄L +Re
{
C̃Lhe

jωt
}

(8.2)

and the real and imaginary parts of C̃Lh/ω∗ which are plotted in figure
8.3 represent the unsteady lift characteristics of the foil. It is particularly
important to note that substantial departures from quasistatic behaviour
occur for reduced frequencies as low as 0.2, though these departures are
more significant in the noncavitating flow than in the cavitating flow. The
lines without points in figure 8.3 present results for the corresponding linear
theories and we observe that the agreement between the theory and the
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Figure 8.3. Fluctuating lift coefficient, C̃Lh, for foils undergoing heave
oscillations at a reduced frequency, ω∗ = ωc/U . Real and imaginary parts
of C̃Lh/ω

∗ are presented for (a) non-cavitating flow at mean incidence
angles of 0◦ and 6◦ (b) cavitating data for a mean incidence of 8◦, for very
long choked cavities (�) and for cavities 3 chords in length (�). Adapted
from Acosta and DeLong (1971).

experiments is fairly good. Notice also that the Re{−C̃Lh} for noncavitating
foils is negative at low frequencies but becomes positive at larger ω whereas
the values in the cavitating case are all positive. Similar data for cavitating
cascades would be necessary in order to analyse the potential for instability
in cavitating, axial flow pumps. The author is not aware of any such data
or analysis.

The information is similarly meagre for all of the corresponding dynamic
characteristics of radial rather than axial cascades and, consequently, our
ability to model dynamic instabilities in centrifugal pumps is very limited
indeed.
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8.4 ROTATING STALL

Rotating stall is a phenomenon which may occur in a cascade of blades when
these are required to operate at a high angle of incidence close to that at
which the blades will stall. In a pump this usually implies that the flow rate
has been reduced to a point close to or below the maximum in the head
characteristic (see, for example, figures 7.5 and 7.6). Emmons et al. (1955)
first provided a coherent explanation of propagating stall. The cascade in
figure 8.4 will represent a set of blades (a rotor or a stator) operating at
a high angle of incidence. Then, if blade B were stalled, this generates a
separated wake and therefore increased blockage to the flow in the passage
between blades B and A. This, in turn, would tend to deflect the flow away
from this blockage in the manner indicated in the figure. The result would be
an increase in the angle of incidence on blade A and a decrease in the angle
of incidence on blade C. Thus, blade A would tend to stall while any stall on
blade C would tend to diminish. Consequently, the stall “cell” would tend to
move upwards in the figure or in a direction away from the oncoming flow.
Of course, the stall cell could consist of a larger number of blades with more
than one exhibiting increased separation or stall. The stall cell will rotate
around the axis and hence the name “rotating stall.” Moreover, the speed of
propagation will clearly be some fraction of the circumferential component

Figure 8.4. Schematic of a stall cell in rotating stall or rotating cavitation.
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of the relative velocity, either vθ1 in the case of a stator or wθ1 in the case
of a rotor. Consequently, in the case of a rotor, the stall rotates in the same
direction as the rotor but with 50-70% of the rotor angular velocity.

In distinguishing between rotating stall and surge, it is important to note
that the disturbance depicted in figure 8.4 does not necessarily imply any
oscillation in the total mass flow rate through the turbomachine. Rather it
implies a redistribution of that flow. On the other hand, it is always possible
that the perturbation caused by rotating stall could resonate with, say, one
of the acoustic modes in the inlet or discharge lines, in which case significant
oscillation of the mass flow rate could occur.

While rotating stall can occur in any turbomachine, it is most frequently
observed and most widely studied in compressors with large numbers of
blades. Excellent reviews of this literature have been published by Emmons
et al. (1959) and more recently by Greitzer (1981). Both point to a body of
work designed to predict both the onset and consequences of rotating stall.
A useful approximate criterion is that rotating stall in the rotor occurs when
one approaches a maximum in the total head rise as the flow coefficient de-
creases. This is, however, no more than a crude approximation and Greitzer
(1981) quotes a number of cases in which rotating stall occurs while the
slope of the performance curve is still negative. A more sophisticated crite-
rion that is widely used is due to Leiblein (1965), and involves the diffusion
factor, Df , defined previously in equation 3.20. Experience indicates that
rotating stall may begin when Df is increased to a value of about 0.6.

Though most of the observations of rotating stall have been made for
axial compressors, Murai (1968) observed and investigated the phenomenon
in a typical axial flow pump with 18 blades, a hub/tip radius ratio of 0.7,
a tip solidity of 1.15, and a tip blade angle of 20◦. His data on the rotating
speed of the stall cell are reproduced in figure 8.5. Note that the onset of
the rotating stall phenomenon occurs when the flow rate is reduced to a
point below the maximum in the head characteristic. Notice also that the
stall cell propagation velocities have typical values between 0.45 and 0.6 of
the rotating speed. Rotating stall has not, however, been reported in pumps
with a small number of blades perhaps because Df will not approach 0.6 for
typical axial pumps or inducers with a small number of blades. Most of the
stability theories (for example, Emmons et al. 1959) are based on actuator
disc models of the rotor in which it is assumed that the stall cell is much
longer than the distance between the blades. Such an assumption would not
be appropriate in an axial flow pump with three or four blades.

Murai (1968) also examined the effect of limited cavitation on the rotating
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Figure 8.5. The head characteristic for an 18-bladed axial flow pump
along with the measurements of the propagation velocity of the rotat-
ing stall cell relative to the shaft speed. Adapted from Murai (1968).
Data is shown for three different inlet pressures. Flow and head scales
are dimensionless.

stall phenomenon and observed that the cavitation did cause some alteration
in the propagation speed as illustrated by the changes with inlet pressure
seen in figure 8.5. It is, however, important to emphasize the difference
between the phenomenon observed by Murai in which cavitation is secondary
to the rotating stall and the phenomenon to be discussed below, namely
rotating cavitation, which occurs at a point on the head-flow characteristic
at which the slope is negative and stable, and at which rotating stall would
not occur.

Turning now to centrifugal pumps, there have been a number of studies
in which rotating stall has been observed either in the impeller or in the
diffuser/volute. Hergt and Benner (1968) observed rotating stall in a vaned
diffuser and conclude that it only occurs with some particular diffuser ge-
ometries. Lenneman and Howard (1970) examined the blade passage flow
patterns associated with rotating stall and present data on the ratio, ΩRS/Ω,
of the propagation velocity of the stall cell to the impeller speed, Ω. They
observed ratios ranging from 0.54 to 0.68 with, typically, lower values of the
ratio at lower impeller speeds and at higher flow coefficients.

Perhaps the most detailed study is the recent research of Yoshida et al.
(1991) who made the following observations on a 7-bladed centrifugal im-
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peller operating with a variety of diffusers, with and without vanes. Rotating
stall with a single cell was observed to occur in the impeller below a cer-
tain critical flow coefficient which depended on the diffuser geometry. In the
absence of a diffuser, the cell speed was about 80 − 90% of the impeller ro-
tating speed; with diffuser vanes, this cell speed was reduced to the range
50 − 80%. When impeller rotating stall was present, they also detected the
presence of some propagating disturbances with 2, 3 and 4 cells rather than
one. These are probably due to nonlinearities and an interaction with blade
passage excitation. Rotating stall was also observed to occur in the vaned
diffuser with a speed less than 10% of the impeller speed. It was most evident
when the clearance between the impeller and diffuser vanes was large. As
this clearance was decreased, the diffuser rotating stall tended to disappear.

Even in the absence of blades, it is possible for a diffuser or volute to
exhibit a propagating rotating “stall”. Jansen (1964) and van der Braem-
bussche (1982) first described this flow instability and indicate that the flow
pattern propagates with a speed in the range of 5 − 25% of the impeller
speed. Yoshida et al. (1991) observed a four-cell rotating stall in their vane-
less diffusers over a large range of flow coefficients and measured its velocity
as about 20% of the impeller speed.

Finally, we note that rotating stall may resonate with an acoustic mode
of the inlet or discharging piping to produce a serious pulsation problem.
Dussourd (1968) identified such a problem in a boiler feed system in which
the rotating stall frequency was in the range 0.15Ω → 0.25Ω, much lower
than usual. He also made use of the frequency domain methods of chapter 9
in modelling the dynamics of this multistage centrifugal pump system. This
represents a good example of one of the many hybrid problems that can
arise in systems with turbomachines.

8.5 ROTATING CAVITATION

Inducers or impellers in pumps that do not show any sign of rotating stall
while operating under noncavitating conditions may exhibit a superficially
similar phenemenon known as “rotating cavitation” when they are required
to operate at low cavitation numbers. However, it is important to emphasize
the fundamental difference in the two phenomena. Rotating stall occurs at
locations along the head-flow characteristic at which the blades may stall,
usually at flow rates for which the slope of the head/flow characteristic is
positive and therefore unstable in the sense discussed in the next section. On
the other hand, rotating cavitation is observed to occur at locations where
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Figure 8.6. Occurrence of rotating cavitation and auto-oscillation in the
performance of the cavitating inducer tested by Kamijo et al. (1977).

the slope is negative. These would normally be considered stable operating
points in the absence of cavitation. Consequently, the dynamics of the cav-
itation are essential to rotating cavitation. Another difference between the
phenomena is the difference in the propagating speeds.

Rotating cavitation was first explicitly identified by Kamijo, Shimura and
Watanabe (1977) (see also 1980), though some evidence of it can be seen in
the shaft vibration measurements of Rosemann (1965). When it has been
observed, rotating cavitation generally occurs when the cavitation number,
σ, is reduced to a value at which the head is beginning to be affected by
the cavitation as seen in figure 8.6 taken from Kamijo et al. (1977). Rosen-
mann (1965) reported that the vibrations (that we now recognize as rotating
cavitation) occurred for cavitation numbers between 2 and 3 times the break-
down value and were particularly evident at the lower flow coefficients at
which the inducer was more heavily loaded.

Usually, further reduction of σ below the value at which rotating cavita-
tion occurs will lead to auto-oscillation or surge (see below and figure 8.6).
It is not at all clear why some inducers and impellers do not exhibit rotating
cavitation at all but proceed directly to auto-oscillation if that instability is
going to occur.

Unlike rotating stall whose rotational velocities are less than that of the
rotor, rotating cavitation is characterized by a propagating velocity that is
slightly larger than the impeller speed. Kamijo et al. (1977) (see also Kamijo
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et al. 1992) observed propagating velocities ΩRC/Ω ≈ 1.15, and this is very
similar to one of the somewhat ambigous propagating disturbance velocities
of 1.1Ω reported by Rosemann (1965).

Recently, Tsujimoto et al. (1992) have utilized the methods of chapter 9 to
model the dynamics of rotating cavitation. They have shown that the cavi-
tation compliance and mass flow gain factor (see section 9.14) play a crucial
role in determining the instability of rotating cavitation in much the same
way as these parameters influence the stability of an entire system which
includes a cavitating pump (see section 8.7). Also note that the analysis of
Tsujimoto et al. (1992) predicts supersynchronous propagating speeds in the
range ΩRC/Ω = 1.1 to 1.4, consistent with the experimental observations.

8.6 SURGE

Surge and auto-oscillation (see next section) are system instabilities that
involve not just the characteristics of the pump but those of the rest of
the pumping system. They result in pressure and flow rate oscillations that
can not only generate excessive vibration and reduce performance but also
threaten the structural integrity of the turbomachine or other components
of the system. In chapter 9 we provide more detail on general analytical ap-
proaches to this class of system instabilities. But for present purposes, it is
useful to provide a brief outline of some of the characteristics of these system
instabilities. To do so, consider first figure 8.7(a) in which the steady-state
characteristic of the pump (head rise versus mass flow rate) is plotted to-
gether with the steady-state characteristic of the rest of the system to which
the pump is connected (head drop versus mass flow rate). In steady-state op-
eration the head rise across the pump must equal the head drop for the rest
of the system, and the flow rates must be the same so that the combination
will operate at the intersection, O. Consider, now, the response to a small
decrease in the flow to a value just below this equilibrium point, O. Pump A
will then produce more head than the head drop in the rest of the system,
and this discrepancy will cause the flow rate to increase, causing a return to
the equilibrium point. Therefore, because the slope of the characteristic of
Pump A is less than the slope of the characteristic of the rest of the system,
the point O represents a quasistatically stable operating point. On the other
hand, the system with Pump B is quasistatically unstable. Perhaps the best
known example of this kind of instability occurs in multistage compressors
in which the characteristics generally take the shape shown in figure 8.7(b).
It follows that the operating point A is stable, point B is neutrally stable,
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Figure 8.7. Quasistatically stable and unstable operation of pumping systems.

and point C is unstable. The result of the instability at points such as C is
the oscillation in the pressure and flow rate known as “compressor surge.”

While the above description of quasistatic stability may help in visualizing
the phenomenon, it constitutes a rather artificial separation of the total sys-
tem into a “pump” and “the rest of the system.” A more general analytical
perspective is obtained by defining a resistance, R∗

i , for each of the series
components of the system (one of which would be the pump) distinguished
by the subscript, i:

R∗
i =

d(ΔH)
dm

(8.3)

where ΔH is the quasistatic head drop across that component (inlet head
minus discharge head) and is a function of the mass flow rate, m. By this
definition, the slope of the pump characteristic in figure 8.7(a) is −R∗

PUMP ,
and the slope of the characteristic of the rest of the system is R∗

SY STEM . It
follows that the earlier established criterion for stability is equivalent to∑

i

R∗
i > 0 (8.4)

In other words, the system is quasistatically stable if the total system resis-
tance is positive.

Perhaps the most satisfactory interpretation of the above formulation is
in terms of the energy balance of the total system. The net flux of energy
out of each of the elements of the system is m(ΔH)i. Consequently, the net
energy flux out of the system is

m
∑

i

(ΔH)i = 0 (8.5)
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which is zero at a steady state operating point.
Suppose the stability of the system is now explored by inserting somewhere

in the system a hypothetical perturbing device which causes an increase in
the flow rate by dm. Then the new net energy flux out of the system, E∗, is
given by

E∗ = dm

⎡
⎣∑

i

(ΔHi) +m

d
∑
i

(ΔHi)

dm

⎤
⎦ (8.6)

= m dm
∑

i

R∗
i (8.7)

where the relations 8.3 and 8.5 have been used. The quantity E∗ could be
interpreted as the energy flux that would have to be supplied to the system
through the hypothetical device in order to reestablish equilibrium. Clearly,
then, if the required energy flux, E∗, is positive, the original system is stable.
Therefore the criterion 8.4 is the correct condition for stability.

All of the above is predicated on the changes to the system being suffi-
ciently slow for the pump and the system to follow the steady state operat-
ing curves. Thus the analysis is only applicable to those instabilities whose
frequencies are low enough to lie within some quasistatic range. At higher
frequency, it is necessary to include the inertia and compressibility of the
various components of the flow. Greitzer (1976) (see also 1981) has devel-
oped such models for the prediction of both surge and rotating stall in axial
flow compressors.

It is important to observe that, while quasisteady instabilities will cer-
tainly occur when

∑
i
R∗

i < 0, there may be other dynamic instabilities that

occur even when the system is quasistatically stable. One way to view this
possibility is to recognize that the resistance of any flow is frequently a com-
plex function of frequency once a certain quasisteady frequency has been
exceeded. Consequently, the resistances, R∗

i , may be different at frequencies
above the quasistatic limit. It follows that there may be operating points at
which the total dynamic resistance over some range of frequencies is nega-
tive. Then the system would be dynamically unstable even though it may
still be quasistatically stable. Such a description of dynamic instability is in-
structive but overly simplistic and a more systematic approach to this issue
must await the methodologies of chapter 9.

177



8.7 AUTO-OSCILLATION

In many installations involving a pump that cavitates, violent oscillations
in the pressure and flow rate in the entire system occur when the cavita-
tion number is decreased to values at which the head rise across the pump
begins to be affected (Braisted and Brennen 1980, Kamijo et al. 1977, Sack
and Nottage 1965, Natanzon et al. 1974, Miller and Gross 1967, Hobson and
Marshall 1979). These oscillations can also cause substantial radial forces
on the shaft of the order of 20% of the axial thrust (Rosenmann 1965). This
surge phenomenon is known as auto-oscillation and can lead to very large
flow rate and pressure fluctuations in the system. In boiler feed systems,
discharge pressure oscillations with amplitudes as high as 14 bar have been
reported informally. It is a genuinely dynamic instability in the sense de-
scribed in the last section, for it occurs when the slope of the pump head
rise/flow rate curve is still strongly negative. Another characteristic of auto-
oscillation is that it appears to occur more readily when the inducer is more
heavily loaded; in other words at lower flow coefficients. These are also the
circumstances under which backflow will occur. Indeed, Badowski (1969)
puts forward the hypothesis that the dynamics of the backflow are respon-
sible for cavitating inducer instability. Further evidence of this connection

Figure 8.8. Data from Braisted and Brennen (1980) on the ratio of the
auto-oscillation frequency to the shaft frequency as a function of the latter
for a 9◦ helical inducer operating at a cavitation number of 0.02 and a flow
coefficient of 0.055.
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Figure 8.9. Data from Braisted and Brennen (1980) on the ratio of the
frequency of auto-oscillation to the frequency of shaft rotation for several
inducers: SSME Low Pressure LOX Pump models: 7.62 cm diameter: ×
(9000 rpm) and + (12000 rpm), 10.2 cm diameter: ◦ (4000 rpm) and �
(6000 rpm); 9◦ helical inducers: 7.58 cm diameter: ∗ (9000 rpm): 10.4 cm
diameter: � (with suction line flow straightener) and 	 (without suction
line flow straightener). The flow coefficients, φ1, are as labelled.

is provided by Hartmann and Soltis (1960) but with an atypical inducer
that has 19 blades. It is certainly the case that the limit cycle associated
with a strong auto-oscillation appears to involve large periodic oscillations
in the backflow. Consequently, it would seem that any nonlinear model pur-
porting to predict the magnitude of auto-oscillation should incorporate the
dynamics of the backflow. While most of the detailed investigations have
focussed on axial pumps and inducers, Yamamoto (1991) has observed and
investigated auto-oscillation occurring in cavitating centrifugal pumps. He
also noted the important role played by the backflow in the dynamics of the
auto-oscillation.

Unlike compressor surge, the frequency of auto-oscillation, ΩA, usually
scales with the shaft speed of the pump. Figure 8.8 demonstrates this by
plotting ΩA/Ω against the shaft rpm (60Ω/2π) for a particular helical in-
ducer. Figure 8.9 (also from Braisted and Brennen 1980) shows how this
reduced auto-oscillation frequency, ΩA/Ω, varies with flow coefficient, φ,
cavitation number, σ, and impeller geometry. While still noting that the
frequency, ΩA, will, in general, be system dependent, nevertheless the ex-
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Figure 8.10. Data from Yamamoto (1991) on the ratio of the frequency of
auto-oscillation to the frequency of shaft rotation for a centrifugal pump.
Data is shown for three different lengths of suction pipe: ◦ (2.7 m), 	
(4.9 m) and � (7.1 m). Regions of instability are indicated by the hatched
lines.

pression

ΩA/Ω = (2σ)
1
2 (8.8)

appears to provide a crude estimate of the auto-oscillation frequency.
Some data from Yamamoto (1991) on the frequencies of auto-oscillation

of a cavitating centrifugal pump are presented in figure 8.10. This data
exhibits a dependence on the length of the suction pipe that reinforces the
understanding of auto-oscillation as a system instability. The figure also
shows the limits of instability observed by Yamamoto; these are unusual in
that there appear to be two separate regions or zones of instability. Finally,
it is clear that the data of figures 8.9 and 8.10 show a similar dependence
of the auto-oscillation frequency on the cavitation number, σ, though the
magnitudes of σ differ considerably. However, it is likely that the relative
sizes of the cavities are similiar in the two cases, and therefore that the
correlation between the auto-oscillation frequency and the relative cavity
size might be closer than the correlation with cavitation number.

As previously stated, auto-oscillation occurs when the region of cavita-
tion head loss is approached as the cavitation number is decreased. Figure
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Figure 8.11. Cavitation performance of the SSME low pressure LOX
pump model, Impeller IV, showing the onset and approximate desinence of
the auto-oscillation at 6000 rpm (from Braisted and Brennen 1980).

8.11 provides an example of the limits of auto-oscillation taken from the
work of Braisted and Brennen (1980). However, since the onset is even more
dependent than the auto-oscillation frequency on the detailed dynamic char-
acteristics of the system, it would not even be wise to quote any approximate
guideline for onset. Our current understanding is that the methodologies of
chapter 9 are essential for any prediction of auto-oscillation.

It should be noted that chapter 9 describes linear perturbation models
that can predict the limits of oscillation but not the amplitude of the os-
cillation once it occurs. There do not appear to be any accepted analytical
models that can make this important prediction. Furthermore, the energy
dissipated in the large amplitude oscillations within the pump can lead to a
major change in the mean (time averaged) performance of the pump. One
example of the effect of auto-oscillation on the head rise across a cavitating
inducer is shown in figure 8.12 (from Braisted and Brennen 1980) which con-
tains cavitation performance curves for three flow coefficients. The sequence
of events leading to these results was as follows. For each flow rate, the cav-
itation number was decreased until the onset of auto-oscillation at the point
labelled A, when the head immediately dropped to the point B (an un-
avoidable change in the pump inlet pressure and therefore in σ would often
occur at the same time). Increasing the cavitation number again would not
immediately eliminate the auto-oscillation. Instead the oscillations would
persist until the cavitation number was raised to the value at the point
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Figure 8.12. Data from a helical inducer illustrating the decrease in head
with the onset of auto-oscillation (A→ B) and the auto-oscillation hys-
teresis occurring with subsequent increase in σ (from Braisted and Brennen
1980).

C where the disappearance of auto-oscillation would cause recovery to the
point D. This set of experiments demonstrate (i) that under auto-oscillation
conditions (B,C) the head rise across this particular inducer was about half
of the head rise without auto-oscillation (A,D) and (ii) that a significant
auto-oscillation hysteresis exists in which the auto-oscillation inception and
desinence cavitation numbers can be significantly different. Neither of these
nonlinear effects can be predicted by the frequency domain methods of chap-
ter 9. In other inducers, the drop in head with the onset of auto-oscillation is
not as large as in figure 8.12 but it is still present; it has also been reported
by Rosenmann (1965). This effect may account for the somewhat jagged
form of the cavitation characteristic as breakdown is approached.

8.8 ROTOR-STATOR INTERACTION:
FLOW PATTERNS

In section 8.2, we described the two basic frequencies of rotor-stator inter-
action: the excitation of the stator flow at ZRΩ and the excitation of the
rotor flow at ZSΩ. Apart from the superharmonics mZRΩ and mZSΩ that
are generated by nonlinearities, subharmonics can also occur. When they
do they can cause major problems, since the fluid and structural damping
is smaller for these lower frequencies. To avoid such subharmonics, turbo-
machines are usually designed with blade numbers, ZR and ZS , which have
small integer common factors.
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Figure 8.13. Encounter diagram for rotor-stator interaction in a turbo-
machine with ZR = 6, ZS = 7. Each row is for a specific stator blade and
time runs horizontally covering one revolution as one proceeds from left to
right. Encounters between a rotor blade and a stator blade are marked by
an 0.

Figure 8.14. Encounter diagram for rotor-stator interaction in a turbo-
machine with ZR = 6, ZS = 16.

The various harmonics of blade passage excitation can be visualized by
generating an “encounter” (or interference) diagram that is a function only
of the integers ZR and ZS. In these encounter diagrams, of which figures 8.13
and 8.14 are examples, each of the horizontal lines represents the position
of a particular stator blade. The circular geometry has been unwrapped so
that a passing rotor blade proceeds from top to bottom as it rotates past
the stator blades. Each vertical line represents a moment in time, the pe-
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riod covered being one complete revolution of the rotor beginning at the
far left and returning to that moment on the far right. Within this frame-
work, the moment and position of all the rotor-stator blade encounters are
shown by an “0.” Such encounter diagrams allow one to examine the various
frequencies and patterns generated by rotor-stator interactions and this is
perhaps best illustrated by referring to the examples of figure 8.13 for the
case of ZR = 6, ZS = 7, and figure 8.14 for the case of ZR = 6, ZS = 16.
First, one can always follow the diagonal progress of individual rotor blades
as indicated by lines such as those marked 1Ω in the examples. But other
diagonal lines are also evident. For example, in figure 8.13 the perturba-
tion consisting of a single cell, and propagating in the reverse direction at
6Ω is strongly indicated. Parenthetically we note that, in any machine in
which ZS = ZR + 1, a perturbation with a reverse speed of −ZRΩ is always
present. Also in figure 8.14, there are quite strong lines indicating an en-
counter pattern rotating at 9Ω and consisting of two diametrically opposite
cells. Other propagating disturbance patterns are also suggested by figure
8.14. For example, the backward propagating disturbance rotating at 3Ω in
the reverse direction and consisting of four equally spaced perturbation cells
is indicated by the lines marked −3Ω. It is, of course, possible to connect up

Figure 8.15. The propagation of a low pressure region (hatched) at nine
times the impeller rotational speed in the flow through a high head pump-
turbine. The sketches show six instants in time equally spaced within one
sixth of a revolution. Made from videotape provided by Miyagawa et al.
(1992).
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the encounter points in a very large number of ways, but clearly only those
disturbances with a large number of encounters per cycle (high “density”)
will generate a large enough flow perturbation to be significant. However,
among the top two or three possibilities, it is not necessarily a simple matter
to determine which will manifest itself in the actual flow. That requires more
detailed analysis of the flow.

The flow perturbations caused by blade passage excitation are nicely il-
lustrated by Miyagawa et al. (1992) in their observations of the flows in
high head pump turbines. One of the cases they explored was that of fig-
ure 8.14, namely ZR = 6, ZS = 16. Figure 8.15 has been extracted from the
videotape of their unsteady flow observations and shows two diametrically
opposite perturbation cells propagating around at 9 times the impeller ro-
tating speed, one of the “dense” perturbation patterns predicted by the
encounter diagram of figure 8.14.

8.9 ROTOR-STATOR INTERACTION:
FORCES

When one rotor (or stator) blade passes through the wake of an upstream
stator (or rotor) blade, it will clearly experience a fluctuation in the fluid
forces that act upon it. In this section, the nature and magnitude of these
rotor-stator interaction forces will be explored. Experience has shown that
these unsteady forces are a strong function of the gap between the locus of
the trailing edge of the upstream blade and the locus of the leading edge of
the downstream blade. This distance will be termed the interblade spacing,
and will be denoted by cb.

Most axial compressors and turbines operate with fairly large interblade
spacings, greater than 10% of the blade chord. As a result, the unsteady flows
and forces measured under these circumstances (Gallus 1979, Gallus et al.
1980, Dring et al. 1982, Iino and Kasai 1985) are substantially smaller than
those measured for radial machines (such as centrifugal pumps) in which the
interblade spacing between the impeller and diffuser blades may be only a
few percent of the impeller radius. Indeed, structural failure of the leading
edge of centrifugal diffuser blades is not uncommon in the industry, and is
typically solved by increasing the interblade spacing, though at the cost of
reduced hydraulic performance.

Several early investigations of rotor-stator interaction forces were carried
out using single foils in a wind tunnel (for example, Lefcort 1965). However,
Gallus et al. (1980) appear to have been the first to measure the unsteady
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Figure 8.16. Pressure distributions on a diffuser blade at two different
instants during the passage of an impeller blade. Data for an interblade
spacing of 1.5% and φ2 = 0.12 (from Arndt et al. 1989).

flows and forces due to rotor-stator interaction in an axial flow compressor.
They attempt to collate their measurements with the theoretical analyses
of Kemp and Sears (1955), Meyer (1958), Horlock (1968) and others. The
measurements were conducted with large interblade spacing to axial chord
ratios of about 50%, and involved documentation of the blade wakes. The
impingement of these wakes on the following row of blades causes pressure
fluctuations that are largest on the forward suction surface and small near
the trailing edge of those blades. These pressure fluctuations lead to a fluc-
tuation in the lift coefficient of ±0.06. Moreover, Gallus et al. (1980) show
that the forces vary roughly inversely with the interblade spacing to axial
chord ratio. Extrapolation would suggest that the unsteady and steady com-
ponents of the lift might be roughly the same if this ratio were decreased
to 5%. This estimate is confirmed by the measurements of Arndt et al., de-
scribed below. Before concluding this discussion of rotor-stator interaction
forces in axial flow machines, we note that Dring et al. (1982) have examined
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Figure 8.17. Magnitude of the fluctuation in the coefficient of pressure
on a diffuser blade during the passage of an impeller blade as a function
of location on the diffuser blade surface for two interblade spacings (from
Arndt et al. 1989).

the flows and forces for an interblade spacing to axial chord ratio of 0.35
and obtained results similar to those of Gallus et al..

Recently, Arndt et al. (1989, 1990) (see also Brennen et al. 1988) have
made measurements of the unsteady pressures and forces that occur in a ra-
dial flow machine when an impeller blade passes a diffuser blade. Figure 8.16
presents instantaneous pressure distributions (ensemble-averaged over many
revolutions) for two particular relative positions of the impeller and diffuser
blades. In the upper graph the trailing edge of the impeller blade has just
passed the leading edge of the diffuser blade, causing a large perturbation
in the pressure on the suction surface of the diffuser blade. Indeed, in this
example, the pressure over a small region has fallen below the impeller inlet
pressure (Cp < 0). The lower graph is the pressure distribution at a later
time when the impeller blade is about half-way to the next diffuser blade.
The perturbation in the diffuser blade pressure distribution has largely dis-
sipated. Closer examination of the data suggests that the perturbation takes
the form of a wave of negative pressure traveling along the suction surface
of the diffuser blade and being attenuated as it propagates. This and other
observations suggest that the cause is a vortex shed from the leading edge
of the diffuser blade by the passage of the trailing edge of the impeller. This
vortex is then convected along the suction surface of the diffuser blade.

The difference between the maximum and minimum pressure coefficient,
ΔCp, experienced at each position on the surface of a diffuser blade is plotted
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Figure 8.18. Variation in the instantaneous lift coefficient for a diffuser
blade. The position of the diffuser blade leading edge relative to the impeller
blade trailing edge is also shown. The data is for an interblade spacing of
4.5% (from Arndt et al. 1989).

as a function of position in figure 8.17. Data is shown for two interblade spac-
ings, cb = 0.015RT 2 and 0.045RT 2. This figure reiterates the fact that the
pressure perturbations are largest on the suction surface just downstream
of the leading edge. It also demonstrates that the pressure perturbations
for the 1.5% interblade spacing are about double those for the 4.5% in-
terblade spacing. Figure 8.17 was obtained at a particular flow coefficient
of φ2 = 0.12; however, the same phenomena were encountered in the range
0.05 < φ2 < 0.15, and the magnitude of the pressure perturbation showed
an increase of about 50% between φ2 = 0.05 and φ2 = 0.15.

Given both the magnitude and phase of the instantaneous pressures on
the surface of a diffuser blade, the result may be integrated to obtain the
instantaneous lift, L, on the diffuser blade. Here the lift coefficient is defined
as CL = L/1

2ρΩ
2R2

T 2cb where L is the force on the blade perpendicular to
the mean chord, c is the chord, and b is the span of the diffuser blade. Time
histories of CL are plotted in figure 8.18 for three different flow coefficients
and an interblade spacing of 4.5%. Since the impeller blades consisted of
main blades separated by partial blades, two ensemble-averaged cycles are
shown for CL though the differences between the passage of a full blade and
a partial blade are small. Notice that even for the larger 4.5% interblade
spacing, the instantaneous lift can be as much as three times the mean
lift. Consequently, a structural design criterion based on the mean lift on
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Figure 8.19. Magnitude of the fluctuations in the pressure coefficient at
three locations near the trailing edge of an impeller blade during the passage
of a diffuser blade (from Arndt et al. 1990).

the blades would be seriously flawed. Indeed, in this case it is clear that the
principal structural consideration should be the unsteady lift, not the steady
lift.

Arndt et al. (1990) also examined the unsteady pressures on the upstream
impeller blades for a variety of diffusers. Again, large pressure fluctuations
were encountered as a result of rotor-stator interaction. Typical results are
shown in figure 8.19 where the magnitude of the pressure fluctuations is
presented as a function of flow coefficient for three different locations on
the surface of an impeller blade: (i) on the flat of the trailing edge, (ii) on
the suction surface at r/RT 2 = 0.937, and (iii) on the pressure surface at
r/RT 2 = 0.987. The data are for a 5% interblade spacing and all data points
represent ensemble averages. The magnitudes of the fluctuations are of the
same order as the pressure fluctuations on the diffuser blades, indicating that
the unsteady loads on the upstream blade in rotor-stator interaction can also
be substantial. Note, however, that contrary to the trend with the diffuser
blades, the magnitude of the pressure fluctuations decrease with increasing
flow coefficient. Finally, note that the magnitude of the pressure fluctuations
are as large as the total head rise across the pump. This raises the possibility
of transient cavitation being caused by rotor-stator interaction.

Considering the magnitude of these rotor-stator interaction effects, it is
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surprising that there is such a limited quantity of data available on the
unsteady forces.

8.10 DEVELOPED CAVITY
OSCILLATION

There are several circumstances in which developed cavities can exhibit self-
sustained oscillations in the absence of any external excitation. One of these
is the instability associated with a partial cavity whose length is approx-
imately equal to the chord of the foil. Experimentally, it is observed that
when the cavitation number is decreased to the level at which the attached
partial cavity on a single hydrofoil approaches about 0.7 of the chord, c,
of the foil, the cavity will begin to oscillate violently (Wade and Acosta
1966). It will grow to a length of about 1.5c, at which point the cavity will
be pinched off at about 0.5c, and the separated cloud will collapse as it is
convected downstream. This collapsing cloud of bubbles carries with it shed
vorticity, so that the lift on the foil oscillates at the same time. This phe-
nomenon is called “partial cavitation oscillation.” It persists with further
decrease in cavitation number until a point is reached at which the cavity
collapses at some critical distance downstream of the trailing edge that is
usually about 0.3c. For cavitation numbers lower than this, the flow again
becomes quite stable. The frequency of partial cavitation oscillation on a
single foil is usually less than 0.1U/c, where U is the velocity of the on-
coming stream, and c is the chord length of the foil. In cascades or pumps,
supercavitation is usually only approached in machines of low solidity, but,
under such circumstances, partial cavitation oscillation can occur, and can
be quite violent. Wade and Acosta (1966) were the first to observe par-
tial cavitation oscillation in a cascade. During another set of experiments
on cavitating cascades, Young, Murphy, and Reddcliff (1972) observed only
“random unsteadiness of the cavities.”

One plausible explanation for this partial cavitation instability can be
gleaned from the free streamline solutions for a cavitating foil that were
described in section 7.8. The results from equations 7.9 to 7.12 can be used to
plot the lift coefficient as a function of angle of attack for various cavitation
numbers, as shown in figure 8.20. The results from both the partial cavitation
and the supercavitation analyses are shown. Moreover, we have marked with
a dotted line the locus of those points at which the supercavitating solution
yields dCL/dα = 0; it is easily shown that this occurs when � = 4c/3. We
have also marked with a dotted line the locus of those points at which the

190



Figure 8.20. The lift coefficient for a flat plate from the partial cavitation
analysis of Acosta (1955) (dashed lines) and the supercavitating analysis
of Tulin (1953) (solid lines); CL is shown as a function of angle of attack,
α, for several cavitation numbers, σ. The dotted lines are the boundaries
of the region in which the cavity length is between 3/4 and 4/3 of a chord,
and in which dCL/dα < 0.

partial cavitation solution yields dCL/dα = ∞; it can also be shown that
this occurs when � = 3c/4. Note that these dotted lines separate regions for
which dCL/dα > 0 from that region in which dCL/dα < 0. Heuristically, it
could be argued that dCL/dα < 0 implies an unstable flow. It would follow
that the region between the dotted lines in figure 8.20 represents a regime
of unstable operation. The boundaries of this regime are 3

4 <
�
c <

4
3 , and do,

indeed, seem to correspond quite closely to the observed regime of unstable
cavity oscillation (Wade and Acosta 1966).

A second circumstance in which a fully developed cavity may exhibit
natural oscillations occurs when the cavity is formed by introducing air to
the wake of a foil in order to form a “ventilated cavity.” When the flow rate
of air exceeds a certain critical level, the cavity may begin to oscillate, large
pockets of air being shed at the rear of the main cavity during each cycle
of oscillation. This problem was studied by Silberman and Song (1961) and
by Song (1962). The typical radian frequency for these oscillations is about
6U/�, based on the length of the cavity, �. Clearly, this second phenomenon
is less relevant to pump applications.
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8.11 ACOUSTIC RESONANCES

In the absence of cavitation or flow-induced vibration, flow noise generated
within the turbomachine itself is almost never an issue when the fluid is a
liquid. One reason for this is that the large wavelength of the sound in the
liquid leads to internal acoustic resonances that are too high in frequency
and, therefore, too highly damped to be important. This contrasts with the
important role played by internal resonances in the production of noise in
gas turbines and compressors (Tyler and Sofrin 1962, Cumpsty 1977). In
noncavitating liquid turbomachinery, the higher acoustic velocity and the
smaller acoustic damping mean that pipeline resonances play the same kind
of role that the internal resonances play in the production of noise in gas
turbomachinery.

In liquid turbomachines, resonances exterior to the machine or resonances
associated with cavitation do create a number of serious vibration problems.
As mentioned in the introduction, pipeline resonances with the acoustic
modes of the inlet or discharge piping can occur when one of the excitation
frequencies produced by the pump or hydraulic turbine happens to coin-
cide with one of the acoustic modes of those pipelines. Jaeger (1963) and
Strub (1963) document a number of cases of resonance in hydropower sys-
tems. Many of these do not involve excitation from the turbine but some
do involve excitation at blade passing frequencies (Strub 1963). One of the
striking features of these phenomena is that very high harmonics of the
pipelines can be involved (20th harmonics have been noted) so that damage
occurs at a whole series of nodes equally spaced along the pipeline. The cases
described by Jaeger involve very large pressure oscillations, some of which
led to major failures of the installation. Sparks and Wachel (1976) have
similarly documented a number of cases of pipeline resonance in pumping
systems. They correctly identify some of these as system instabilities of the
kind discussed in section 8.6 and in chapter 9.

Cavitation-induced resonances and vibration problems are dealt with in
other sections of this chapter. But it is appropriate in the context of reso-
nances to mention one other possible cavitation mechanism even though it
has not, as yet, been demonstrated experimentally. One might judge that
the natural frequency, ωP , of bubbles given by equation 6.14 (section 6.5),
being of the order of kHz, would be too high to cause vibration problems.
However, it transpires that a finite cloud of bubbles may have much smaller
natural frequencies that could resonant, for example, with a blade passage
frequency to produce a problem. d’Agostino and Brennen (1983) showed
that the lowest natural frequency, ωC , of a spherical cloud of bubbles of
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radius, A, consisting of bubbles of radius, R, and with a void fraction of α
would be given by

ωC = ωP

[
1 +

4
3π2

A2

R2

α

1 − α

]− 1
2

(8.9)

It follows that, if αA2/R2 
 1, then the cloud frequency will be significantly
smaller than the bubble frequency. This requires that the void fraction be
sufficiently large so that α
 R2/A2. However, this could be relatively easily
achieved in large clouds of small bubbles. Though the importance of cloud
cavitation in pumps has been clearly demonstrated (see section 6.3), the role
played by the basic dynamic characteristics of clouds has not, as yet, been
elucidated.

8.12 BLADE FLUTTER

Up to this point, all of the instabilities have been essentially hydrodynamic
and would occur with a completely rigid structure. However, it needs to
be observed that structural flexibility could modify any of the phenomena
described. Furthermore, if a hydrodynamic instability frequency happens to
coincide with the frequency of a major mode of vibration of the structure,
the result will be a much more dangerous vibration problem. Though the
hydroelastic behavior of single hydrofoils has been fairly well established
(see the review by Abramson 1969), it would be virtually impossible to
classify all of the possible fluid-structure interactions in a turbomachine
given the number of possible hydrodynamic instabilities and the complexity
of the typical pump structure. Rather, we shall confine attention to one of
the simpler interactions and briefly discuss blade flutter. Though the rotor-
stator interaction effects outlined above are more likely to cause serious
blade vibration problems in turbomachines, it is also true that a blade may
flutter and fail even in the absence of such excitation.

It is well known (see, for example, Fung 1955) that the incompressible,
unstalled flow around a single airfoil will not exhibit flutter when permit-
ted only one degree of freedom of flutter motion. Thus, classic aircraft wing
flutter requires the coupling of two degrees of flutter motion, normally the
bending and torsional modes of the cantilevered wing. Turbomachinery flut-
ter is quite different from classic aircraft wing flutter and usually involves
the excitation of a single structural mode. Several different phenomena can
lead to single degree of freedom flutter when it would not otherwise occur in
incompressible, unseparated (unstalled) flow. First, there are the effects of
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compressibility that can lead to phenomena such as supersonic flutter and
choke flutter. These have been the subject of much research (see, for exam-
ple, the reviews of Mikolajczak et al (1975), Platzer (1978), Sisto (1977),
McCroskey (1977)), but are not of direct concern in the context of liquid
turbomachinery, though the compressibility introduced by cavitation might
provide some useful analogies. Of greater importance in the context of liquid
turbomachinery is the phenomenon of stall flutter (see, for example, Sisto
1953, Fung 1955). A blade which is stalled during all or part of a cycle
of oscillation can exhibit single degree of freedom flutter, and this type of
flutter has been recognized as a problem in turbomachinery for many years
(Platzer 1978, Sisto 1977). Unfortunately, there has been relatively little an-
alytical work on stall flutter and any modern theory must at least consider
the characteristics of dynamic stall (see McCroskey 1977). Like all single
degree of freedom flutter problems, including those in turbomachines, the
critical incident speed for the onset of stall flutter, UC , is normally given
by a particular value of a reduced speed, UCR = 2UC/cωF , where c is the
chord length and ωF is the frequency of flutter or the natural frequency
of the participating structural vibration mode. The inverse of UCR is the
reduced frequency, kCR, or Strouhal number. Fung (1955) points out that
the reduced frequency for stall flutter with a single foil is a function of the
difference, θ, between the mean angle of incidence of the flow and the static
angle of stall. A crude guide would be kCR = 0.3 + 4.5θ, 0.1 < kCR < 0.8.
The second term in the expression for kCR reflects the decrease in the critical
speed with increasing incidence.

Of course, in a turbomachine or cascade, the vibration of one blade will
generate forces on the neighboring blades (see, for example, Whitehead
1960), and these interactions can cause significant differences in the flut-
ter analyses and critical speeds; often they have a large unfavorable effect
on the flutter characteristics (McCroskey 1977). One must allow for various
phase angles between neighboring blades, and examine waves which travel
both forward and backward relative to the rotation of the rotor. A complete
analysis of the vibrational modes of the rotor (or stator) must be combined
with an unsteady fluid flow analysis (see, for example, Verdon 1985) in order
to accurately predict the flutter boundaries in a turbomachine. Of course,
most of the literature deals with structures that are typical of compressors
and turbines. The lowest modes of vibration in a pump, on the other hand,
can be very different in character from those in a compressor or turbine. Usu-
ally the blades have a much smaller aspect ratio so that the lowest modes
involve localized vibration of the leading or trailing edges of the blades. Con-
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sequently, any potential flutter is likely to cause failure of portions of these
leading or trailing edges.

The other major factor is the effect of cavitation. The changes which
developed cavitation cause in the lift and drag characteristics of a single
foil, also cause a fundamental change in the flutter characteristics with the
result that a single cavitating foil can flutter (Abramson 1969). Thus a
cavitating foil is unlike a noncavitating, nonseparated foil but qualitatively

Figure 8.21. Sketch of the leading edge flutter of a cavitating hydrofoil
or pump blade.

Figure 8.22. Dimensionless critical flutter speeds for single supercavitat-
ing hydrofoils at various angles of incidence, α, and very long cavities (> 5
chord lengths) (from Brennen, Oey, and Babcock 1980).
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similar to a stalled foil whose flow it more closely resembles. Abramson
(1969) provides a useful review of both the experiments and the analyses
of flutter of rigid cavitating foils. However, as we previously remarked, the
most likely form of flutter in a pump will not involve global blade motion
but flexure of the leading or trailing edges. Since cavitation occurs at the
leading edges, and since these are often made thin in order to optimize the
hydraulic performance, leading edge flutter seems the most likely concern
(figure 8.21). Data on this phenomenon was obtained by Brennen, Oey, and
Babcock (1980), and is presented in figure 8.22. The critical incident fluid
velocity, UC , is nondimensionalized using ωF , the lowest natural frequency of
oscillation of the leading edge immersed in water, and a dimension, cF , that
corresponds to the typical chordwise length of the foil from the leading edge
to the first node of the first mode of vibration. The data shows that UC/cFωF

is almost independent of the incidence angle, and is consistent for a wide
range of natural frequencies. Brennen et al. also utilize the unsteady lift and
moment coefficients calculated by Parkin (1962) to generate a theoretical
estimate of UC/cFωF of 0.14. From figure 8.22 this seems to constitute
an upper design limit on the reduced critical speed. Also note that the
value of 0.14 is much smaller than the values of 1 − 3 quoted earlier for the
stall flutter of a noncavitating foil. This difference emphasizes the enhanced
flutter possibilities caused by cavitation. Brennen et al. also tested their foils
under noncavitating conditions but found no sign of flutter even when the
tunnel velocity was much larger than the cavitating flutter speed.

One footnote on the connection between the flutter characteristics of fig-
ure 8.22 and the partial cavitation oscillation of section 8.10 is worth adding.
The data of figure 8.22 was obtained with long attached cavities, covering
the entire suction surface of the foil as indicated in figure 8.21. At larger cav-
itation numbers, when the cavity length was decreased to about two chord
lengths, the critical speed decreased markedly, and the leading edge flutter
phenomenon began to metamorphose into the partial cavitation oscillation
described in section 8.10.

8.13 POGO INSTABILITIES

All of the other discussion in this chapter has assumed that the turboma-
chine as a whole remains fixed in a nonaccelerating reference frame or, at
least, that a vibrational degree of freedom of the machine is not necessary
for the instability to occur. However, when a mechanism exists by which
the internal flow and pressure oscillations can lead to vibration of the tur-
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bomachine as a whole, then a new set of possibilities are created. We refer
to circumstances in which flow or pressure oscillations lead to vibration of
the turbomachine (or its inlet or discharge pipelines) which in turn generate
pressure oscillations that feed back to create instability. An example is the
class of liquid-propelled rocket vehicle instabilities known as Pogo instabili-
ties (NASA 1970). Here the longitudinal vibration of the rocket causes flow
and pressure oscillation in the fuel tanks and, therefore, in the inlet lines.
This, in turn, implies that the engines experience fluctuating inlet condi-
tions, and as a result they produce a fluctuating thrust that promotes the
longitudinal vibration of the vehicle. Rubin (1966) and Vaage et al. (1972)
provide many of the details of these phenomena that are beyond the scope
of this text. It is, however, important to note that the dynamics of the cav-
itating inducer pumps are crucial in determining the limits of these Pogo
instabilities, and provide one of the main motivations for the measurements
of the dynamic transfer functions of cavitating inducers described in chapter
9.

In closing, it is important to note that feedback systems involving vi-
brational motion of the turbomachine are certainly not confined to liquid
propelled rockets. However, detailed examinations of the instabilities are
mostly confined to this context. In section 9.15 of the next chapter, we pro-
vide a brief introduction to the frequency domain methods which can be
used to address problems involving oscillatory, translational or rotational
motions of the whole hydraulic sytem.
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9

UNSTEADY FLOW IN HYDRAULIC SYSTEMS

9.1 INTRODUCTION

This chapter is devoted to a description of the methods available for the
analysis of unsteady flows in pumps and their associated hydraulic systems.
There are two basic approaches to the solution of unsteady internal flows:
solution in the time domain or in the frequency domain. The traditional
time domain methods for hydraulic systems are treated in depth elsewhere
(for example, Streeter and Wylie 1967, 1974), and will only be touched upon
here. They have the great advantage that they can incorporate the nonlinear
convective inertial terms in the equations of fluid flow, and are best suited
to evaluating the transient response of flows in long pipes in which the equa-
tions of the flow and the structure are fairly well established. However, they
encounter great difficulties when either the geometry is complex (for exam-
ple inside a pump), or the fluid is complex (for example in the presence of
cavitation). Under these circumstances, frequency domain methods have dis-
tinct advantages, both analytically and experimentally. On the other hand,
the nonlinear convective inertial terms cannot readily be included in the
frequency-domain methodology and, consequently, these methods are only
accurate for small perturbations from the mean flow. This does permit eval-
uation of stability limits, but not the evaluation of the amplitude of large
unstable motions.

It should be stressed that many unsteady hydraulic system problems can
and should be treated by the traditional time domain or “water-hammer”
methods. However, since the focus of this monograph is on pumps and cavita-
tion, we place an emphasis here on frequency domain methods. Sections 9.5
through 9.10 constitute an introduction to these frequency domain meth-
ods. This is followed by a summary of the transfer functions for simple
components and for pumps, both noncavitating and cavitating. Up to the
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beginning of section 9.15, it is assumed that the hydraulic system is at rest
in some inertial or nonaccelerating frame. However, as indicated in section
8.13, there is an important class of problems in which the hydraulic system
itself is oscillating in space. In section 9.15, we present a brief introduction
to the treatment of this class of problems.

9.2 TIME DOMAIN METHODS

The application of time domain methods to one-dimensional fluid flow nor-
mally consists of the following three components. First, one establishes con-
ditions for the conservation of mass and momentum in the fluid. These may
be differential equations (as in the example in the next section) or they may
be jump conditions (as in the analysis of a shock). Second, one must estab-
lish appropriate thermodynamic constraints governing the changes of state
of the fluid. In almost all practical cases of single-phase flow, it is appropriate
to assume that these changes are adiabatic. However, in multiphase flows
the constraints can be much more complicated. Third, one must determine
the response of the containing structure to the pressure changes in the fluid.

The analysis is made a great deal simpler in those circumstances in
which it is accurate to assume that both the fluid and the structure be-
have barotropically. By definition, this implies that the change of state of
the fluid is such that some thermodynamic quantity (such as the entropy)
remains constant, and therefore the fluid density, ρ(p), is a simple algebraic
function of just one thermodynamic variable, for example the pressure. In
the case of the structure, the assumption is that it deforms quasistatically,
so that, for example, the cross-sectional area of a pipe, A(p), is a simple, al-
gebraic function of the fluid pressure, p. Note that this neglects any inertial
or damping effects in the structure.

The importance of the assumption of a barotropic fluid and structure lies
in the fact that it allows the calculation of a single, unambiguous speed of
sound for waves traveling through the piping system. The sonic speed in the
fluid alone is given by c∞ where

c∞ = (dρ/dp)−
1
2 (9.1)

In a liquid, this is usually calculated from the bulk modulus, κ = ρ/(dρ/dp),
since

c∞ = (κ/ρ)−
1
2 (9.2)

However the sonic speed, c, for one-dimensional waves in a fluid-filled duct
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is influenced by the compressibility of both the liquid and the structure:

c = ±
[

1
A

d(ρA)
dp

]− 1
2

(9.3)

or, alternatively,

1
ρc2

=
1
ρc2∞

+
1
A

(
dA

dp

)
(9.4)

The left-hand side is the acoustic impedance of the system, and the equation
reveals that this is the sum of the acoustic impedance of the fluid alone,
1/ρc2∞, plus an “acoustic impedance” of the structure given by (dA/dp)/A.
For example, for a thin-walled pipe made of an elastic material of Young’s
modulus, E, the acoustic impedance of the structure is 2a/Eδ, where a and
δ are the radius and the wall thickness of the pipe (δ � a). The resulting
form of equation 9.4,

c =
[

1
c2∞

+
2ρa
Eδ

]− 1
2

(9.5)

is known as the Joukowsky water hammer equation. It leads, for example, to
values of c of about 1000m/s for water in standard steel pipes compared with
c∞ ≈ 1400m/s. Other common expressions for c are those used for thick-
walled tubes, for concrete tunnels, or for reinforced concrete pipes (Streeter
and Wylie 1967).

9.3 WAVE PROPAGATION IN DUCTS

In order to solve unsteady flows in ducts, an expression for the sonic speed
is combined with the differential form of the equation for conservation of
mass (the continuity equation),

∂

∂t
(ρA) +

∂

∂s
(ρAu) = 0 (9.6)

where u(s, t) is the cross-sectionally averaged or volumetric velocity, s is a
coordinate measured along the duct, and t is time. The appropriate differ-
ential form of the momentum equation is

ρ

[
∂u

∂t
+ u

∂u

∂s

]
= −∂p

∂s
− ρgs − ρfu|u|

4a
(9.7)

where gs is the component of the acceleration due to gravity in the s direc-
tion, f is the friction factor, and a is the radius of the duct.
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Now the barotropic assumption 9.3 allows the terms in equation 9.6 to be
written as

∂

∂t
(ρA) =

A

c2
∂p

∂t
;

∂(ρA)
∂s

=
A

c2
∂p

∂s
+ ρ

∂A

∂s

∣∣∣
p

(9.8)

so the continuity equation becomes

1
c2
∂p

∂t
+
u

c2
∂p

∂s
+ ρ

[
∂u

∂s
+
u

A

∂A

∂s

∣∣∣
p

]
= 0 (9.9)

Equations 9.7 and 9.9 are two simultaneous, first order, differential equations
for the two unknown functions, p(s, t) and u(s, t). They can be solved given
the barotropic relation for the fluid, ρ(p), the friction factor, f , the normal
cross-sectional area of the pipe, A0(s), and boundary conditions which will
be discussed later. Normally the last term in equation 9.9 can be approxi-
mated by ρu(dA0/ds)/A0. Note that c may be a function of s.

In the time domain methodology, equations 9.7 and 9.9 are normally
solved using the method of characteristics (see, for example, Abbott 1966).
This involves finding moving coordinate systems in which the equations may
be written as ordinary rather than partial differential equations. Consider
the relation that results when we multiply equation 9.9 by λ and add it to
equation 9.7:

ρ

[
∂u

∂t
+ (u+ λ)

∂u

∂s

]
+
λ

c2

[
∂p

∂t
+
(
u+

c2

λ

)
∂p

∂s

]

+
ρuλ

A0

dA0

ds
+ ρgs +

ρf |u|u
4a

= 0 (9.10)

If the coefficients of ∂u
∂s and ∂p

∂s inside the square brackets were identical, in
other words if λ = ±c, then the expressions in the square brackets could be
written as

∂u

∂t
+ (u± c)

∂u

∂s
and

∂p

∂t
+ (u± c)

∂p

∂s
(9.11)

and these are the derivatives du
dt and dp

dt on ds
dt = u± c. These lines ds

dt = u± c

are the characteristics, and on them we may write:

1. In a frame of reference moving with velocity u+ c or on ds
dt = u+ c:

du

dt
+

1
ρc

dp

dt
+
uc

A0

dA0

ds
+ gs +

fu|u|
4a

= 0 (9.12)
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Figure 9.1. Method of characteristics.

2. In a frame of reference moving with velocity u− c or on ds
dt = u− c:

du

dt
− 1
ρc

dp

dt
− uc

A0

dA0

ds
+ gs +

fu|u|
4a

= 0 (9.13)

A simpler set of equations result if the piezometric head, h∗, defined as

h∗ =
p

ρg
+
∫
gs

g
ds (9.14)

is used instead of the pressure, p, in equations 9.12 and 9.13. In almost all
hydraulic problems of practical interest p/ρLc

2 � 1 and, therefore, the term
ρ−1dp/dt in equations 9.12 and 9.13 may be approximated by d(p/ρ)/dt. It
follows that on the two characteristics

1
ρc

dp

dt
± gs ≈ g

c

dh∗

dt
− u

c
gs (9.15)

and equations 9.12 and 9.13 become

1. On ds
dt = u+ c

du

dt
+
g

c

dh∗

dt
+ uc

1
A0

dA0

ds
− ugs

c
+

f

4a
u|u| = 0 (9.16)

2. On ds
dt = u− c

du

dt
− g

c

dh∗

dt
− uc

1
A0

dA0

ds
+
ugs

c
+

f

4a
u|u| = 0 (9.17)

These are the forms of the equations conventionally used in unsteady hy-
draulic water-hammer problems (Streeter and Wylie 1967). They are typ-
ically solved by relating the values at a time t+ δt (for example point C
of figure 9.1) to known values at the points A and B at time t. The lines
AC and BC are characteristics, so the following finite difference forms of
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equations 9.16 and 9.17 apply:

(uC − uA)
δt

+
g

cA

(h∗C − h∗A)
δt

+ uAcA

(
1
Ao

dA0

ds

)
A

− uA(gs)A

cA
+
fAuA|uA|

4a
= 0

(9.18)
and

(uC − uB)
δt

− g

cB

(h∗C − h∗B)
δt

− uBcB

(
1
Ao

dA0

ds

)
B

+
uB(gs)B

cB
+
fBuB|uB|

4a
= 0

(9.19)
If cA = cB = c, and the pipe is uniform, so that dA0/ds = 0 and fA = fB =
f , then these reduce to the following expressions for uC and h∗C :

uC =
(uA + uB)

2
+

g

2c
(h∗A − h∗B) +

δt

2c
[uA(gs)A − uB(gs)B]

−fδt
8a

[uA|uA| + uB|uB|] (9.20)

h∗C =
(h∗A + h∗B)

2
+

c

2g
(uA − uB) +

δt

2g
[uA(gs)A + uB(gs)B]

−fcδt
8ag

[uA|uA| − uB|uB|] (9.21)

9.4 METHOD OF CHARACTERISTICS

The typical numerical solution by the method of characteristics is depicted
graphically in figure 9.2. The time interval, δt, and the spatial increment,
δs, are specified. Then, given all values of the two dependent variables (say
u and h∗) at one instant in time, one proceeds as follows to find all the
values at points such as C at a time δt later. The intersection points, A and
B, of the characteristics through C are first determined. Then interpolation
between the known values at points such asR, S and T are used to determine
the values of the dependent variables at A and B. The values at C follow
from equations such as 9.20 and 9.21 or some alternative version. Repeating
this for all points at time t+ δt allows one to march forward in time.

There is, however, a maximum time interval, δt, that will lead to a stable
numerical solution. Typically this requires that δt be less than δx/c. In
other words, it requires that the points A and B of figure 9.2 lie inside
of the interval RST . The reason for this condition can be demonstrated
in the following way. Assume for the sake of simplicity that the slopes of
the characteristics are ±c; then the distances AS = SB = cδt. Using linear
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Figure 9.2. Example of numerical solution by method of characteristics.

interpolation to find uA and uB from uR, uS and uT leads to

uA = uS

(
1 − c

δt

δs

)
+ uR

cδt

δs

uB = uS

(
1− c

δt

δs

)
+ uT

cδt

δs
(9.22)

Consequently, an error in uR of, say, δu would lead to an error in uA of
cδuδt/δs (and similarly for uT and uB). Thus the error would be magnified
with each time step unless cδt/δs < 1 and, therefore, the numerical integra-
tion is only stable if δt < δx/c. In many hydraulic system analyses this places
a quite severe restriction on the time interval δt, and often necessitates a
large number of time steps.

A procedure like the above will also require boundary conditions to be
specified at any mesh point which lies either, at the end of a pipe or, at a
junction of the pipe with a pipe of different size (or a pump or any other
component). If the points S and C in figure 9.2 were end points, then only
one characteristic would lie within the pipe and only one relation, 9.18 or
9.19, can be used. Therefore, the boundary condition must provide a second
relation involving uC or h∗C (or both). An example is an open-ended pipe for
which the pressure and, therefore, h∗ is known. Alternatively, at a junction
between two sizes of pipe, the two required relations will come from one
characteristic in each of the two pipes, plus a continuity equation at the
junction ensuring that the values of uA0 in both pipes are the same at the
junction. For this reason it is sometimes convenient to rewrite equations 9.16
and 9.17 in terms of the volume flow rate Q = uA0 instead of u so that
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1. On ds
dt = u+ c

dQ

dt
+
A0g

c

dh∗

dt
+
Qc

A0

dA0

ds
− Qgs

c
+

f

4aA0
Q|Q| = 0 (9.23)

2. On ds
dt = u− c

dQ

dt
− A0g

c

dh∗

dt
− Qc

A0

dA0

ds
+
Qgs

c
+

f

4aA0
Q|Q| = 0 (9.24)

Even in simple pipe flow, additional complications arise when the instan-
taneous pressure falls below vapor pressure and cavitation occurs. In the
context of water-hammer analysis, this is known as “water column separa-
tion”, and is of particular concern because the violent collapse of the cavity
can cause severe structural damage (see, for example, Martin 1978). Fur-
thermore, the occurrence of water column separation can trigger a series of
cavity formations and collapses, resulting in a series of impulsive loads on
the structure. The possibility of water column separation can be tracked by
following the instantaneous pressure. To proceed beyond this point requires
a procedure to incorporate a cavity in the waterhammer calculation using
the method of characteristics. A number of authors (for example, Tanahashi
and Kasahara 1969, Weyler et al. 1971, Safwat and van der Polder 1973)
have shown that this is possible. However the calculated results after the
first collapse can deviate substantially from the observations. This is proba-
bly due to the fact that the first cavity is often a single, coherent void. This
will shatter into a cloud of smaller bubbles as a result of the violence of
the first collapse. Subsequently, one is dealing with a bubbly medium whose
wave propagation speeds may differ significantly from the acoustic speed as-
sumed in the analytical model. Other studies have shown that qualitatively
similar changes in the water-hammer behavior occur when gas bubbles form
in the liquid as a result of dissolved gas coming out of solution (see, for
example, Wiggert and Sundquist 1979).

In many time domain analyses, turbomachines are treated by assuming
that the temporal rates of change are sufficiently slow that the turbomachine
responds quasistatically, moving from one steady state operating point to
another. Consequently, if points A and B lie at inlet to and discharge from
the turbomachine then the equations relating the values at A and B would
be

QB = QA = Q (9.25)

h∗B = h∗A +H(Q) (9.26)
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where H(Q) is the head rise across the machine at the flow rate, Q. Data
presented later will show that the quasistatic assumption is only valid for
rates of change less than about one-tenth the frequency of shaft rotation.
For frequencies greater than this, the pump dynamics become important
(see section 9.13).

For more detailed accounts of the methods of characteristics the reader
is referred to Streeter and Wylie (1967), or any modern text on numerical
methods. Furthermore, there are a number of standard codes available for
time domain analysis of transients in hydraulic systems, such as that de-
veloped by Amies, Levek and Struesseld (1977). The methods work well so
long as one has confidence in the differential equations and models which are
used. In other circumstances, such as occur in two-phase flow, in cavitating
flow, or in the complicated geometry of a turbomachine, the time domain
methods may be less useful than the alternative frequency domain methods
to which we now turn.

9.5 FREQUENCY DOMAIN METHODS

When the quasistatic assumption for a device like a pump or turbine be-
comes questionable, or when the complexity of the fluid or the geometry
makes the construction of a set of differential equations impractical or uncer-
tain, then it is clear that experimental information on the dynamic behavior
of the device is necessary. In practice, such experimental information is most
readily obtained by subjecting the device to fluctuations in the flow rate or
head for a range of frequencies, and measuring the fluctuating quantities at
inlet and discharge. Such experimental results will be presented later. For
present purposes it is sufficient to recognize that one practical advantage of
frequency domain methods is the capability of incorporation of experimen-
tally obtained dynamic information and the greater simplicity of the exper-
iments required to obtain the necessary dynamic data. Another advantage,
of course, is the core of fundamental knowledge that exists regarding such
methodology (see for example, Pipes 1940, Hennyey 1962, Paynter 1961,
Brown 1967). As stated earlier, the disadvantage is that the methods are
limited to small linear perturbations in the flow rate. When the perturba-
tions are linear, Fourier analysis and synthesis can be used to convert from
transient data to individual frequency components and vice versa. All the
dependent variables such as the mean velocity, u, mass flow rate, m, pres-
sure, p, or total pressure, pT , are expressed as the sum of a mean component
(denoted by an overbar) and a complex fluctuating component (denoted by
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a tilde) at a frequency, ω, which incorporates the amplitude and phase of
the fluctuation:

p(s, t) = p̄(s) +Re
{
p̃(s, ω)ejωt

}
(9.27)

pT (s, t) = p̄T (s) +Re
{
p̃T (s, ω)ejωt

}
(9.28)

m(s, t) = m̄(s) +Re
{
m̃(s, ω)ejωt

}
(9.29)

where j is (−1)
1
2 and Re denotes the real part. Since the perturbations are

assumed linear (|ũ| � ū, |m̃| � m̄, etc.), they can be readily superimposed,
so a summation over many frequencies is implied in the above expressions.
In general, the perturbation quantities will be functions of the mean flow
characteristics as well as position, s, and frequency, ω.

We should note that there do exist a number of codes designed to ex-
amine the frequency response of hydraulic systems using frequency domain
methods (see, for example, Amies and Greene 1977).

9.6 ORDER OF THE SYSTEM

The first step in any unsteady flow analysis is to subdivide the system into
components; the points separating two (or more) components will be re-
ferred to as system nodes. Typically, there would be nodes at the inlet and
discharge flanges of a pump. Having done this, it is necessary to determine
the order of the system, N , and this can be accomplished in one of several
equivalent ways. The order of the system is the minimum number of inde-
pendent fluctuating quantities which must be specified at a system node in
order to provide a complete description of the unsteady flow at that loca-
tion. It is also equal to the minimum number of independent, simultaneous
first order differential equations needed to describe the fluid motion in, say,
a length of pipe. In this summary we shall confine most of our discussion to
systems of order two in which the dependent variables are the mass flow rate
and either the pressure or the total head. This includes most of the common
analyses of hydraulic systems. It is, however, important to recognize that
order two systems are confined to

1. Incompressible flows at the system nodes, definable by pressure (or head), and
flow rate.

2. Barotropic compressible flows in which, ρ(p), so only the pressure (or head) and
flow rate need be specified at system nodes. This category also includes those
flexible structures for water-hammer analysis in which the local area is a function
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only of the local pressure. If, on the other hand, the local area depends on the
area and the pressure elsewhere, then the system is of order 3 or higher.

3. Two-phase flows at the system nodes that can be represented by a homogeneous
flow model that neglects the relative velocity between the phases. Any of the
more accurate models that allow relative motion produce higher order systems.

Note that the order of the system can depend on the choice of system nodes.
Consequently, an ideal evaporator or a condenser can be incorporated in an
order two system provided the flow at the inlet node is single-phase (of type
2) and the flow at the discharge node also single-phase. A cavitating pump
or turbine also falls within this category, provided the flow at both the inlet
and discharge is pure liquid.

9.7 TRANSFER MATRICES

The transfer matrix for any component or device is the matrix which relates
the fluctuating quantities at the discharge node to the fluctuating quantities
at the inlet node. The earliest exploration of such a concept in electrical net-
works appears to be due to Strecker and Feldtkeller (1929) while the utiliza-
tion of the idea in the context of fluid systems owes much to the pioneering
work of Pipes (1940). The concept is the following. If the quantities at inlet
and discharge are denoted by subscripts i = 1 and i = 2, respectively, and, if
{q̃n

i }, n = 1, 2 → N denotes the vector of independent fluctuating quantities
at inlet and discharge for a system of order N , then the transfer matrix, [T ],
is defined as

{q̃n
2 } = [T ] {q̃n

1 } (9.30)

It is a square matrix of order N . For example, for an order two system
in which the independent fluctuating variables are chosen to be the total
pressure, p̃T , and the mass flow rate, m̃, then a convenient transfer matrix
is {

p̃T
2

m̃2

}
=
[
T11

T21

T12

T22

]{
p̃T
1

m̃1

}
(9.31)

The words transfer function and transfer matrix are used interchangeably
here to refer to the matrix [T ]. In general it will be a function of the fre-
quency, ω, of the perturbations and the mean flow conditions in the device.

The most convenient independent fluctuating quantities for a hydraulic
system of order two are usually

1. Either the pressure, p̃, or the instantaneous total pressure, p̃T . Note that these
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are related by

p̃T = p̃+
ū2

2
ρ̃+ ρ̄ūũ+ gzρ̃ (9.32)

where ρ̄ is the mean density, ρ̃ is the fluctuating density which is barotropically
connected to p̃, and z is the vertical elevation of the system node. Neglecting the
ρ̃ terms as is acceptable for incompressible flows

p̃T = p̃+ ρ̄ūũ (9.33)

2. Either the velocity, ũ, the volume flow rate, Āũ+ ūÃ, or the mass flow rate,
m̃ = ρ̄Āũ+ ρ̄ūÃ + ūĀρ̃. Incompressible flow at a system node in a rigid pipe
implies

m̃ = ρ̄Āũ (9.34)

The most convenient choices are {p̃, m̃} or {p̃T , m̃}, and, for these two
vectors, we will respectively use transfer matrices denoted by [T ∗] and [T ],
defined as {

p̃2

m̃2

}
= [T ∗]

{
p̃1

m̃1

}
;

{
p̃T
2

m̃2

}
= [T ]

{
p̃T
1

m̃1

}
(9.35)

If the flow is incompressible and the cross-section at the nodes is rigid, then
the [T ∗] and [T ] matrices are clearly connected by

T11 = T ∗
11 +

ū2

A2
T ∗

21 ; T12 = T ∗
12 − ū1

A1
T ∗

11 + ū2
A2
T ∗

22 − ū1
A1

ū2
A2
T ∗

21

T21 = T ∗
21 ; T22 = T ∗

22 − ū1
A1
T ∗

21 (9.36)

and hence one is readily constructed from the other. Note that the determi-
nants of the two matrices, [T ] and [T ∗], are identical.

9.8 DISTRIBUTED SYSTEMS

In the case of a distributed system such as a pipe, it is also appropriate to
define a matrix [F ] (see Brown 1967) so that

d

ds
{q̃n} = − [F (s)] {q̃n} (9.37)

Note that, apart from the frictional term, the equations 9.12 and 9.13 for
flow in a pipe will lead to perturbation equations of this form. Furthermore,
in many cases the frictional term is small, and can be approximated by
a linear term in the perturbation equations; under such circumstances the
frictional term will also fit into the form given by equation 9.37.

When the matrix [F ] is independent of location, s, the distributed system
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is called a “uniform system” (see section 9.10). For example, in equations
9.12 and 9.13, this would require ρ, c, a, f and A0 to be approximated as
constants (in addition to the linearization of the frictional term). Under such
circumstances, equation 9.37 can be integrated over a finite length, �, and
the transfer matrix [T ] of the form 9.35 becomes

[T ] = e−[F ]� (9.38)

where e[F ]� is known as the “transmission matrix.” For a system of order
two, the explicit relation between [T ] and [F ] is

T11 = jF11

(
e−jλ2� − e−jλ1�

)
/(λ2 − λ1)

+
(
λ2e

−jλ1� − λ1e
−jλ2�

)
/(λ2 − λ1)

T12 = jF12

(
e−jλ2� − e−jλ1�

)
/(λ2 − λ1)

T21 = jF21

(
e−jλ2� − e−jλ1�

)
/(λ2 − λ1)

T22 = jF22

(
e−jλ2� − e−jλ1�

)
/(λ2 − λ1)

+
(
λ2e

−jλ2� − λ1e
−jλ1�

)
/ (λ2 − λ1) (9.39)

where λ1, λ2 are the solutions of the equation

λ2 + jλ(F11 + F22) − (F11F22 − F12F21) = 0 (9.40)

Some special features and properties of these transfer functions will be ex-
plored in the sections which follow.

9.9 COMBINATIONS OF TRANSFER
MATRICES

When components are connected in series, the transfer matrix for the com-
bination is clearly obtained by multiplying the transfer matrices of the in-
dividual components in the reverse order in which the flow passes through
them. Thus, for example, the combination of a pump with a transfer matrix,
[TA], followed by a discharge line with a transfer matrix, [TB], would have
a system transfer matrix, [TS], given by

[TS] = [TB] [TA] (9.41)

The parallel combination of two components is more complicated and
does not produce such a simple result. Issues arise concerning the relations
between the pressures of the inlet streams and the relations between the
pressures of the discharge streams. Often it is appropriate to assume that the
branching which creates the two inlet streams results in identical fluctuating
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total pressures at inlet to the two components, p̃T
1 . If, in addition, mixing

losses at the downstream junction are neglected, so that the fluctuating
total pressure, p̃T

2 , can be equated with the fluctuating total pressure at
discharge from the two components, then the transfer function, [TS], for
the combination of two components (order two transfer functions denoted
by [TA] and [TB]) becomes

TS11 = (TA11TB12 + TB11TA12)/(TA12 + TB12)

TS12 = TA12TB12/(TA12 + TB12)

TS21 = TA21 + TB21

−(TA11 − TB11)(TA22 − TB22)/(TA12 + TB12)

TS22 = (TA22TB12 + TB22TA12)/(TA12 + TB12) (9.42)

On the other hand, the circumstances at the junction of the two discharge
streams may be such that the fluctuating static pressures (rather than the
fluctuating total pressures) are equal. Then, if the inlet static pressures are
also equal, the combined transfer matrix, [TS∗], is related to those of the two
components ([TA∗] and [TB∗]) by the same relations as given in equations
9.42. Other combinations of choices are possible, but will not be detailed
here.

Using the above combination rules, as well as the relations 9.36 between
the [T ] and [T∗] matrices, the transfer functions for very complicated hy-
draulic networks can be systematically synthesized.

9.10 PROPERTIES OF TRANSFER
MATRICES

Transfer matrices (and transmission matrices) have some fundamental prop-
erties that are valuable to recall when constructing or evaluating the dy-
namic properties of a component or system.

We first identify a “uniform” distributed component as one in which the
differential equations (for example, equations 9.12 and 9.13 or 9.37) govern-
ing the fluid motion have coefficients which are independent of position, s.
Then, for the class of systems represented by the equation 9.37, the matrix
[F ] is independent of s. For a system of order two, the transfer function [T ]
would take the explicit form given by equations 9.39.

To determine another property of this class of dynamic systems, consider
that the equations 9.37 have been manipulated to eliminate all but one of
the unknown fluctuating quantities, say q̃1. The resulting equation will take
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the form
N∑

n=0

an(s)
dnq̃1

dsn
= 0 (9.43)

In general, the coefficients an(s), n = 0 → N , will be complex functions of
the mean flow and of the frequency. It follows that there are N indepen-
dent solutions which, for all the independent fluctuating quantities, may be
expressed in the form

{q̃n} = [B(s)] {A} (9.44)

where [B(s)] is a matrix of complex solutions and {A} is a vector of arbi-
trary complex constants to be determined from the boundary conditions.
Consequently, the inlet and discharge fluctuations denoted by subscripts 1
and 2, respectively, are given by

{q̃n
1 } = [B(s1)] {A} ; {q̃n

2 } = [B(s2)] {A} (9.45)

and therefore the transfer function

[T ] = [B(s2)] [B(s1)]
−1 (9.46)

Now for a uniform system, the coefficients an and the matrix [B] are inde-
pendent of s. Hence the equation 9.43 has a solution of the form

[B(s)] = [C] [E] (9.47)

where [C] is a known matrix of constants, and [E] is a diagonal matrix in
which

Enn = ejγns (9.48)

where γn, n = 1 to N , are the solutions of the dispersion relation

N∑
n=0

anγ
n = 0 (9.49)

Note that γn are the wavenumbers for the N types of wave of frequency,
ω, which can propagate through the uniform system. In general, each of
these waves has a distinct wave speed, cn, given by cn = −ω/γn. It follows
from equations 9.47, 9.48 and 9.46 that the transfer matrix for a uniform
distributed system must take the form

[T ] = [C] [E∗] [C]−1 (9.50)
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where [E∗] is a diagonal matrix with

E∗
nn = ejγn� (9.51)

and � = s2 − s1.
An important diagnostic property arises from the form of the transfer

matrix, 9.50, for a uniform distributed system. The determinant, DT , of the
transfer matrix [T ] is

DT = exp {j (γ1 + γ2 + · · ·+ γN ) �} (9.52)

Thus the value of the determinant is related to the sum of the wavenumbers
of the N different waves which can propagate through the uniform dis-
tributed system. Furthermore, if all the wavenumbers, γn, are purely real,
then

|DT | = 1 (9.53)

The property that the modulus of the determinant of the transfer function is
unity will be termed “quasi-reciprocity” and will be discussed further below.
Note that this will only be the case in the absence of wave damping when
γn and cn are purely real.

Turning now to another property, a system is said to be “reciprocal” if,
in the matrix [Z] defined by{

p̃T
1

p̃T
2

}
= [Z]

{
m̃1

−m̃2

}
(9.54)

the transfer impedances Z12 and Z21 are identical (see Brown 1967 for the
generalization of this property in systems of higher order). This is identical
to the condition that the determinant, DT , of the transfer matrix [T ] be
unity:

DT = 1 (9.55)

We shall see that a number of commonly used components have transfer
functions which are reciprocal. In order to broaden the perspective we have
introduced the property of “quasi-reciprocity” to signify those components
in which the modulus of the determinant is unity or

|DT | = 1 (9.56)

We have already noted that uniform distributed components with purely
real wavenumbers are quasi-reciprocal. Note that a uniform distributed com-
ponent will only be reciprocal when the wavenumbers tend to zero, as, for
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example, in incompressible flows in which the wave propagation speeds tend
to infinity.

By utilizing the results of section 9.9 we can conclude that any series or
parallel combination of reciprocal components will yield a reciprocal sys-
tem. Also a series combination of quasi-reciprocal components will be quasi-
reciprocal. However it is not necessarily true that a parallel combination of
quasi-reciprocal components is quasi-reciprocal.

An even more restrictive property than reciprocity is the property of “sym-
metry”. A “symmetric” component is one that has identical dynamical prop-
erties when turned around so that the discharge becomes the inlet, and the
directional convention of the flow variables is reversed (Brown 1967). Then,
in contrast to the regular transfer matrix, [T ], the effective transfer matrix
under these reversed circumstances is [TR] where{

p̃T
1

−m̃1

}
= [TR]

{
p̃T
2

−m̃2

}
(9.57)

and, comparing this with the definition 9.31, we observe that

TR11 = T22/DT ; TR12 = T12/DT

TR21 = T21/DT ; TR22 = T11/DT (9.58)

Therefore symmetry, [T ] = [TR], requires

T11 = T22 and DT = 1 (9.59)

Consequently, in addition to the condition, DT = 1, required for reciprocity,
symmetry requires T11 = T22.

As with the properties of reciprocity and quasi-reciprocity, it is useful to
consider the property of a system comprised of symmetric components. Note
that according to the combination rules of section 9.9, a parallel combination
of symmetric components is symmetric, whereas a series combination may
not retain this property. In this regard symmetry is in contrast to quasi-
reciprocity in which the reverse is true.

In the case of uniform distributed systems, Brown (1967) shows that sym-
metry requires

F11 = F22 = 0 (9.60)

so that the solution of the equation 9.40 for λ is λ = ±λ∗ where λ∗ =
(F21F12)

1
2 is known as the “propagation operator” and the transfer func-

tion 9.39 becomes

T11 = T22 = coshλ∗�
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T12 = ZC sinhλ∗�
T21 = Z−1

C sinhλ∗� (9.61)

where ZC = (F12/F21)
1
2 = (T12/T21)

1
2 is known as the “characteristic

impedance”.
In addition to the above properties of transfer functions, there are also

properties associated with the net flux of fluctuation energy into the com-
ponent or system. These will be elucidated after we have examined some
typical transfer functions for components of hydraulic systems.

9.11 SOME SIMPLE TRANSFER
MATRICES

The flow of an incompressible fluid in a straight, rigid pipe will be governed
by the following versions of equations 9.6 and 9.7:

∂u

∂s
= 0 (9.62)

∂pT

∂s
= −ρfu|u|

4a
− ρ

∂u

∂t
(9.63)

If the velocity fluctuations are small compared with the mean velocity de-
noted by U (positive in direction from inlet to discharge), and the term u|u|
is linearized, then the above equations lead to the transfer function

[T ] =
[
1 −(R+ jωL)
0 1

]
(9.64)

where (R+ jωL) is the “impedance” made up of a “resistance”, R, and an
“inertance”, L, given by

R =
fU�

2aA
, L =

�

A
(9.65)

where A, a, and � are the cross-sectional area, radius, and length of the pipe.
A number of different pipes in series would then have

R = Q
∑

i

fi�i
2aiA

2
i

; L =
∑

i

�i
Ai

(9.66)

where Q is the mean flow rate. For a duct of non-uniform area

R = Q

∫ �

0

f(s)ds
2a(s)(A(s))2

; L =
∫ �

0

ds

A(s)
(9.67)
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Note that all such ducts represent reciprocal and symmetric components.
A second, common hydraulic element is a simple “compliance”, exempli-

fied by an accumulator or a surge tank. It consists of a device installed in
a pipeline and storing a volume of fluid, VL, which varies with the local
pressure, p, in the pipe. The compliance, C, is defined by

C = ρ
dVL

dp
(9.68)

In the case of a gas accumulator with a mean volume of gas, V̄G, which
behaves according to the polytropic index, k, it follows that

C = ρV̄G/kp̄ (9.69)

where p̄ is the mean pressure level. In the case of a surge tank in which the
free surface area is AS , it follows that

C = AS/g (9.70)

The relations across such compliances are

m̃2 = m̃1 − jωCp̃T ; p̃T
1 = p̃T

2 = p̃T (9.71)

Therefore, using the definition 9.35, the transfer function [T ] becomes

[T ] =
[

1 0
−jωC 1

]
(9.72)

Again, this component is reciprocal and symmetric, and is equivalent to a
capacitor to ground in an electrical circuit.

Systems made up of lumped resistances, R, inertances, L, and compli-
ances, C, will be termed LRC systems. Individually, all three of these com-
ponents are both reciprocal and symmetric. It follows that any system com-
prised of these components will also be reciprocal (see section 9.10); hence
all LRC systems are reciprocal. Note also that, even though individual com-
ponents are symmetric, LRC systems are not symmetric since series combi-
nations are not, in general, symmetric (see section 9.10).

An even more restricted class of systems are those consisting only of iner-
tances, L, and compliances, C. These systems are termed “dissipationless”
and have some special properties (see, for example, Pipes 1963) though these
are rarely applicable in hydraulic systems.

As a more complicated example, consider the frictionless (f = 0) com-
pressible flow in a straight uniform pipe of mean cross-sectional area, A0.
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This can readily be shown to have the transfer function

T ∗
11 = (cos θ + jM sin θ) ejθM

T ∗
12 = −jŪ sin θejθM /A0M

T ∗
21 = −jA0M(1 −M2) sinθejθM /Ū

T ∗
22 = (cos θ − jM sin θ) ejθM (9.73)

where Ū is the mean fluid velocity, M = Ū/c is the Mach number, and θ is
a reduced frequency given by

θ = ω�/c(1−M2) (9.74)

Note that all the usual acoustic responses can be derived quite simply from
this transfer function. For example, if the pipe opens into reservoirs at both
ends, so that appropriate inlet and discharge conditions are p̃1 = p̃2 = 0,
then the transfer function, equation 9.35, can only be satisfied with m̃1 �= 0
if T ∗

12 = 0. According to equations 9.73, this can only occur if sin θ = 0,
θ = nπ or

ω = nπc(1−M2)/� (9.75)

which are the natural organ-pipe modes for such a pipe. Note also that the
determinant of the transfer matrix is

DT = DT ∗ = e2jθM (9.76)

Since no damping has been included, this component is an undamped dis-
tributed system, and is therefore quasi-reciprocal. At low frequencies and
Mach numbers, the transfer function 9.73 reduces to

T ∗
11 → 1 ; T ∗

12 → − jω�
A0

T ∗
21 → −j

(
A0�
c2

)
ω ; T ∗

22 → 1 (9.77)

and so consists of an inertance, �/A0, and a compliance, A0�/c
2.

When friction is included (as is necessary in most water-hammer analyses)
the transfer function becomes

T ∗
11 =

(
k1e

k1 − k2e
k2

)
/ (k1 − k2)

T ∗
12 = −Ū (jθ+ f∗)

(
ek1 − ek2

)
/A0M (k1 − k2)

T ∗
21 = −jθA0M(1 −M2)

(
ek1 − ek2

)
/Ū (k1 − k2)
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T ∗
22 =

(
k1e

k2 − k2e
k1

)
/ (k1 − k2) (9.78)

in which f∗ = f�M/2a(1 −M2) and k1, k2 are the solutions of

k2 − kM(2jθ + f∗) − jθ(1 −M2)(jθ+ f∗) = 0 (9.79)

The determinant of this transfer matrix [T ∗] is

DT ∗ = ek1+k2 (9.80)

Note that this component is only quasi-reciprocal in the undamped limit,
f → 0.

9.12 FLUCTUATION ENERGY FLUX

It is clearly important to be able to establish the net energy flux into or
out of a hydraulic system component (see Brennen and Braisted 1980). If
the fluid is incompressible, and the order two system is characterized by
the mass flow rate, m, and the total pressure, pT , then the instantaneous
energy flux through any system node is given by mpT /ρ where the density
is assumed constant. Substituting the expansions 9.28, 9.29 for pT and m,
it is readily seen that the mean flux of energy due to the fluctuations, E, is
given by

E =
1
4ρ

{
m̃¯̃pT + ¯̃mp̃T

}
(9.81)

where the overbar denotes a complex conjugate. Superimposed on E are
fluctuations in the energy flux whose time-average value is zero, but we
shall not be concerned with those fluctuations. The mean fluctuation energy
flux, E, is of more consequence in terms, for example, of evaluating stability.
It follows that the net flux of fluctuation energy into a component from the
fluid is given by

E1 −E2 = ΔE =
1
4ρ

[
m̃1

¯̃pT
1 + ¯̃m1p̃

T
1 − m̃2

¯̃pT
2 − ¯̃m2p̃

T
2

]
(9.82)

and when the transfer function form 9.31 is used to write this in terms of
the inlet fluctuating quantities

ΔE =
1
4ρ

[
−Γ1p̃

T
1
¯̃pT
1 − Γ2m̃1

¯̃m1 + (1− Γ3)m̃1
¯̃pT
1 + (1 − Γ̄3) ¯̃m1p̃

T
1

]
(9.83)

where

Γ1 = T11T̄21 + T21T̄11
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Γ2 = T22T̄12 + T12T̄22

Γ3 = T̄11T22 + T̄21T12 (9.84)

and

|Γ3|2 = |DT |2 + Γ1Γ2 (9.85)

Using the above relations, we can draw the following conclusions:

1. A component or system which is “conservative” (in the sense that ΔE = 0 under
all circumstances, whatever the values of p̃T

1 and m̃1) requires that

Γ1 = Γ2 = 0 , Γ3 = 1 (9.86)

and these in turn require not only that the system or component be “quasi-
reciprocal” (|DT | = 1) but also that

T̄11

T11
= − T̄12

T12
= − T̄21

T21
=
T̄22

T22
=

1
DT

(9.87)

Such conditions virtually never occur in real hydraulic systems, though any com-
bination of lumped inertances and compliances does constitute a conservative
system. This can be readily demonstrated as follows. An inertance or compli-
ance has DT = 1, purely real T11 and T22 so that T11 = T̄11 and T22 = T̄22, and
purely imaginery T21 and T12 so that T21 = −T̄21 and T12 = −T̄12. Hence indi-
vidual inertances or compliances satisfy equations 9.86 and 9.87. Furthermore,
from the combination rules of section 9.9, it can readily be seen that all combi-
nation of components with purely real T11 and T22 and purely imaginery T21 and
T12 will retain the same properties. Consequently, any combination of inertance
and compliance satisfies equations 9.86 and 9.87 and is conservative.

2. A component or system will be considered “completely passive” if ΔE is positive
for all possible values of m̃1 and p̃T

1 . This implies that a net external supply of
energy to the fluid is required to maintain any steady state oscillation. To find
the characteristics of the transfer function which imply “complete passivity” the
expression 9.83 is rewritten in the form

ΔE =
|p̃T

1 |2
4ρ

[−Γ1 − Γ2xx̄+ (1 − Γ3)x+ (1 − Γ̄3)x̄
]

(9.88)

where x = m̃1/p̃
T
1 . It follows that the sign of ΔE is determined by the sign of

the expression in the square brackets. Moreover, if Γ2 < 0, it is readily seen that
this expression has a minimum and is positive for all x if

Γ1Γ2 > |1 − Γ3|2 (9.89)

which, since Γ2 < 0, implies Γ1 < 0. It follows that necessary and sufficient con-
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Figure 9.3. Schematic of the conditions for completely active, completely
passive and potentially active components or systems.

ditions for a component or system to be completely passive are

Γ1 < 0 and G < 0 (9.90)

where

G = |1− Γ3|2 − Γ1Γ2 = |DT |2 + 1 − 2Re{Γ3} (9.91)

The conditions 9.90 also imply Γ2 < 0. Conversely a “completely active” compo-
nent or system which always has ΔE < 0 occurs if and only if Γ1 > 0 and G < 0
which imply Γ2 > 0. These properties are not, of course, the only possibilities. A
component or system which is not completely passive or active could be “poten-
tially active.” That is to say, ΔE could be negative for the right combination of
m̃1 and p̃T

1 , which would, in turn, depend on the rest of the system to which the
particular component or system is attached. Since Γ1 is almost always negative,
it transpires that most components are either completely passive or potentially
active, depending on the sign of the quantity, G, which will therefore be termed
the “dynamic activity”. These circumstances can be presented graphically as
shown in figure 9.3.

In practice, of course, both the transfer function, and properties like the
dynamic activity, G, will be functions not only of frequency but also of the
mean flow conditions. Hence the potential for system instability should be
evaluated by tracking the graph of G against frequency, and establishing the
mean flow conditions for which the quantity G becomes negative within the
range of frequencies for which transfer function information is available.
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While the above analysis represents the most general approach to the sta-
bility of systems or components, the results are not readily interpreted in
terms of commonly employed measures of the system or component char-
acteristics. It is therefore instructive to consider two special subsets of the
general case, not only because of the simplicity of the results, but also be-
cause of the ubiquity of these special cases. Consider first a system or com-
ponent that discharges into a large, constant head reservoir, so that p̃T

2 = 0.
It follows from the expression 9.82 that

ΔE =
|m̃1|2
2ρ

Re{p̃T
1 /m̃1} (9.92)

Note that ΔE is always purely real and that the sign only depends on the
real part of the “input impedance”

p̃T
1 /m̃1 = −T12/T11 (9.93)

Consequently a component or system with a constant head discharge will
be dynamically stable if the “input resistance” is positive or

Re {−T12/T11} > 0 (9.94)

This relation between the net fluctuation energy flux, the input resistance,
and the system stability, is valuable because of the simplicity of its physical
interpretation. In practice, the graph of input resistance against frequency
can be monitored for changes with mean flow conditions. Instabilities will
arise at frequencies for which the input resistance becomes negative.

The second special case is that in which the component or system begins
with a constant head reservoir rather than discharging into one. Then

ΔE =
|m̃2|2
2ρ

Re
{−p̃T

2 /m̃2

}
(9.95)

and the stability depends on the sign of the real part of the “discharge
impedance”

−p̃T
2 /m̃2 = −T12/T22 (9.96)

Thus a constant head inlet component or system will be stable when the
“discharge resistance” is positive or

Re {−T12/T22} > 0 (9.97)

In practice, since T11 and T22 are close to unity for many components and
systems, both the condition 9.94 and the condition 9.97 reduce to the ap-
proximate condition that the system resistance, Re{−T12}, be positive for
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system stability. While not always the case, this approximate condition is
frequently more convenient and more readily evaluated than the more pre-
cise conditions detailed above and given in equations 9.94 and 9.97. Note
specifically, that the system resistance can be obtained from steady state
operating characteristics; for example, in the case of a pump or turbine, it is
directly related to the slope of the head-flow characteristic and instabilities
in these devices which result from operation in a regime where the slope
of the characteristic is positive and Re{−T12} is negative are well known
(Greitzer 1981) and have been described earlier (section 8.6).

It is, however, important to recognize that the approximate stability cri-
terion Re{−T12} > 0, while it may provide a useful guideline in many cir-
cumstances, is by no means accurate in all cases. One notable and important
case in which this criterion is inaccurate is the auto-oscillation phenomenon
described in section 8.7. This is not the result of a positive slope in the
head-flow characteristic, but rather occurs where this slope is negative and
is caused by cavitation-induced changes in the other elements of the transfer
function. This circumstance will be discussed further in section 9.14.

9.13 NON-CAVITATING PUMPS

Consider now the questions associated with transfer functions for pumps
or other turbomachines. In the simple fluid flows of section 9.11 we were
able to utilize the known equations governing the flow in order to construct
the transfer functions for those simple components. In the case of more
complex fluids or geometries, one cannot necessarily construct appropriate
one-dimensional flow equations, and therefore must resort to results derived
from more global application of conservation laws or to experimental mea-
surements of transfer matrices. Consider first the transfer matrix, [TP ], for
incompressible flow through a pump (all pump transfer functions will be
of the [T ] form defined in equation 9.35) which will clearly be a function
not only of the frequency, ω, but also of the mean operating point as repre-
sented by the flow coefficient, φ, and the cavitation number, σ. At very low
frequencies one can argue that the pump will simply track up and down the
performance characteristic, so that, for small amplitude perturbations and
in the absence of cavitation, the transfer function becomes

[TP ] =

⎡
⎢⎣1 d(ΔpT )

dm

0 1

⎤
⎥⎦ (9.98)
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where d(ΔpT )/dm is the slope of the steady state operating characteristic
of total pressure rise versus mass flow rate. Thus we define the pump resis-
tance, RP = −d(ΔpT )/dm, where RP is usually positive under design flow
conditions, but may be negative at low flow rates as discussed earlier (sec-
tion 8.6). At finite frequencies, the elements TP21 and TP22 will continue
to be zero and unity respectively, since the instantaneous flow rate into and
out of the pump must be identical when the fluid and structure are incom-
pressible and no cavitation occurs. Furthermore, TP11 must continue to be
unity since, in an incompressible flow, the total pressure differences must be
independent of the level of the pressure. It follows that the transfer function
at higher frequencies will become

[TP ] =
[

1 −IP
0 1

]
(9.99)

where the pump impedence, IP , will, in general, consist of a resistive part,
RP , and a reactive part, jωLP . The resistance, RP , and inertance, LP ,
could be functions of both the frequency, ω, and the mean flow conditions.
Such simple impedance models for pumps have been employed, together
with transfer functions for the suction and discharge lines (equation 9.73),
to model the dynamics of pumping systems. For example, Dussourd (1968)
used frequency domain methods to analyse pulsation problems in boiler feed
pump systems. More recently, Sano (1983) used transfer functions to obtain
natural frequencies for pumping systems that agree well with those observed
experimentally.

The first fundamental investigation of the dynamic response of pumps
seems to have been carried out by Ohashi (1968) who analyzed the oscillat-
ing flow through a cascade, and carried out some preliminary experimental
investigations on a centrifugal pump. These studies enabled him to evaluate
the frequency at which the response of the pump would cease to be qua-
sistatic (see below). Fanelli (1972) appears to have been the first to explore
the nature of the pump transfer function, while the first systematic mea-
surements of the impedance of a noncavitating centrifugal pump are those
of Anderson, Blade and Stevans (1971). Typical resistive and reactive com-
ponent measurements from the work of Anderson, Blade and Stevans are
reproduced in figure 9.4. Note that, though the resistance approaches the
quasistatic value at low frequencies, it also departs significantly from this
value at higher frequencies. Moreover, the reactive part is only roughly linear
with frequency. The resistance and inertance are presented again in figure
9.5, where they are compared with the results of a dynamic model proposed
by Anderson, Blade and Stevans. In this model, each pump impeller passage
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Figure 9.4. Impedance measurements made by Anderson, Blade and Ste-
vans (1971) on a centrifugal pump (impeller diameter of 18.9 cm) operating
at a flow coefficient of 0.442 and a speed of 3000 rpm. The real or resis-
tive part of (−T12) and the imaginary or reactive part of (T12) are plotted
against the frequency of the perturbation.

is represented by a resistance and an inertance, and the volute by a series of
resistances and inertances. Since each impeller passage discharges into the
volute at different locations relative to the volute discharge, each impeller
passage flow experiences a different impedance on its way to the discharge.
This results in an overall pump resistance and inertance that are frequency
dependent as shown in figure 9.5. Note that the comparison with the exper-
imental observations (which are also included in figure 9.5) is fair, but not
completely satisfactory. Moreover, it should be noted, that the comparison
shown is for a flow coefficient of 0.442 (above the design flow coefficient),
and that, at higher flow coefficients, the model and experimental results
exhibited poorer agreement.

Subsequent measurements of the impedance of non-cavitating axial and
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Figure 9.5. Typical inertance and resistance values from the centrifugal
pump data of figure 9.4. Data do not include the diffuser contribution. The
lines correspond to analytical values obtained as described in the text.

mixed flow pumps by Ng and Brennen (1978) exhibit a similar increase in
the resistance with frequency (see next section). In both sets of dynamic
data, it does appear that significant departure from the quasistatic values
can be expected when the reduced frequency, (frequency/rotation frequency)
exceeds about 0.02 (see figures 9.5 and 9.6). This is roughly consistent with
the criterion suggested by Ohashi (1968) who concluded that non-quasistatic
effects would occur above a reduced frequency of 0.05ZRφ/ cosβ. For the
inducers of Ng and Brennen, Ohashi’s criterion yields values for the critical
reduced frequency of about 0.015.

9.14 CAVITATING INDUCERS

In the presence of cavitation, the transfer function for a pump or inducer
will be considerably more complicated than that of equation 9.99. Even at
low frequencies, the values of TP11 will become different from unity, because
the head rise will change with the inlet total pressure, as manifest by the
nonzero value of d(ΔpT )/dpT

1 at a given mass flow rate, m1. Furthermore,
the volume of cavitation, VC(pT

1 , m1), will vary with both the inlet total
pressure, pT

1 (or NPSH or cavitation number), and with the mass flow rate,
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m1 (or with angle of incidence), so that

[TP ] =

⎡
⎢⎢⎣

1 + d(ΔpT )

dpT
1

|m1

dΔpT

dm1
|pT

1

jωρL
dVC

dpT
1
|m1 1 + jωρL

dVC
dm1

|pT
1

⎤
⎥⎥⎦ (9.100)

Brennen and Acosta (1973, 1975, 1976) identified this quasistatic or low fre-
quency form for the transfer function of a cavitating pump, and calculated
values of the cavitation compliance, −ρL(dVC/dp

T
1 )m1 and the cavitation

mass flow gain factor, −ρL(dVC/dm1)pT
1
, using the cavitating cascade solu-

tion discussed in section 7.10. Both the upper limit of frequency at which
this quasistatic approach is valid and the form of the transfer function above
this limit cannot readily be determined except by experiment. Though it
was clear that experimental measurements of the dynamic transfer func-
tions were required, these early investigations of Brennen and Acosta did
highlight the importance of both the compliance and the mass flow gain
factor in determining the stability of systems with cavitating pumps.

Ng and Brennen (1978) and Brennen et al. (1982) conducted the first ex-
periments to measure the complete transfer function for cavitating inducers.
Typical transfer functions are those for the 10.2 cm diameter Impeller VI
(see section 2.8), whose noncavitating steady state performance was pre-
sented in figure 7.15. Transfer matrices for that inducer are presented in
figure 9.6 as a function of frequency (up to 32 Hz), for a speed of 6000 rpm,
a flow coefficient φ1 = 0.07 and for five different cavitation numbers ranging
from data set A that was taken under noncavitating conditions, to data set
C that showed a little cavitation, to data set H that was close to breakdown.
The real and imaginary parts are represented by the solid and dashed lines,
respectively. Note, first, that, in the absence of cavitation (Case A), the
transfer function is fairly close to the anticipated form of equation 9.99 in
which TP11 = TP22 = 1, TP21 = 0. Also, the impedance (TP12) is comprised
of an expected inertance (the imaginary part of TP12 is linear in frequency)
and a resistance (real part of −TP12) which is consistent with the quasistatic
resistance from the slope of the head rise characteristic (shown by the arrow
in figure 9.6 at TP12RT 1/Ω = 1.07). The resistance appears to increase with
increasing frequency, a trend which is consistent with the centrifugal pump
measurements of Anderson, Blade and Stevans (1971) which were presented
in figure 9.5.

It is also clear from figure 9.6 that, as the cavitation develops, the transfer
function departs significantly from the form of equation 9.99. One observes
that TP11 and TP22 depart from unity, and develop nonzero imaginary parts
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Figure 9.6. Typical transfer functions for a cavitating inducer obtained
by Brennen et al. (1982) for a 10.2 cm diameter inducer (Impeller VI)
operating at 6000 rpm and a flow coefficient of φ1 = 0.07. Data is shown
for four different cavitation numbers, σ = (A) 0.37, (C) 0.10, (D) 0.069, (G)
0.052 and (H) 0.044. Real and imaginary parts are denoted by the solid and
dashed lines respectively. The quasistatic pump resistance is indicated by
the arrow (adapted from Brennen et al. 1982).

that are fairly linear with frequency. Also TP21 becomes nonzero, and, in
particular, exhibits a compliance which clearly increases with decreasing
cavitation number. All of these changes mean that the determinant, DTP ,
departs from unity as the cavitation becomes more extensive. This is il-
lustrated in figure 9.7, which shows the determinant corresponding to the
data of figure 9.6. Note that DTP ≈ 1 for the non-cavitating case A, but
that it progressively deviates from unity as the cavitation increases. We can
conclude that the presence of cavitation can cause a pump to assume poten-
tially active dynamic characteristics when it would otherwise be dynamically
passive.
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Figure 9.7. Determinant, DTP , of the experimental transfer functions of
figure 9.6. The real and imaginary parts are shown by the solid and dashed
lines respectively and, as in figure 9.6, the letter code A→H refers to steady
state operating points with increasing cavitation (adapted from Brennen
et al. 1982).

Polynomials of the form

TPij =
n∗∑

n=0

Anij(jω)n (9.101)

were fitted to the experimental transfer function data using values of n∗ of 3
or 5. To illustrate the result of such curve fitting we include figure 9.8, which
depicts the result of curve fitting figure 9.6. We now proceed to examine
several of the coefficients Anij that are of particular interest (note that
A011 = A022 = 1, A021 = 0 for reasons described earlier). We begin with the
inertance, −A112, which is presented nondimensionally in figure 9.9. Though
there is significant scatter at the lower cavitation numbers, the two different
sizes of inducer pump appear to yield similar inertances. Moreover, the data
suggest some decrease in the inertance with decreasing σ. On the other
hand, the corresponding data for the compliance, −A121, which is presented
in figure 9.10 seems roughly inversely proportional to the cavitation number.
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Figure 9.8. Polynomial curves fitted to the experimental data of figure
9.6 (adapted from Brennen et al. 1982).

Figure 9.9. The inertance, −A112, non-dimensionalized as −A112RT1, as
a function of cavitation number for two axial inducer pumps (Impellers
IV and VI) with the same geometry but different diameters. Data for the
10.2 cm diameter Impeller VI is circled and was obtained from the data of
figure 9.6. The uncircled points are for the 7.58 cm diameter Impeller IV.
Adapted from Brennen et al. (1982).
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Figure 9.10. The compliance, −A121, nondimensionalized as
−A121Ω2/RT1 for the same circumstances as described in figure
9.9.

And the same is true for both the mass flow gain factor, −A122, and the
coefficient that defines the slope of the imaginary part of TP11, A111; these
are presented in figures 9.11 and 9.12, respectively. All of these data appear
to conform to the physical scaling implicit in the nondimensionalization of
each of the dynamic characteristics.

It is also valuable to consider the results of figures 9.9 to 9.12 in the
context of an analytical model for the dynamics of cavitating pumps (Bren-
nen 1978). We present here a brief physical description of that model, the
essence of which is depicted schematically in figure 9.13, which shows a de-
veloped, cylindrical surface within the inducer. The cavitation is modeled as
a bubbly mixture which extends over a fraction, ε, of the length, c, of each
blade passage before collapsing at a point where the pressure has risen to
a value which causes collapse. The mean void fraction of the bubbly mix-
ture is denoted by α0. Thus far we have described a flow which is nominally
steady. We must now consider perturbing both the pressure and the flow
rate at inlet, since the relation between these perturbations, and those at
discharge, determine the transfer function. Pressure perturbations at inlet
will cause pressure waves to travel through the bubbly mixture and this part
of the process is modeled using a mixture compressibility parameter, K, to

230



Figure 9.11. The mass flow gain factor, −A122, nondimensionalized as
−A122Ω for the same circumstances as described in figure 9.9.

Figure 9.12. The characteristic, A111, nondimensionalized as A111Ω for
the same circumstances as described in figure 9.9.
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Figure 9.13. Schematic of the bubbly flow model for the dynamics of
cavitating pumps (adapted from Brennen 1978).

determine that wave speed. On the other hand, fluctuations in the inlet flow
rate produce fluctuations in the angle of incidence which cause fluctuations
in the rate of production of cavitation at inlet. These disturbances would
then propagate down the blade passage as kinematic or concentration waves
which travel at the mean mixture velocity. This process is modeled by a
factor of proportionality, M , which relates the fluctuation in the angle of
incidence to the fluctuations in the void fraction. Neither of the parameters,
K or M , can be readily estimated analytically; they are, however, the two
key features in the bubbly flow model. Moreover they respectively deter-
mine the cavitation compliance and the mass flow gain factor, two of the
most important factors in the transfer function insofar as the prediction of
instability is concerned.

The theory yields the following expressions for A111, A112, A121 and A122

at small dimensionless frequencies (Brennen 1978, 1982):

A111Ω � Kζε

4
{
cotβb1 + φ1/ sin2 βb1

}
A112RT 1 � −ζ/4π sin2 βb1

A121Ω2/RT 1 � −πKζε/4

A122Ω � −ζε
4
{
M/φ1 −Kφ1/ sin2 βb1

}
(9.102)

where ζ = �ZR/RT 1 where � is the axial length of the inducer, and ZR is
the number of blades. Evaluation of the transfer function elements can be
effected by noting that the experimental observations suggest ε ≈ 0.02/σ.
Consequently, the Anij characteristics from equations 9.102 can be plotted
against cavitation number. Typical results are shown in figures 9.9 to 9.12
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Figure 9.14. Transfer functions for Impellers VI and IV at φ1 = 0.07 cal-
culated from the bubbly flow model using K = 1.3 and M = 0.8 (adapted
from Brennen et al. 1982).

for various choices of the two undetermined parameters K and M . The
inertance, A112, which is shown in figure 9.9, is independent of K and M .
The calculated value of the inertance for these impellers is about 9.2; the
actual value may be somewhat larger because of three-dimensional geometric
effects that were not included in the calculation (Brennen et al. 1982). The
parameter M only occurs in A122, and it appears from figure 9.11 as though
values of this parameter in the range 0.8 → 0.95 provide the best agreement
with the data. Also, a value of K ≈ 1.3 seems to generate a good match with
the data of figures 9.10, 9.11 and 9.12.

Finally, since K = 1.3 and M = 0.8 seem appropriate values for these im-
pellers, we reproduce in figure 9.14 the complete theoretical transfer func-
tions for various cavitation numbers. These should be directly compared
with the transfer functions of figure 9.8. Note that the general features of
the transfer functions, and their variation with cavitation number, are re-
produced by the model. The most notable discrepency is in the real part of
TP21; this parameter is, however, usually rather unimportant in determining
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the stability of a hydraulic system. Most important from the point of view
of stability predictions, the cavitation compliance and mass flow gain factor
components of the transfer function are satisfactorily modeled.

9.15 SYSTEM WITH RIGID BODY
VIBRATION

All of the preceding analysis has assumed that the structure of the hydraulic
system is at rest in some inertial coordinate system. However, there are a
number of important problems in which the oscillation of the hydraulic sys-
tem itself may play a central role. For instance, one might seek to evaluate
the unsteady pressures and flow rates in a hydraulic system aboard a vehicle
undergoing translational or rotational oscillations. Examples might be oil or
water pumping systems aboard a ship, or the fuel and hydraulic systems on
an aircraft. In other circumstances, the motion of the vehicle may couple
with the propulsion system dynamics to produce instabilities, as in the sim-
plest of the Pogo instabilities of liquid propelled rocket engines (see section
8.13).

In this section we give a brief outline of how rigid body oscillations of the
hydraulic system can be included in the frequency domain methodology. For
convenience we shall refer to the structure of the hydraulic system as the
“vehicle”. There are, of course, more complex problems in which the defor-
mation of the vehicle is important. Such problems require further refinement
of the methods presented here.

In order to include the rigid body oscillation of the vehicle in the analy-
sis, it is first necessary to define a coordinate system, x, which is fixed in
the vehicle, and a separate inertial or nonaccelerating coordinate system,
xA. The mean location of the origin of the x system is chosen to coincide
with the origin of the xA system. The oscillations of the vehicle are then
described by stating that the translational and rotational displacements of
the x coordinate system in the xA system are respectively given by

Re
{
d̃ejωt

}
; Re

{
θ̃ejωt

}
(9.103)

It follows that the oscillatory displacement of any vector point, x, in the
vehicle is given by

Re
{
(d̃+ θ̃ × x)ejωt

}
(9.104)
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and the oscillatory velocity of that point will be

Re
{
jω(d̃+ θ̃ × x)ejωt

}
(9.105)

Then, if the steady and oscillatory velocities of the flow in the hydraulic
system, and relative to that system, are given as in the previous sections by
ū and ũ respectively, it follows that the oscillatory velocity of the flow in the
nonaccelerating frame, ũA, is given by

ũA = ũ+ jω(d̃+ θ̃ × x) (9.106)

Furthermore, the acceleration of the fluid in the nonaccelerating frame, ãA,
is given by

ãA = jωũ− ω2d̃− ω2θ̃ × x+ 2jωθ̃ × ū (9.107)

The last three terms on the right hand side are vehicle-induced accelerations
of the fluid in the hydraulic system. It follows that these accelerations will
alter the difference in the total pressure between two nodes of the hydraulic
system denoted by subscripts 1 and 2. By integration one finds that the
total pressure difference, (p̃T

2 − p̃T
1 ), is related to that which would pertain

in the absence of vehicle oscillation, (p̃T
2 − p̃T

1 )0, by

(p̃T
2 − p̃T

1 ) = (p̃T
2 − p̃T

1 )0 + ρω2
{
(x2 − x1) · d̃+ (x2 × x1) · θ̃

}
(9.108)

where x2 and x1 are the locations of the two nodes in the frame of reference
of the vehicle.

The inclusion of these acceleration-induced total pressure changes is the
first step in the synthesis of models of this class of problems. Their evaluation
requires the input of the location vectors, xi, for each of the system nodes,
and the values of the system displacement frequency, ω, and amplitudes, d̃
and θ̃. In an analysis of the response of the hydraulic system, the vibration
amplitudes, d̃ and θ̃, would be included as inputs. In a stability analysis, they
would be initially unknown. In the latter case, the system of equations would
need to be supplemented by those of the appropriate feedback mechanism.
An example would be a set of equations giving the unsteady thrust of an
engine in terms of the fluctuating fuel supply rate and pressure and giving
the accelerations of the vehicle resulting from that fluctuating thrust. Clearly
a complete treatment of such problems would be beyond the scope of this
book.
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10

RADIAL AND ROTORDYNAMIC FORCES

10.1 INTRODUCTION

This chapter is devoted to a discussion of the various fluid-induced radial and
rotordynamic forces which can occur in pumps and other turbomachines. It
has become increasingly recognized that the reliability and acceptability of
modern turbomachines depend heavily on the degree of vibration and noise
which those machines produce (Makay and Szamody 1978), and that one of
the most common sources of vibration is associated with the dynamics of
the shaft and its related components, bearings, seals, and impellers (Duncan
1966-67, Doyle 1980, Ehrich and Childs 1984). It is clear that the modern
pump designer (see, for example, Ek 1978, France 1986), or turbine designer
(see, for example, Pollman et al. 1978), must pay particular attention to
the rotordynamics of the shaft to ensure not only that the critical speeds
occur at expected rotational rates, but also that the vibration levels are
minimized. It is, however, important to note that not all shaft vibrations
are caused by rotordynamic instability. For example, Rosenmann (1965)
reports oscillating radial forces on cavitating inducers that are about 20%
of the axial thrust, and are caused by flow oscillations, not rotordynamic
oscillations. Also, Marscher (1988) investigated shaft motions induced by
the unsteady flows at inlet to a centrifugal impeller operating below the
design flow rate.

Texts such as Vance (1988) provide background on the methods of rotor-
dynamic analysis. We focus here only on some of the inputs which are needed
for that analysis, namely the forces caused by fluid motion in the bearing,
seal, or impeller. One reason for this emphasis is that these inputs repre-
sent, at present, the area of greatest uncertainty insofar as the rotordynamic
analysis is concerned.

We shall attempt to present data from many different sources using a
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common notation and a common nondimensionalizing procedure. This back-
ground is reviewed in the next section. Subsequently, we shall examine the
known fluid-induced rotordynamic effects in hydrodynamic bearings, seals,
and other devices. Then the forces acting on an impeller, both steady radial
and rotordynamic forces, will be reviewed both for centrifugal pumps and
for axial flow inducers.

10.2 NOTATION

The forces that the fluid imparts to the rotor in a plane perpendicular to
the axis of rotation are depicted in figure 10.1, and are decomposed into
components in the directions x and y, where this coordinate system is fixed
in the framework of the pump. The instantaneous forces are denoted by
F ∗

x (t), F ∗
y (t), and the time-averaged values of these forces in the stationary

frame are denoted by F ∗
0x, F ∗

0y. By definition, these are the steady forces
commonly referred to as the radial forces or radial thrust. Sometimes it is
important to know the axial position of the line of action of these forces.
Alternatively, one can regard the x, y axes as fixed at some convenient axial
location. Then, in addition to the forces, F ∗

x (t) and F ∗
y (t), the fluid-induced

bending moments, M∗
x(t) and M∗

y (t), would be required information. The
time-averaged moments will be defined by M∗

0x and M∗
0y.

Figure 10.1. Schematic showing the relationship between the forces in
the pump frame, F ∗

x , F ∗
y , the rotordynamic forces, F ∗

n , F ∗
t , the impeller

center, the whirl orbit, and the volute geometry.
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Even if the location of the center of rotation were stationary at the origin
of the xy plane (figure 10.1) the forces F ∗

x (t), F ∗
y (t) and moments M∗

x(t),
M∗

y (t) could still have significant unsteady components. For example, rotor-
stator interaction could lead to significant forces on the impeller at the
blade passing frequencies. Similarly, there could be blade passing frequency
components in the torque, T (t), and the axial thrust, as discussed earlier in
section 8.2. For simplicity, however, they will not be included in the present
mathematical formulation.

The other set of forces with which this chapter will be concerned are the
fluid-induced rotordynamic forces that are caused by the displacement and
motion of the axis of rotation. It will be assumed that this displacement is
sufficiently small so that a linear perturbation model is accurate. Then{

F ∗
x (t)
F ∗

y (t)

}
=

{
F ∗

0x

F ∗
0y

}
+ [A∗]

{
x(t)
y(t)

}
(10.1)

where the displacement is given by x(t) and y(t), and [A∗] is known as the
“rotordynamic force matrix,” which, in the linear model, would be indepen-
dent of time, t. In virtually all cases that we shall be describing here, the
displacements are sinusoidal. The “whirl” frequency of these motions will be
denoted by ω (rad/s). Then, in general, the matrix [A∗] will not only be a
function of the turbomachine geometry and operating condition, but also of
the whirl frequency, ω. In an analogous manner the rotordynamic moment
matrix, [B∗], is defined by{

M∗
x(t)

M∗
y (t)

}
=

{
M∗

0x

M∗
0y

}
+ [B∗]

{
x(t)
y(t)

}
(10.2)

The radial forces will be presented here in nondimensional form (denoted by
the same symbols without the asterisk) by dividing the forces by ρπΩ2R3

T 2L,
where the selected length L may vary with the device. In seals and bear-
ings, L is the axial length of the component. For centrifugal pumps, it is
appropriate to use the width of the discharge so that L = B2. With axial
inducers, the axial extent of the blades is used for L. The displacements
are nondimensionalized by R. In seals and bearings, the radius of the rotor
is used; in centrifugal pump impellers, the discharge radius is used so that
R = RT 2. It follows that the matrix [A] is nondimensionalized by ρπΩ2R2L.
Correspondingly, the radial moments and the moment matrix [B] are nondi-
mensionalized by ρπΩ2R4L and ρπΩ2R3L respectively. Thus{

Fx(t)
Fy(t)

}
=
{
F0x

F0y

}
+ [A]

{
x(t)/R
y(t)/R

}
(10.3)
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{
Mx(t)
My(t)

}
=
{
M0x

M0y

}
+ [B]

{
x(t)/R
y(t)/R

}
(10.4)

The magnitude of the dimensionless radial force will be denoted by F0 =
(F 2

0x + F 2
0y)

1
2 , and its direction, θ, will be measured from the tongue or

cutwater of the volute in the direction of rotation.
One particular feature of the rotordynamic matrices, [A] and [B], deserves

special note. There are many geometries in which the rotordynamic forces
should be invariant to a rotation of the x, y axes. Such will be the case only
if

Axx = Ayy ; Axy = −Ayx (10.5)

Bxx = Byy ; Bxy = −Byx (10.6)

This does appear to be the case for virtually all of the experimental mea-
surements that have been made in turbomachines.

The prototypical displacement will clearly consist of a circular whirl mo-
tion of “eccentricity”, ε, and whirl frequency, ω, so that x(t) = ε cosωt and
y(t) = ε sinωt. As indicated in figure 10.1, an alternative notation is to de-
fine “rotordynamic forces”, F ∗

n and F ∗
t , that are normal and tangential to

the circular whirl orbit at the instantaneous position of the center of rota-
tion. Note that F ∗

n is defined as positive outward and F ∗
t as positive in the

direction of rotation, Ω. It follows that

F ∗
n = ε

(
A∗

xx + A∗
yy

)
/2 (10.7)

F ∗
t = ε

(
A∗

yx − A∗
xy

)
/2 (10.8)

and it is appropriate to define dimensionless normal and tangential forces,
Fn and Ft, by dividing by ρπΩ2R2Lε. Then the conditions of rotational
invariance can be restated as

Axx = Ayy = Fn (10.9)

Ayx = −Axy = Ft (10.10)

Since this condition is met in most of the experimental data, it becomes
convenient to display the rotordynamic forces by plotting Fn and Ft as func-
tions of the geometry, operating condition and frequency ratio, ω/Ω. This
presentation of the rotordynamic forces has a number of advantages from
the perspective of physical interpretation. In many applications the nor-
mal force, Fn, is modest compared with the potential restoring forces which
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can be generated by the bearings and the casing. The tangential force has
greater significance for the stability of the rotor system. Clearly a tangential
force that is in the same direction as the whirl velocity (Ft > 0 for ω > 0
or Ft < 0 for ω < 0) will be rotordynamically destabilizing, and will cause a
fluid-induced reduction in the critical whirl speeds of the machine. On the
other hand, an Ft in the opposite direction to ω will be whirl stabilizing.

Furthermore, it is conventional among rotordynamicists to decompose the
matrix [A] into added mass, damping and stiffness matrices according to

[A]
{
x/R

y/R

}
= −

[
M

−m
m

M

]{
ẍ/RΩ2

ÿ/RΩ2

}
−
[
C

−c
c

C

]{
ẋ/RΩ
ẏ/RΩ

}
−
[
K

−k
k

K

]{
x/R

y/R

}
(10.11)

where the dot denotes differentiation with respect to time, so that the added
mass matrix, [M ], multiplies the acceleration vector, the damping matrix,
[C], multiplies the velocity vector, and the stiffness matrix, [K], multiplies
the displacement vector. Note that the above has assumed rotational invari-
ance of [A], [M ], [C] and [K]; M and m are respectively termed the direct
and cross-coupled added mass, C and c the direct and cross-coupled damp-
ing, and K and k the direct and cross-coupled stiffness. Note also that the
corresponding dimensional rotordynamic coefficients, M∗, m∗, C∗, c∗, K∗,
and k∗ are related to the dimensionless versions by

M,m =
M∗, m∗

ρπR2L
; C, c =

C∗, c∗

ρπR2LΩ
; K, k =

K∗, k∗

ρπR2LΩ2
(10.12)

The representation of equation 10.11 is equivalent to assuming a quadratic
dependence of the elements of [A] (and the forces Fn, Ft) on the whirl fre-
quency, or frequency ratio, ω/Ω. It should be emphasized that fluid mechan-
ical forces do not always conform to such a simple frequency dependence.
For example, in section 10.6, we shall encounter a force proportional to ω

3
2 .

Nevertheless, it is of value to the rotordynamicists to fit quadratics to the
plots of Fn and Ft against ω/Ω, since, from the above relations, it follows
that

Fn = M (ω/Ω)2 − c (ω/Ω)−K (10.13)

Ft = −m (ω/Ω)2 −C (ω/Ω) + k (10.14)

and, therefore, all six rotordynamic coefficients can be directly evaluated
from quadratic curve fits to the graphs of Fn and Ft against ω/Ω.

Since m is often small and is frequently assumed to be negligible, the sign
of the tangential force is approximately determined by the quantity kΩ/ωC.
Thus rotordynamicists often seek to examine the quantity k/C = k∗/ΩC∗,
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which is often called the “whirl ratio” (not to be confused with the whirl
frequency ratio, ω/Ω). Clearly larger values of this whirl ratio imply a larger
range of frequencies for which the tangential force is destabilizing and a
greater chance of rotordynamic instability.

In the last few paragraphs we have focused on the forces, but it is clear
that a parallel construct is relevant to the rotordynamic moments. It should
be recognized that each of the components of a turbomachine will man-
ifest its own rotordynamic coefficients which will all need to be included
in order to effect a complete rotordynamic analysis of the machine. The
methods used in such rotordynamic analyses are beyond the scope of this
book. However, we shall attempt to review the origin of these forces in the
bearings, seals, and other components of the turbomachine. Moreover, both
the main flow and leakage flows associated with the impeller will generate
contributions. In order to permit ease of comparison between the rotordy-
namic effects contributed by the various components, we shall use a similar
nondimensionalization for all the components.

10.3 HYDRODYNAMIC BEARINGS
AND SEALS

Hydrodynamic bearings, seals, and squeeze-film dampers constitute a class
of devices that involve the flow in an annulus between two cylinders; the
inner cylinder is generally the shaft (radius, R) which is rotating at a fre-
quency, Ω, and may also be whirling with an amplitude or eccentricity, ε,
and a frequency, ω. The outer cylinder is generally static and fixed to the
support structure. The mean clearance (width of the annulus) will be de-
noted by δ, and the axial length by L. In both hydrodynamic bearings and
seals, the basic fluid motion is caused by the rotation of the shaft. In a seal,
there is an additional axial flow due to the imposed axial pressure differ-
ence. In a squeeze-film damper, there is no rotational motion, but forces are
generated by the whirl motion of the “rotor”.

The Reynolds number is an important parameter in these flows, and it is
useful to evaluate three different Reynolds numbers based on the rotational
velocity, on the mean axial velocity, V (given by V = Q/2πRδ where Q is
the volumetric axial flow rate), and on the velocity associated with the whirl
motion. These are termed the rotational, axial and whirl Reynolds numbers
and are defined, respectively, by

ReΩ = ΩRδ/ν, ReV = V δ/ν, Reω = ωRδ/ν (10.15)
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where ν is the kinematic viscosity of the fluid in the annulus. In a hydro-
dynamic bearing, the fluid must be of sufficiently high viscosity so that
ReΩ � 1. This is because the bearing depends for its operation on a large
fluid restoring force or stiffness occurring when the shaft or rotor is dis-
placed from a concentric position. Typically a bearing will run with a mean
eccentricity that produces the fluid forces that counteract the rotor weight
or other radial forces. It is important to recognize that the fluid only yields
such a restoring force or stiffness when the flow in the annulus is dominated
by viscous effects. For this to be the case, it is necessary that ReΩ � 1. If
this is not the case, and ReΩ 
 1 then, as we shall discuss later, the sign of
the fluid force is reversed, and, instead of tending to decrease eccentricity,
the fluid force tends to magnify it. This is called the “Bernoulli effect” or
“inertia effect”, and can be simply explained as follows. When an eccen-
tricity is introduced, the fluid velocities will be increased over that part of
the rotor circumference where the clearance has been reduced. At Reynolds
numbers much larger than unity, the Bernoulli equation is applicable, and
higher velocities imply lower pressure. Therefore the pressure in the fluid
is decreased where the clearance is small and, consequently, there will be a
net force on the rotor in the direction of the displacement. This “negative
stiffness” (K < 0) is important in the rotordynamics of seals and impellers.

Another parameter of importance is the ratio of the axial length to radius,

Figure 10.2. Schematic of a short seal demonstrating the Lomakin effect.
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L/R, of the bearing or seal. For large L/R, the predominant fluid motions
caused by the rotordynamic perturbations occur in the circumferential di-
rection. On the other hand, in a short seal or bearing, the predominant
effect of the rotordynamic perturbation is to cause circumferential variation
in the axial fluid velocity. This gives rise to the so-called “Lomakin effect”
in short seals operating at high Reynolds numbers (Lomakin 1958). The
circumstances are sketched in figure 10.2, in which we use a cylindrical co-
ordinate system, (r, θ, z), to depict a plain annular seal with a clearance, δ.
The fluid velocity, uz, is caused by the pressure difference, Δp = (p1 − p2).
We denote the axial velocity averaged over the clearance by ūz, and this
will be a function of θ when the rotor is displaced by an eccentricity, ε. The
Lomakin effect is caused by circumferential variations in the entrance losses
in this flow. On the side with the smaller clearance, the entrance losses are
smaller because ūz is smaller. Consequently, the mean pressure is larger on
the side with the smaller clearance, and the result is a restoring force due
to this circumferential pressure distribution. This is known as the Lomakin
effect, and gives rise to a positive fluid-induced stiffness, K. Note that the
competing Bernoulli and Lomakin effects can cause the sign of the fluid-
induced stiffness of a seal to change as the geometry changes.

In the following sections we examine more closely some of the fluid-induced
rotordynamic effects in bearings, seals, and impellers.

10.4 BEARINGS AT LOW REYNOLDS
NUMBERS

The rotordynamics of a simple hydrodynamic bearing operating at low
Reynolds number (ReΩ � 1) will be examined first. The conventional ap-
proach to this problem (Pinkus and Sternlicht 1961) is to use Reynolds’
approximate equation for the fluid motions in a thin film. In the present
context, in which the fluid is contained between two circular cylinders (fig-
ure 10.3) this equation becomes

1
R2

∂

∂θ

(
H3∂p

∂θ

)
+

∂

∂z

(
H3 ∂p

∂z

)
= 6μ

{
2
∂H

∂t
+

1
R

∂

∂θ
(HU)

}
(10.16)

where (θ, z) are the circumferential and axial coordinates. This equation
must be solved to find the pressure, p(θ, z, t), in the fluid (averaged over
the radial extent of the clearance gap) given the clearance, H(θ, t), and the
surface velocity, U , of the inner cylinder (U = ΩR). An eccentricity, ε, at
a whirl frequency of ω leads to a clearance, H , given by δ − ε cos(ωt− θ)
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Figure 10.3. Schematic of fluid-filled annulus between a stator and a ro-
tating and whirling rotor.

and substituting for H completes the formulation of equation 10.16 for the
pressure.

The rotordynamic forces, F ∗
n and F ∗

t , then follow from

{
F ∗

n

F ∗
t

}
= R

∫ L

0

∫ 2π

0
p

{− cos(ωt− θ)
sin(ωt− θ)

}
dθdz (10.17)

where L is the axial length of the bearing.
Two simple asymptotic solutions are readily forthcoming for linear per-

turbations in which ε� δ. The first is termed the “long bearing” solution,
and assumes, as discussed in the last section, that the dominant perturba-
tions to the velocity occur in the circumferential velocities rather than the
axial velocities. It follows that the second term in equation 10.16 can be ne-
glected as small relative to the first term. Neglecting, in addition, all terms
quadratic or higher order in ε, integration of equation 10.16 leads to

p =
6μR2ε

δ3
(Ω − 2ω) sin(ωt− θ) +

12μR2

δ3
dε

dt
cos(ωt− θ) (10.18)
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and to the following rotordynamic forces:

F ∗
n = −12πμR3L

δ3
dε

dt
; F ∗

t =
6πμR3Lε

δ3
(Ω− 2ω) (10.19)

In steady whirling motion, dε/dt = 0. The expression for F ∗
t implies the

following rotordynamic coefficients:

C∗ =
2k∗

Ω
=

12πμR3L

δ3
(10.20)

and K∗ = c∗ = M∗ = m∗ = 0.
The second, or “short bearing”, solution assumes that the dominant per-

turbations to the velocities occur in the axial velocities; this usually requires
L/R to be less than about 0.5. Then, assuming that the pressure is measured
relative to a uniform and common pressure at both ends, z = 0 and z = L,
integration of equation 10.16 leads to

p = z(L− z)
[
6μ
δ3
dε

dt
cos(ωt− θ) − 3με

δ3
(Ω − 2ω) sin(ωt− θ)

]
(10.21)

and, consequently,

F ∗
n = −πμRL

3

δ3
dε

dt
; F ∗

t =
πμRL3ε

2δ3
(Ω− 2ω) (10.22)

Therefore, in the short bearing case,

C∗ =
2k∗

Ω
=
πμRL3

2δ3
(10.23)

in contrast to the result in equation 10.20. Notice that, for both the long
and short bearing, the value of the whirl ratio, k∗/ΩC∗, is 0.5. Later, we will
compare this value with that obtained for other flows and other devices.

It is particularly important to note that the tangential forces in both
the long and short bearing solutions are negative for Ω < 2ω, and become
positive for Ω > 2ω. This explains the phenomenon of “oil whip” in hydrody-
namic bearings, first described by Newkirk and Taylor (1925). They reported
that violent shaft motions occurred when the shaft speed reached a value
twice the critical speed of the shaft. This phenomenon is the response of a
dynamic system at its natural frequency when the exciting tangential force
becomes positive, namely when Ω > 2ω (see Hori 1959). It is of interest to
note that a similar critical condition occurs for high Reynolds number flow
in the film (see equations 10.36 and 10.37).

The simple linear results described above can be augmented in several
ways. First, similar solutions can be generated for the more general case in
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which the eccentricity is not necessarily small compared with the clearance.
The results (Vance 1988) for the long bearing become

F ∗
n = −12πμR3L

δ3
1

(1 − ε2/δ2)
3
2

dε

dt
(10.24)

F ∗
t =

6πμR3L(Ω − 2ω)
δ3

ε

(1− ε2/δ2)(2 + ε2/δ2)
3
2

(10.25)

and, in the short bearing case,

F ∗
n = −πμRL

3

δ3
(1 + 2ε2/δ2)

(1 − ε2/δ2)
5
2

dε

dt
(10.26)

F ∗
t =

πμRL3(Ω − 2ω)
2δ3

ε

(1− ε2/δ2)
3
2

(10.27)

These represent perhaps the only cases in which rotordynamic forces and
coefficients can be evaluated for values of the eccentricity, ε, comparable
with the clearance, δ. The nonlinear analysis leads to rotordynamic coeffi-
cients which are functions of the eccentricity, ε, and the variation with ε/δ
is presented graphically in figure 10.4. Note that the linear values given by
equations 10.20 and 10.23 are satisfactory up to ε/δ of the order of 0.5.

Second, it is important to note that cavitation or gas dissolution in liquid-
filled bearings can often result in a substantial fraction of the annulus being
filled by a gas bubble or bubbles. The reader is referred to Dowson and
Taylor (1979) for a review of this complicated subject. Quite crude approx-
imations are often introduced into lubrication analyses in order to try to
account for this “cavitation”. The most common approximation is to as-
sume that the two quadrants in which the pressure falls below the mean are
completely filled with gas (or vapor) rather than liquid. Called a π-film cavi-
tated bearing, this heuristic assumption leads to the following rotordynamic
forces (Vance 1988). For the cavitated (π-film) long bearing

F ∗
n = −6μR3L

δ2

[
2|Ω− 2ω|ε2

δ2(2 + ε2/δ2)(1− ε2/δ2)
+

πdε/dt

δ(1 − ε2/δ2)
3
2

]
(10.28)

F ∗
t =

6μR3L

δ3

[
(Ω − 2ω)πε

(2 + ε2/δ2)(1− ε2/δ2)
3
2

+
4dε/dt

(1 + ε/δ)(1− ε2/δ2)

]
+ 2RLp0

(10.29)
where p0 is the pressure in the cavity. These expressions are similar to,
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Figure 10.4. Dimensionless damping and cross-coupled stiffness for non-
cavitating long and short bearings as functions of the eccentricity ratio,
ε/δ.

but not identical with, the expressions derived by Hori (1959) and used to
explain oil whip. For the cavitated (π-film) short bearing

F ∗
n = −μRL

3

δ2

[
|Ω− 2ω|ε2

δ2(1− ε2/δ2)2
+
π(1 + 2ε2/δ2)dε/dt

2δ(1− ε2/δ2)
5
2

]
(10.30)

F ∗
t =

μRL3

δ2

[
(Ω− 2ω)πε

4δ(1− ε2/δ2)
3
2

+
2εdε/dt

δ2(1− ε2/δ2)2

]
+ 2RLp0 (10.31)

It would, however, be appropriate to observe that rotordynamic coefficients
under cavitating conditions remain to be measured experimentally, and until
such tests are performed the above results should be regarded with some
scepticism.

Finally, we note that all of the fluid inertial effects have been neglected
in the above analyses, and, consequently, the question arises as to how the
results might change when the Reynolds number, ReΩ, is no longer negligibly
small. Such analyses require a return to the full Navier-Stokes equations, and
the author has explored the solutions of these equations in the case of long
bearings (Brennen 1976). In the case of whirl with constant eccentricity
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(dε/dt = 0), it was shown that there are two separate sets of asymptotic
results forReω � δ3/R3, and for δ3/R3 � Reω � δ2/R2. ForReω � δ3/R3,
the rotordynamic forces are

Fn = −9
4
R5

δ5

(
1− 2ω

Ω

)
(10.32)

while F ∗
t is the same as given in equation 10.19. Notice that equation 10.32

implies a direct stiffness, K, and cross-coupled damping, c, given by

K =
c

2
=

9
4
R5

δ5
(10.33)

On the other hand, for the range of Reynolds numbers given by δ3/R3 �
Reω � δ2/R2, the rotordynamic forces are

Fn =
16δ

R Re2Ω

(
2ω
Ω

− 1
)

; Ft =
128δ4

3R4Re3Ω

(
1 − 2ω

Ω

)
(10.34)

so that

K =
c

2
=

16δ
R Re2Ω

; C = 2k =
256δ4

3R4Re3Ω
(10.35)

In both cases the direct stiffness, K, is positive, implying a positive hydro-
dynamic restoring force caused by the inertial terms in the equations of fluid
motion.

10.5 ANNULUS AT HIGH REYNOLDS
NUMBERS

Consider now the flows of the last section when the Reynolds numbers be-
come much greater than unity. The name “bearing” must be omitted, since
the flow no longer has the necessary rotordynamic characteristics to act as
a hydrodynamic bearing. Nevertheless, such flows are of interest since there
are many instances in which rotors are surrounded by fluid annuli. Fritz
(1970) used an extension of a lubrication theory in which he included fluid
inertia and fluid frictional effects for several types of flow in the annulus,
including Taylor vortex flow and fully turbulent flow. Though some of his ar-
guments are heuristic, the results are included here because of their practical
value. The rotordynamic forces which he obtains are

F ∗
n =

πρR3L

δ

[
ε

(
Ω
2
− ω

)2

− d2ε

dt2
− Ωf

dε

dt

]
(10.36)
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F ∗
t =

πρR3L

δ

[
Ωεf

(
Ω
2
− ω

)
+ (Ω − 2ω)

dε

dt

]
(10.37)

where f is a fluid friction term that varies according to the type of flow
in the annulus. For laminar flow, f = 12ν/δ2Ω and the first term in the
square bracket of F ∗

t and the last term in F ∗
n are identical to the forces

for a noncavitating long bearing as given in equation 10.19. But, Fritz also
constructs forms for f for Taylor vortex flow and for turbulent flow. For
example, for turbulent flow

f = 1.14fTR/δ (10.38)

where fT is a friction factor that correlates with the Reynolds number, ReΩ.
The other terms in equations 10.36 and 10.37 that do not involve f are

caused by the fluid inertia and are governed by the added mass, M∗ =
πρR3L/δ, which Fritz confirms by experimental measurements. Note that
equations 10.36 and 10.37 imply rotordynamic coefficients as follows

M = R/δ ; c = R/δ ; K = −R/4δ

m = 0 ; C = fR/δ ; k = fR/2δ (10.39)

The author also examined these flows using solutions to the Navier-Stokes
equations (Brennen 1976). For annuli in which δ is not necessarily small
compared with R, the added mass becomes

M∗ =
πρLR2(R2

S + R2)
(R2

S −R2)
(10.40)

where RS is the radius of the rigid stator.

10.6 SQUEEZE FILM DAMPERS

A squeeze film damper consists of a nonrotating cylinder surrounded by a
fluid annulus contained by an outer cylinder. A shaft runs within the inner,
nonrotating cylinder so that the latter may perform whirl motions without
rotation. The fluid annulus is intended to damp any rotordynamic motions
of the shaft. It follows that figure 10.3 can also represent a squeeze film
damper as long as Ω is set to zero. The device is intended to operate at
low Reynolds numbers, Reω , and several of the results already described
can be readily adopted for use in a squeeze-film damper. Clearly analyses
can be generated for both long and short squeeze film dampers. The long
squeeze film damper is one flow for which approximate solutions to the full
Navier-Stokes equations can be found (Brennen 1976). Two sets of asymp-
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totic results emerge, depending on whether Reω is much less than, or much
greater than, 72R/δ. In the case of thin films (δ � R), the rotordynamic
forces for Reω � 72R/δ are

F ∗
n = 6πρR3Lω2ε/5δ (10.41)

F ∗
t = 12πμR3Lωε/δ3 (10.42)

where the F ∗
t is the same as that for a noncavitating long bearing. On the

other hand, for Reω 
 72R/δ:

F ∗
n =

πρR3Lω2ε

δ

[
1 +

(
2ν
ωδ2

)1
2

]
(10.43)

F ∗
t = πρR2Lω2ε

(
2ν
ωδ2

)1
2

(10.44)

The ω
3
2 dependent terms in these relations are very unfamiliar to rotordy-

namicists. However, such frequency dependence is common in flows that are
dominated by the diffusion of vorticity.

The relations 10.41 to 10.44 are limited to small amplitudes, ε� δ, and to
values of ωε2/ν � 1. At larger amplitudes and Reynolds numbers, ωε2/ν, it
is necessary to resort to lubrication analyses supplemented, where necessary,
with inertial terms in the same manner as described in the last section. Vance
(1988) delineates such an approach to squeeze film dampers.

10.7 TURBULENT ANNULAR SEALS

In an annular seal, the flows are usually turbulent because of the high
Reynolds numbers at which they operate. In this section we describe the ap-
proaches taken to identify the rotordynamic properties of these flows. Black
and his co-workers (Black 1969, Black and Jensen 1970) were the first to
attempt to identify and model the rotordynamics of turbulent annular seals.
Bulk flow models (similar to those of Reynolds lubrication equations) were
used. These employ velocity components, ūz(z, θ) and ūθ(z, θ), that are aver-
aged over the clearance. Black and Jensen used several heuristic assumptions
in their model, such as the assumption that ūθ = RΩ/2. Moreover, their gov-
erning equations do not reduce to recognizable turbulent lubrication equa-
tions. These issues caused Childs (1983b) to publish a revised version of the
bulk flow model and we will focus on Childs’ model here. Childs (1987, 1989)
has also employed a geometric generalization of the same bulk flow model
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Figure 10.5. Sketch of fluid filled annulus between a rotor and a stator
for turbulent lubrication analysis.

to examine the rotordynamic characteristics of discharge-to-suction leakage
flows around shrouded centrifugal pump impellers, and it is therefore con-
venient to include here the more general form of his analysis. The geometry
is sketched in figure 10.5, and is described by coordinates of the meridian of
the gap as given by Z(s) and R(s), 0 < s < L, where the coordinate, s, is
measured along that meridian. The clearance is denoted by H(s, θ, t) where
the unperturbed value of H is δ(s). The equations governing the bulk flow
are averaged over the clearance. This leads to a continuity equation of the
form

∂H

∂t
+

∂

∂s
(Hūs) +

1
R

∂

∂θ
(Hūθ) +

H

R

dR

ds
ūs = 0 (10.45)

where ūs and ūθ are velocities averaged over the local clearance. The merid-
ional and circumferential momentum equations are

−1
ρ

∂p

∂s
=
τss
ρH

+
τsr
ρH

− ū2
θ

R

dR

ds
+
∂ūs

∂t
+
ūθ

R

∂ūs

∂θ
+ ūs

∂ūs

∂θ
(10.46)

− 1
ρR

∂p

∂θ
=
τθs

ρH
+
τθr

ρH
+
∂ūθ

∂t
+
ūθ

R

∂ūθ

∂θ
+ ūs

∂ūθ

∂s
+
ūθūr

R

dR

ds
(10.47)

The approach used by Hirs (1973) is employed to determine the turbulent
shear stresses, τss and τθs, applied to the stator by the fluid in the s and θ
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directions respectively:

τss
ρūs

=
τθs

ρūθ
=
Asūs

2
[
1 + (ūθ/ūs)2

]ms+1
2 (Res)ms (10.48)

and the stresses, τsr and τθr, applied to the rotor by the fluid in the same
directions:

τsr
ρūs

=
τθr

ρ(ūθ − ΩR)
=
Arūs

2

[
1 + {(ūθ − ΩR)/ūs}2

]mθ+1

2 (Res)mθ (10.49)

where the local meridional Reynolds number

Res = Hūs/ν (10.50)

and the constants As, Ar, ms and mθ are chosen to fit the available data on
turbulent shear stresses. Childs (1983a) uses typical values of these constants

As = Ar = 0.0664 ; ms = mθ = −1
4

(10.51)

The clearance, pressure, and velocities are divided into mean components
(subscript 0) that would pertain in the absence of whirl, and small, linear
perturbations (subscript 1) due to an eccentricity, ε, rotating at the whirl
frequency, ω:

H(s, θ, t) = H0(s) + εRe
{
H1(s)ei(θ−ωt)

}
p(s, θ, t) = p0(s) + εRe

{
p1(s)ei(θ−ωt)

}
ūs(s, θ, t) = ūs0(s) + εRe

{
ūs1(s)ei(θ−ωt)

}
ūθ(s, θ, t) = ūθ0(s) + εRe

{
ūθ1(s)ei(θ−ωt)

}
(10.52)

These expressions are substituted into the governing equations listed above
to yield a set of equations for the mean flow quantities (p0, ūs0, and ūθ0),
and a second set of equations for the perturbation quantities (p1, ūs1, and
ūθ1); terms which are of quadratic or higher order in ε are neglected.

With the kind of complex geometry associated, say, with discharge-to-
suction leakage flows in centrifugal pumps, it is necessary to solve both sets
of equations numerically in order to evaluate the pressures, and then the
forces, on the rotor. However, with the simple geometry of a plain, untapered
annular seal where

R(s) = R , H0(s) = δ , s = z , H1(s) = 1 (10.53)

and in which

ūs0 =
Q

2πRδ
= V (10.54)
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where Q is the volumetric flow rate, Childs (1983a) was able to obtain ana-
lytic solutions to both the mean and perturbation equations. The resulting
evaluation of the rotordynamic forces leads to the following rotordynamic
coefficients:

K =
(

2ΔpT

ρV 2

)
φ2 R

2λ1L

[
μ0 − μ2(L/2φR)2

]
(10.55)

C = 2k =
(

2ΔpT

ρV 2

)
φμ1

2λ1
(10.56)

M = c =
(

2ΔpT

ρV 2

)
μ2L

2λ1R
(10.57)

where φ is the flow coefficient (φ = V /ΩR), and ΔpT is the total pressure
drop across the seal where

2ΔpT

ρV 2
= 1 +CEL+ 2λ2 (10.58)

and λ, μ0, μ1, and μ2 are given by

λ1 = 0.0664(ReV )−
1
4
{
1 + 1/4φ2

}3
8 (10.59)

λ2 = λ1L/δ (10.60)

μ0 = 5λ2
2μ5/2(1 + CEL + 2λ2) (10.61)

μ1 = 2λ2

{
μ5 +

1
2
λ2μ4(μ5 + 1/6)

}
/(1 +CEL + 2λ2) (10.62)

μ2 = λ2(μ5 + 1/6)/(1 + CEL + 2λ2) (10.63)

μ4 = (1 + 7φ2)/(1 + 4φ2) (10.64)

μ5 = (1 +CEL)/2(1 +CEL + μ4λ2) (10.65)

where CEL is an entrance loss coefficient for which the data of Yamada (1962)
was used. Note that there are two terms in K; the first, which contains μ0,
results from the Lomakin effect, while the second, involving μ2, results from
the Bernoulli effect (section 10.3).

The results obtained by Black and Jensen (1970) are similar to the above
except for the expressions for some of the λ and μ quantities. Childs (1983a)
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Figure 10.6. Typical dimensionless rotordynamic coefficients from Childs’
(1983a) analysis of a plain, untapered and smooth annular seal with δ/R =
0.01, ReV = 5000, and CEL = 0.1.

Figure 10.7. Typical dimensionless rotordynamic coefficients from Childs’
(1983a) analysis of a plain, untapered and smooth annular seal with L/R =
1, ReV = 5000, and CEL = 0.1.

254



Figure 10.8. The measurements by Childs and Dressman (1982) of the
rotordynamic forces for a straight, smooth annular seal (L/R = 1.0, δ/R =
0.01) for a range of Reynolds numbers, 2205 < ReV < 13390, and under
synchronous excitation. Also shown are the predictions of the theory of
Childs (1983a) for ReV = 10000 (solid lines) and 15000 (dashed lines) and
two different entrance loss coefficients, CEL, as shown.

contrasts the two sets of expressions, and observes that one of the primary
discrepancies is that the Black and Jensen expressions yield a significant
smaller added mass,M . We should also note that Childs (1983a) includes the
effect of inlet preswirl which has a significant influence on the rotordynamic
coefficients. Preswirl was not included in the results presented above.

Typical results from the expressions 10.55 to 10.57 are presented in figures
10.6 and 10.7, which show the variations with flow coefficient, φ, and the
geometric ratios, L/R and δ/R. The effects of Reynolds number, ReV , and of
the entrance loss coefficient, are small as demonstrated in figure 10.8. Note
the changes in sign in the direct stiffness, K, that result from the Lomakin
effect becoming larger than the Bernoulli effect, or vice-versa. Note, also,
that the whirl ratio, k/C, is 0.5 in all cases.

Childs and Dressman (1982) have published experimental measurements
of the rotordynamic forces in a plain, smooth, annular seal with a length,
L, to radius, R, ratio of 1.0, a clearance, δ, to radius ratio of 0.01 at various
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flow rates and speeds. The excitation was synchronous (ω/Ω = 1) so that

Fn = M − c−K ; Ft = −m−C + k (10.66)

Consequently, if one assumes the theoretical results M = c, m = 0 and C =
2k to be correct, then

Fn = −K ; Ft = −k = − c
2

(10.67)

The data of Childs and Dressman for Reynolds numbers in the ranges
2205 < ReV < 13390 and 2700 < ReΩ < 10660 are plotted in figure 10.8.
It is readily seen that, apart from the geometric parameters L/R and δ/R,
the rotordynamic characteristics are primarily a function of the flow coef-
ficient, φ, defined as φ = V /ΩR = ReV /ReΩ, and only depend weakly on
the Reynolds number itself. The results from Childs’ (1983a) theory using
equations 10.55 to 10.57 are also shown and exhibit quite good agreement
with the measurements. As can be seen, the theoretical results are also only
weakly dependent on ReV or the entrance loss coefficient, CEL.

Nordmann and Massman (1984) conducted experiments on a similar plain
annular seal with L/R = 1.67 and δ/R = 0.0167, and measured the forces

Figure 10.9. Dimensionless rotordynamic coefficients measured by Nord-
mann and Massmann (1984) for a plain seal with L/R = 1.67, δ/R =
0.0167, and ReV = 5265. Also shown are the corresponding theoretical re-
sults using Childs’ (1983a) theory with CEL = 0.1.

256



for both synchronous and nonsynchronous excitation. Thus, they were able
to extract the rotordynamic coefficients M , C, c, K, and k. Their results for
a Reynolds number, ReV = 5265, are presented in figure 10.9, where they
are compared with the corresponding predictions of Childs’ (1983a) theory
(using CEL = 0.1). In comparing theory and experiment, we must remember
that the results are quite insensitive to Reynolds number, and the theoretical
data does not change much with changes in CEL. Some of the Nordmann
and Massmann data exhibits quite a lot of scatter; however, with the notable
exception of the cross-coupled stiffness, k, the theory is in good agreement
with the data. The reason for the discrepancy in the cross-coupled stiffness is
unclear. However, one must bear in mind that the theory uses correlations
developed from results for nominally steady turbulent flows, and must be
regarded as tentative until there exists a greater understanding of unsteady
turbulent flows.

In the last decade, a substantial body of data has been accumulated on
the rotordynamic characteristics of annular seals, particularly as regards
such geometric effects as taper, various kinds of roughness, and the effects
of labyrinths. We include here only a few examples. Childs and Dressman
(1985) conducted both theoretical and experimental investigations of the
effect of taper on the synchronous rotordynamic forces. They showed that
the introduction of a taper increases the leakage and the direct stiffness, K∗,
but decreases the other rotordynamic coefficients. An optimum taper angle
exists with respect to both the direct stiffness and the ratio of direct stiffness
to leakage. Childs and Kim (1985) have examined the effects of directionally
homogeneous surface roughness on both the rotor and the stator. Test results
for four different surface roughnesses applied to the stator or casing (so-
called “damper seals” that have smooth rotors) showed that the roughness
increases the damping and decreases the leakage.

10.8 LABYRINTH SEALS

Labyrinth seals with teeth on either the rotor or the stator are frequently
used, because the teeth help to minimize the leakage through the seals.
However, the teeth also have rotordynamic consequences which have been
explored by Wachter and Benckert (1980), Childs and Scharrer (1986), and
others. Childs and Scharrer measured the stiffness and damping coefficients
for some labyrinth seals, and reached the following conclusions. First, in all
cases, the rotordynamic forces were independent of the rotational speed, Ω,
and dependent on the axial pressure drop, Δp. The appropriate nondimen-
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Table 10.1. Rotordynamic characteristics of labyrinth seals with zero inlet
swirl (data from Childs and Scharrer 1986).

Teeth on Rotor Teeth on Stator
Mean Min. Max. Mean Min. Max.

K∗/2πΔpL -1.17 -1.03 -1.25 -0.62 -0.45 -0.74
k∗/2πΔpL 1.15 0.79 1.68 0.86 0.67 1.07
C∗/πRL(2ρΔp)

1
2 0.0225 0.0168 0.0279 0.0219 0.0182 0.0244

sionalizing velocity is therefore the typical axial velocity caused by the axial
pressure drop, (2Δp/ρ)

1
2 . Childs and Scharrer suggest that the reason for

this behavior is that the mean fluid motions are dominated by throughflow
over and between the teeth, and that the shear caused by the rotation of the
rotor has relatively little effect on the flow at the high Reynolds numbers
involved.

Typical dimensionless values of the rotordynamic coefficients K, k, and
C are presented in table 10.1, where we may observe that the cross-coupled
stiffness, k, is smaller for the teeth-on-stator configuration. This means that,
since the damping, C, is similar for the two cases, the teeth-on-stator con-
figuration is more stable rotordynamically.

However, Childs and Scharrer also found that the coefficients were very
sensitive to the inlet swirl velocity upstream of the seal. In particular, the
cross-coupled stiffness increased markedly with increased swirl in the same
direction as shaft rotation. On the other hand, imposed swirl in a direction
opposite to shaft rotation causes a reversal in the sign of the cross-coupled
stiffness, and thus has a rotordynamically stabilizing effect.

10.9 BLADE TIP ROTORDYNAMIC
EFFECTS

In a seminal paper, Alford (1965) identified several rotordynamic effects
arising from the flow in the clearance region between the tip of an axial flow
turbomachine blade and the static housing. However, the so-called “Alford
effects” are only some of the members of a class of rotordynamic phenomena
that can arise from the fluid-induced effects of a finite number of blades, and,
in this section, we shall first examine the more general class of phenomena.

Consider the typical geometry of an unshrouded impeller of radius RT

and ZR blades enclosed by a cylindrical housing so that the mean clearance
between the blade tips and the housing is δ (figure 10.10). If the impeller is
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Figure 10.10. Schematic of the position of an axial flow turbomachine
blade tip relative to a static housing as a result of the combination of
rotational and whirl motion (details shown for only one of the ZR blade
tips).

rotating at a frequency, Ω, and whirling at a frequency, ω, with an amplitude,
ε, then the vector positions of the blade tips at time, t, will be given by

x+ jy = z = RT e
j(Ωt+2πn/ZR) + εejωt for n = 1 to ZR (10.68)

where the center of the housing is the origin of the (x, y) coordinate system.
It follows that the clearance at each blade tip is RT + δ − |z| which, to first
order in ε, is δ∗ where

δ∗ = δ − ε cos θn , n = 1 to ZR (10.69)

and where, for convenience, θn = Ωt− ωt+ 2πn/ZR.
Next, the most general form of the force, F ∗, acting on the tip of the blade

is

F ∗ = Fej(
π
2
+α)ej(Ωt+2πn/ZR) (10.70)

where the functional forms of the force magnitude, F , and its inclination
relative to the blade, α (see figure 10.10), can, for the moment, remain un-
specified. The total rotordynamic forces, F ∗

n and F ∗
t , acting on the impeller

are then obtained by appropriate summation of the individual tip forces,
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F ∗, followed by conversion to the rotating frame. Nondimensionalizing the
result, one then finds

Fn + jFt =

[
ZR∑
n=1

jejαejθnF

]
AVERAGE

πρΩ2RTLε
(10.71)

where the quantity in square brackets is averaged over a large time. This
general result may then be used, with various postulated relations for F and
α, to investigate the resulting rotordynamic effects.

One choice of the form of F and α corresponds to the Alford effect. Alford
(1965) surmised that the fluid force acting normal to each blade (α = 0 or
π) would vary according to the instantaneous tip clearance of that blade.
Specifically, he argued that an increase in the clearance, ε cos θn, would pro-
duce a proportionate decrease in the normal force, or

F = F0 + Kε cos θn (10.72)

where F0 is the mean, time-averaged force normal to each blade and K is
the factor of proportionality. Moreover, for a pump α = π, and for a turbine
α = 0. Substituting these values into equation 10.71, one obtains

Fn = 0 ; Ft = ∓KZR/2πρΩ2RTL (10.73)

where the upper sign refers to the pump case and the lower to the turbine
case. It follows that the Alford effect in pumps is stabilizing for positive
whirl, and destabilizing for negative whirl. In a turbine the reverse is true,
and the destabilizing forces for positive whirl can be quite important in the
rotordynamics of some turbines.

As a second, but more theoretical example, consider the added mass effect
that occurs when a blade tip approaches the casing and squeezes fluid out
from the intervening gap. Such a flow would manifest a force on the blade
proportional to the acceleration d2δ∗/dt2, so that

α = π/2 ; F = −Kd
2δ∗

dt2
(10.74)

where K is some different proportionality factor. It follows from equation
10.71 that, in this case,

Fn =
K

2πρRTL

(
1 − ω

Ω

)2
; Ft = 0 (10.75)

This positive normal force is a Bernoulli effect, and has the same basic form
as the Bernoulli effect for the whirl of a plane cylinder (see section 10.3).
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Other tip clearance flow effects, such as those due to viscous or frictional
effects, can be investigated using the general result in equation 10.71, as well
as appropriate choices for α and F .

10.10 STEADY RADIAL FORCES

We now change the focus of attention back to pumps, and, more specifi-
cally, to the kinds of radial and rotordynamic forces which may be caused
by the flow through and around an impeller. Unlike some of the devices
discussed in the preceding sections, the flow through a pump can frequently
be nonaxisymmetric and so can produce a mean radial force that can be of
considerable importance. The bearings must withstand this force, and this
can lead to premature bearing wear and even failure. Bearing deflection can
also cause displacement of the axis of rotation of the impeller, that may, in
turn, have deleterious effects upon hydraulic performance. The existence of
radial forces, and attempts to evaluate them, date back to the 1930s (see
Stepanoff’s comment in Biheller 1965) or earlier.

The nonaxisymmetries and, therefore, the radial forces depend upon the
geometry of the diffuser and/or volute as well as the flow coefficient. Mea-
surements of radial forces have been made with a number of different im-
peller/diffuser/volute combinations by Agostonelli et al. (1960), Iverson et
al. (1960), Biheller (1965), Grabow (1964), and Chamieh et al. (1985), among
others. Stepanoff (1957) proposed an empirical formula for the magnitude
of the nondimensional radial force,

|F0| = (F 2
0x + F 2

0y)
1
2 = 0.229ψ

{
1− (Q/QD)2

}
(10.76)

for centrifugal pumps with spiral volutes, and

|F0| = 0.229ψQ/QD (10.77)

for collectors with uniform cross-sectional area. Both formulae yield radial
forces that have the correct order of magnitude; however, measurements
show that the forces also depend on other geometric features of the impeller
and its casing.

Some typical nondimensional radial forces obtained experimentally by
Chamieh et al. (1985) for the Impeller X/Volute A combination (see section
2.8) are shown in figure 10.11 for a range of speeds and flow coefficients. First
note that, as anticipated in the nondimensionalization, the radial forces do
indeed scale with the square of the impeller speed. This implies that, at
least within the range of rotational speeds used for these experiments, the
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Figure 10.11. Radial forces for the centrifugal Impeller X/Volute A com-
bination as a function of shaft speed and flow coefficient (Chamieh et al.
1985).

Reynolds number effects on the radial forces are minimal. Second, focus-
ing on Chamieh’s data, it should be noted that the “design” objective that
Volute A be well matched to Impeller X appears to be satisfied at a flow
coefficient, φ2, of 0.092 where the magnitude of the radial force appears to
vanish.

Other radial force data are presented in figure 10.12. The centrifugal pump
tested by Agostinelli, Nobles and Mockeridge (1960) had a specific speed,
ND, of 0.61, and was similar to that of Chamieh et al. (1985). On the other
hand, the pump tested by Iversen, Rolling and Carlson (1960) had a much
lower specific speed of 0.36, and the data of figure 10.12 indicates that their
impeller/volute combination is best matched at a flow coefficient of about
0.06. The data of Domm and Hergt (1970) is for a volute similar to Volute A
and, while qualitatively similar to the other data, has a significantly smaller
magnitude than the other three sets of data. The reasons for this are not
clear.
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Figure 10.12. Comparison of the radial forces measured by Iverson,
Rolling and Carlson (1960) on a pump with a specific speed, ND , of 0.36,
by Agostinelli, Nobles and Mockeridge (1960), on a pump with ND = 0.61,
by Domm and Hergt (1970), and by Chamieh et al. (1985) on a pump with
ND = 0.57.

The dependence of the radial forces on volute geometry is illustrated in
figure 10.13 from Chamieh et al. (1985) which presents a comparison of the
magnitude of the force on Impeller X due to Volute A with the magnitude
of the force due to a circular volute with a circumferentially uniform cross-
sectional area. In theory, this second volute could only be well-matched at
zero flow rate; note that the results do exhibit a minimum at shut-off. Figure
10.13 also illustrates one of the compromises that a designer may have to
make. If the objective were to minimize the radial force at a single flow rate,
then a well-designed spiral volute would be appropriate. On the other hand,
if the objective were to minimize the force over a wide range of flow rates,
then a quite different design, perhaps even a constant area volute, might be
more effective. Of course, a comparison of the hydraulic performance would
also have to be made in evaluating such design decisions. Note from figure
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Figure 10.13. Comparison of the magnitude of the radial force (F0) on
Impeller X caused by Volute A and by the circular Volute B with a cir-
cumferentially uniform area (Chamieh et al. 1985).

Figure 10.14. Variation of the radial force magnitude, F0, divided by the
head coefficient, ψ, as a function of specific speed, ND, and flow for a class
of volute casing pumps (adapted from KSB 1975).
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7.1 that the spiral volute is hydraulically superior up to a flow coefficient of
0.10 above which the results are circular volute is superior.

As further information on the variation of the magnitude of the radial
forces in different types of pump, we include figure 10.14, taken from KSB
(1975), which shows how F0/ψ may vary with specific speed and flow rate
for a class of volute pumps. The magnitudes of the forces shown in this
figure are larger than those of figure 10.12. We should also note that the
results of Jery and Franz (1982) indicate that the presence of diffuser vanes
(of typical low solidity) between the impeller discharge and the volute has
relatively little effect on the radial forces.

It is also important to recognize that small changes in the location of
the impeller within the volute can cause large changes in the radial forces.
This gradient of forces is represented by the hydrodynamic stiffness matrix,
[K] (see section 10.2), for which data will be presented in the context of
the rotordynamic coefficients. The dependence of the radial force on the

Figure 10.15. Locus of the zero radial force locations for the Impeller
X/Volute A combination (Chamieh et al. 1985) compared with that from
the data of Domm and Hergt (1970).
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impeller position also implies that, for a given impeller/volute combination
at a particular flow coefficient, there exists a particular location of the axis
of impeller rotation for which the radial force is zero. As an example, the
locus of zero radial force positions for the Impeller X/Volute A combination
is presented in figure 10.15. Note that this location traverses a distance of
about 10% of the impeller radius as the flow rate increases from zero to a
flow coefficient of 0.14.

Visualizing the centrifugal pump impeller as a control volume, one can
recognize three possible contributions to the radial force. First, circumfer-
ential variation in the impeller discharge pressure (or volute pressure) will
clearly result in a radial force acting on the impeller discharge area. A second
contribution could be caused by the leakage flow from the impeller discharge
to the inlet between the impeller shroud and the pump casing. Circumfer-
ential nonuniformity in the discharge pressure could cause circumferential
nonuniformity in the pressure within this shroud-casing gap, and therefore
a radial force acting on the exterior of the pump shroud. For convenience,
we shall term this second contribution the leakage flow contribution. Third,
a circumferential nonuniformity in the flow rate out of the impeller would
imply a force due to the nonuniformity in the momentum flux out of the
impeller. This potential third contribution has not been significant in any of
the studies to date. Both the first two contributions appear to be important.

In order to investigate the origins of the radial forces, Adkins and Brennen
(1988) (see also Brennen et al. 1986) made measurements of the pressure
distributions in the volute, and integrated these pressures to evaluate the
contribution of the discharge pressure to the radial force. Typical pressure
distributions for the Impeller X/Volute A combination (with the flow sepa-
ration rings of figure 10.17 installed) are presented in figure 10.16 for three
different flow coefficients. Minor differences occur in the pressures measured
in the front sidewall of the volute at the impeller discharge (front taps) and
those in the opposite wall (back taps).

The experimental measurements in figure 10.18 are compared with the-
oretical predictions based on an analysis that matches a guided impeller
flow model with a one-dimensional treatment of the flow in the volute. This
same theory was used to calculate rotordynamic matrices and coefficients
presented in section 10.12. In the present context, integration of the ex-
perimental pressure distributions yielded radial forces in good agreement
with both the overall radial forces measured using the force balance and the
theoretical predictions of the theory. These results demonstrate that it is
primarily the circumferential nonuniformity in the pressure at the impeller
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Figure 10.16. Circumferential pressure distributions in the impeller dis-
charge for the Impeller X/Volute A combination at three different flow
rates. Also shown are the theoretical pressure distributions of Adkins and
Brennen (1988).

discharge that generates the radial force. The theory clearly demonstrates
that the momentum flux contribution is negligible.

The leakage flow from the impeller discharge, between the impeller shroud
and the pump casing, and back to the pump inlet does make a significant
contribution to the radial force. Figure 10.17 is a schematic of the impeller,
volute, and casing used in the experiments of Chamieh et al. (1985) and
Adkins and Brennen (1988), as well as for the rotordynamic measurements
discussed later. Adkins and Brennen obtained data with and without the
obstruction at the entrance to the leakage flow labelled “flow separation
rings”. The data of figures 10.16 and 10.18 were taken with these rings
installed (whereas Chamieh’s data was taken without the rings). The mea-
surements showed that, in the absence of the rings, the nonuniformity in the
impeller discharge pressure caused significant nonuniformity in the pressure
in the leakage annulus, and, therefore, a significant contribution from the
leakage flow to the radial force. This was not the case once the rings were
installed, for the rings effectively isolated the leakage annulus from the im-
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Figure 10.17. Schematic of the Impeller X/Volute A arrangement used
for the experiments of Chamieh et al. (1985) and Adkins and Brennen
(1988).

peller discharge nonuniformity. However, a compensating mechanism exists
which causes the total radial force in the two cases to be more or less the
same. The increased leakage flow without the rings tends to relieve some
of the pressure nonuniformity in the impeller discharge, thus reducing the
contribution from the impeller discharge pressure distribution.

A number of other theoretical models exist in the literature. The analysis
of Lorett and Gopalakrishnan (1983) is somewhat similar in spirit to that of
Adkins and Brennen (1988). Earlier analyses, such as those of Domm and
Hergt (1970) and Colding-Jorgensen (1979), were based on modeling the
impeller by a source/vortex within the volute and solutions of the resulting
potential flow. They represent too much of a departure from real flows to
be of much applicability.

Finally, we note that the principal focus of this section has been on radial
forces caused by circumferential nonuniformity in the discharge conditions.
It must be clear that nonuniformities in the inlet flow due, for example, to
bends in the suction piping are also likely to generate radial forces. As yet,
such forces have not been investigated. Moreover, it seems reasonable to
suggest that inlet distortion forces are more likely to be important in axial
inducers or pumps than in centrifugal pumps.
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Figure 10.18. Comparison of radial forces from direct balance measure-
ments, from integration of measured pressures, and from theory for the
Impeller X/Volute A combination (from Adkins and Brennen 1988).

10.11 EFFECT OF CAVITATION

Franz et al. (1990) (see also Brennen et al. 1988) have made measurements
of the radial forces for the Impeller X/Volute A combination under cavi-
tating conditions. These studies show that any loss of head can also cause
major changes in the magnitude and direction of the radial force. This is
illustrated in figure 10.19, where the cavitation performance is juxtaposed
with the variation in the radial forces for three different flow coefficients.
Note that the radial force changes when the head rise across the pump is
affected by cavitation. Note also that the changes in the radial forces are
large, in some instances switching direction by 180◦ while the flow rate re-
mains the same. This result may be of considerable significance since pumps
operating near breakdown often exhibit fluctuations in which the operat-
ing point moves back and forth over the knee of the cavitation performance
curve. According to figure 10.19, such performance fluctuations would result
in large fluctuating forces that could well account for the heavy vibration
and rough running that is usually manifest by a pump operating under cav-
itating conditions.
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Figure 10.19. Variation of the head and radial force (magnitude, F0, and
direction, θ, measured from the cutwater) with cavitation number, σ, for
Impeller X/Volute A at three flow coefficients and at 3000 rpm (from Franz
et al. 1990).

10.12 CENTRIFUGAL PUMPS

Rotordynamic forces in a centrifugal pump were first measured by Hergt and
Krieger (1969-70), Ohashi and Shoji (1984b) and Jery et al. (1985). Typical
data for the dimensionless normal and tangential forces, Fn and Ft, as a
function of the frequency ratio, ω/Ω, are presented in figure 10.20 for the
Impeller X/Volute A combination. The curve for Impeller X is typical of a
wide range of results at different speeds, flow coefficients, and with different
impellers and volutes. Perhaps the most significant feature of these results is
that there exists a range of whirl frequencies for which the tangential force is
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Figure 10.20. Typical rotordynamic forces, Fn and Ft, as a function of
whirl frequency ratio, ω/Ω, for the Impeller X/Volute A combination run-
ning at 1000 rpm and a flow coefficient of φ2 = 0.092 (from Jery et al.
1985).

whirl destabilizing. A positive Ft at negative whirl frequencies opposes the
whirl motion, and is, therefore, stabilizing, and fairly strongly so since the
forces can be quite large in magnitude. Similarly, at large, positive frequency
ratios, the Ft is negative and is also stabilizing. However, between these two
stabilizing regions, one usually finds a regime at small positive frequency
ratios where Ft is positive and therefore destabilizing.

As is illustrated by figure 10.20, the variation of Fn and Ft with the whirl
frequency ratio, ω/Ω, can be represented quite accurately by the quadratic
expressions of equations 10.13 and 10.14 (this is not true for axial flow
pumps, as will be discussed later). The rotordynamic coefficients, obtained
from data like that of figure 10.20 for a wide variety of speeds, flow rates, and
impeller, diffuser, and volute geometries, are given in table 10.2 (adapted
from Jery et al. 1985). Note, first, some of the general characteristics of
these coefficients. The direct stiffness, K, is always negative because of the
Bernoulli effect (see section 10.3). The cross-coupled stiffness, k, is always
positive, and is directly connected to the positive values of Ft at low positive
whirl frequency ratios; consequently, k is a measure of the destabilizing effect
of the fluid. The direct damping, C, is positive, but usually less than half
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Table 10.2. Rotordynamic coefficients for various centrifugal pump con-
figurations (from Jery et al. 1985). Volute E is a 17-bladed diffuser with a
spiral volute. Volutes D, F, G and H are spiral volutes fitted with zero, 6, 6
and 12 vanes respectively. Impeller Y is a 6-bladed impeller. Impeller S is a
solid mass with the same external profile as Impeller X.

Impeller/Volute rpm φ2 K k C c M m

Imp.X/Volute A 500 0.092 -2.51 1.10 3.14 7.91 6.52 -0.52
1000 0.092 -2.61 1.12 3.28 8.52 6.24 -0.53
1500 0.092 -2.47 0.99 3.00 8.71 6.87 -0.87
2000 0.092 -2.64 1.15 2.91 9.06 7.02 -0.67

Imp.X/Volute E 1000 0 -1.64 0.14 3.40 7.56 6.83 0.68
1000 0.060 -2.76 1.02 3.74 9.53 6.92 -1.01
1000 0.092 -2.65 1.04 3.80 8.96 6.60 -0.90
1000 0.145 -2.44 1.16 4.11 7.93 6.20 -0.55

Imp.X/none 1000 0.060 -0.55 0.67 1.24 3.60 4.38 1.68
Imp.X/Volute D 1000 0.060 -2.86 1.12 2.81 9.34 6.43 -0.15
Imp.X/Volute F 1000 0.060 -3.40 1.36 3.64 9.51 6.24 -0.72
Imp.X/Volute G 1000 0.060 -3.34 1.30 3.42 9.11 5.75 -0.39
Imp.X/Volute H 1000 0.060 -3.42 1.33 3.75 10.34 7.24 -0.65

Imp.Y/Volute E 1000 0.092 -2.81 0.85 3.34 8.53 5.50 -0.74

Imp.S/Volute A 1000 -0.42 0.41 1.87 3.81 6.54 -0.04

of the value of the cross-coupled damping, c. Note that the value of k/C is
usually a fairly accurate measure of the whirl frequency ratio corresponding
to the upper bound of the destabilizing interval of whirl frequency ratios.
From table 10.2 the values of k/C, for actual impellers with volutes and with
nonzero flow, range from 0.25 to 0.40, so the range of subsynchronous speeds,
for which these fluid forces are destabilizing, can be quite large. Resuming
the summary of the rotordynamic coefficients, note that the cross-coupled
added mass, m, is small in comparison with the direct added mass, M , and
can probably be neglected in many applications. Note that, since the direct
added mass is converted to dimensional form by πρR2

T 2B2, it follows that
typical values of the added mass, M , are equivalent to the mass of about six
such cylinders, or about five times the volume of liquid inside the impeller.

Now examine the variations in the values of the rotordynamic coeffi-
cients in table 10.2. The first series of data clearly demonstrates that the
nondimensionalization has satisfactorily accounted for the variation with ro-
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tational speed. Any separate effect of Reynolds number does not appear to
occur within the range of speeds in these experiments. The second series in
table 10.2 illustrates the typical variations with flow coefficient. Note that,
apart from the stiffness at zero flow, the coefficients are fairly independent
of the flow coefficient. The third series utilized diffusers with various num-
bers and geometries of vanes inside the same volute. The presence of vanes
appears to cause a slight increase in the stiffness; however, the number and
type of vanes do not seem to matter. Note that, in the absence of any vo-
lute or diffuser, all of the coefficients (except m) are substantially smaller.
Ohashi and Shoji (1984b) made rotordynamic measurements within a much
larger volute than any in table 10.2; consequently their results are compara-
ble with those given in table 10.2 for no volute. On the other hand, Bolleter,
Wyss, Welte, and Sturchler (1985, 1987) report rotordynamic coefficients
very similar in magnitude to those of table 10.2.

The origins of the rotordynamic forces in typical centrifugal pumps have
been explored by Jery et al. (1985) and Adkins and Brennen (1988), among
others. In order to explore the effect of the discharge-to-suction leakage flow
between the shroud and the casing, Jery et al. (1985) compared the rotordy-
namic forces generated by the Impeller X/Volute A combination with those
generated in the same housing by a dummy impeller (Impeller S) with the
same exterior profile as Impeller X. A pressure difference was externally ap-
plied in order to simulate the same inlet to discharge static pressure rise,
and, therefore, produce a leakage flow similar to that in the Impeller X ex-
periments. As in the case of the radial forces, we surmise that unsteady
circumferential pressure differences on the impeller discharge and in the
leakage flow can both contribute to the rotordynamic forces on an impeller.
As can be seen from the coefficients listed in table 10.2, the rotordynamic
forces with the dummy impeller represented a substantial fraction of those
with the actual impeller. We conclude that the contributions to the rotordy-
namic forces from the unsteady pressures acting on the impeller discharge
and those from the unsteady pressures in the leakage flow acting on the
shroud are both important and must be separately investigated and evalu-
ated.

We focus first on the impeller discharge contribution. Adkins and Brennen
(1988) used an extension of the theoretical model described briefly in section
10.10 to evaluate the rotordynamic forces acting on the impeller discharge.
They also made measurements of the forces for an Impeller X/Volute A
configuration in which the pump casing structure external to the shroud was
removed in order to minimize any contributions from the leakage flow. The
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Figure 10.21. Comparison of the rotordynamic force contributions due
to the impeller discharge pressure variations as predicted by the theory
of Adkins and Brennen (1988) (solid lines) with experimental measure-
ments using Impeller X and Volute A (at φ2 = 0.092) but with the cas-
ing surrounding the front shroud removed to mimimize the leakage flow
contributions.

resulting experimental and theoretical values of Fn and Ft are presented
in figure 10.21. First note that these values are significantly smaller than
those of figure 10.20, indicating that the impeller discharge contributions
are actually smaller than those from the leakage flow. Second note that the
theory of Adkins and Brennen (1988) provides a reasonable estimate of the
impeller discharge contribution to the rotordynamic forces, at least within
the range of whirl frequencies examined.

Using the Impeller X/Volute A configuration, Adkins and Brennen also
made experimental measurements of the pressure distributions in the im-
peller discharge flow and in the leakage flow. These measurements allowed
calculations of the stiffnesses, K = Fn(0) and k = Ft(0). The results indi-
cated that the leakage flow contributes about 70% of K and about 40% of
k; these fractional contributions are similar to those expected from a com-
parison of figures 10.20 and 10.21.

About the same time, Childs (1987) used the bulk-flow model described
in section 10.7 to evaluate the contributions to the rotordynamic forces from
the discharge-to-suction leakage flow. While his results exhibit some peculiar
resonances not yet observed experimentally, the general magnitude and form
of Childs results are consistent with the current conclusions. More recently,
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Guinzberg et al. (1990) have made experimental measurements for a simple
leakage flow geometry that clearly confirm the importance of the rotordy-
namic effects caused by these flows. They also demonstrate the variations
in the leakage flow contributions with the geometry of the leakage path, the
leakage flow rate and the swirl in the flow at the entrance to the leakage
path.

It is important to mention previous theoretical investigations of the rotor-
dynamic forces acting on impellers. A number of the early models (Thomp-
son 1978, Colding-Jorgensen 1979, Chamieh and Acosta 1981) considered
only quasistatic perturbations from the mean flow, so that only the stiffness
can be evaluated. Ohashi and Shoji (1984a) (see also Shoji and Ohashi 1980)
considered two-dimensional, inviscid and unseparated flow in the impeller,
and solved the unsteady flow problem by singularity methods. Near the de-
sign flow rate, their results compare well with their experimental data, but
at lower flows the results diverge. More recently, Tsujimoto et al. (1988) have
included the effects of a volute; their two-dimensional analysis yielded good
agreement with the measurements by Jery et al. (1985) on a two-dimensional
impeller.

Finally, in view of the significant effect of cavitation on the radial forces
(section 10.10), it is rather surprising to find that the effect of cavitation on
the rotordynamic forces in centrifugal pumps seems to be quite insignificant
(Franz et al. 1990).

10.13 MOMENTS AND LINES OF
ACTION

Some data on the steady bending moments, Mox and Moy, and on the ro-
tordynamic moments

Mn = Bxx = Byy ; Mt = Byx = −Bxy (10.78)

have been presented by Franz et al. (1990) and Miskovish and Brennen
(1992). This data allows evaluation of the axial location of the lines of action
of the corresponding radial and rotordynamic forces. Apart from its intrinsic
value, knowledge of the line of action of these forces provides clues as to the
origin of the forces.

Typical sets of data taken from Miskovish and Brennen (1992) are pre-
sented in figures 10.22 and 10.23. These were obtained for the Impeller
X/Volute A combination operating at a speed of 1000 rpm. For convenience,
the axial location of the origin of the reference coordinate system has been
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Figure 10.22. Steady radial forces, Fox and Foy, and moments, Mox and
Moy , for Impeller X/Volute A at a speed of 1000 rpm and various flow
coefficients as indicated (from Miskovish and Brennen 1992).
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Figure 10.23. Normal and tangential rotordynamic forces, Fn and Ft, and
moments, Mn and Mt, for Impeller X/Volute A at 1000 rpm and various
flow coefficients as indicated (from Miskovish and Brennen 1992).

277



placed at the center of the impeller discharge. Since the lines of action of
the forces are not too far from this location, the moments presented here are
small, and, for this reason, the data for the moments is somewhat scattered.

Steady forces and moments are presented for many whirl frequency ratios
in figure 10.22. These forces and moments should, of course, be independent
of the whirl frequency ratio, and so the deviation of the data points from
the mean for a given flow coefficient represents a measure of the scatter in
the data. Despite this scatter, the moment data in figure 10.22 does suggest
that a nonzero steady moment is present, and that it changes with flow
coefficient. The typical location for the line of action of Fo, which this data
implies, may be best illustrated by an example. At φ = 0.06, the steady
vector force Fo has a magnitude of 0.067 (Fox ≈ 0.03, Foy ≈ 0.06) and an
angle θF = 63◦ from the x-axis. The corresponding moment vector has a
magnitude of 0.02 and an angle θM ∼ 180◦ from the x-axis. Consequently,
the line of action of Fo is an axial distance upstream of the origin equal to
0.02 sin(180− 63)/0.067 = 0.27. In other words, the line of action is about a
quarter of a discharge radius upstream of the center of the discharge. This is
consistent with the previous observation (section 10.10) that the pressures
acting on the exterior of the shroud also contribute to the steady radial
forces; this contribution displaces the line of action upstream of the center
of the discharge.

The data of figure 10.23 could be similarly used to evaluate the lines of
action of the rotordynamic forces whose components are Fn and Ft. However,
the momentsMn andMt are small over most of the range of whirl ratios, and
lead to lines of action that are less than 0.1 of a radius upstream of the center
of the discharge in most cases. This is consistent with other experiments on
this same impeller/volute/casing combination that suggest that the shroud
force contribution to the rotordynamic matrices is smaller than the impeller
discharge contribution in this particular case.

10.14 AXIAL FLOW INDUCERS

The rotordynamic forces in an unshrouded axial flow pump, or those caused
by adding an axial inducer to a centrifugal pump, are less well understood.
One of the reasons for this is that the phenomena will depend on the dynamic
response of the tip clearance flows, an unsteady flow that has not been stud-
ied in any detail. The experimental data that does exist (Franz and Arndt
1986, Arndt and Franz 1986, Karyeaclis et al. 1989) clearly show that im-
portant and qualitatively different effects are manifest by unshrouded axial
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Figure 10.24. Rotordynamic forces for the helical inducer, Impeller VII,
for four different flow coefficients (from Arndt and Franz 1986).

flow pumps. These effects were not encountered with shrouded centrifugal
impellers. They are exemplified by figure 10.24, which presents data on Fn

and Ft for the 9◦ helical inducer, Impeller VII, tested alone at a series of
flow coefficients (Arndt and Franz 1986). At the higher flow coefficients, the
variation of Fn and Ft with whirl frequency ratio, ω/Ω, is similar to the cen-
trifugal pump data. However, as the flow coefficient is decreased, somewhat
pathological behavior begins to appear in the values of Ft (and to a lesser
degree Fn) at small and positive whirl frequency ratios. This culminates in
extremely complicated behavior at shut-off (zero flow) in which Ft changes
sign several times for positive whirl frequency ratios, implying several sep-
arate regions of destabilizing fluid-induced rotordynamic effect. Note that
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the maximum values of Ft that were recorded, are large, and could well be
responsible for significant vibration in an axial flow pump or inducer. Sim-
ilar pathological rotordynamic effects were encountered with all the axial
inducers tested, including the inducer/impeller combination represented by
the high pressure LOX pump in the Space Shuttle Main Engine (Franz and
Arndt 1986). However, the details in the variations of Ft with ω/Ω differed
from one inducer to another.

Finally, we should note that the current codes for rotordynamic investiga-
tions are not well adapted to deal with deviations from the quadratic forms
for F ∗

n and F ∗
t given in equations 10.13 and 10.14. Consequently, more re-

mains to be done in terms of rotordynamic analysis before the implications
of such complex frequency-dependent behavior of F ∗

n and F ∗
t become clear.
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