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Frictional Loss in Separated Flow

The Lockhart-Martinelli and Martinelli- Nelson correlations attempt to predict the frictional pressure
gradient in two-component or two-phase flows in pipes of constant cross-sectional area, A. It is assumed
that these multiphase flows consist of two separate co-current streams that, for convenience, we will refer
to as the liquid and the gas though they could be any two immiscible fluids. The correlations use the
results for the frictional pressure gradient in single phase pipe flows of each of the two fluids. In two-
phase flow, the volume fraction is often changing as the mixture progresses along the pipe and such phase
change necessarily implies acceleration or deceleration of the fluids. Associated with this acceleration is
an acceleration component of the pressure gradient that is addressed in a later section dealing with the
Martinelli-Nelson correlation. Obviously, it is convenient to begin with the simpler, two-component case
(the Lockhart-Martinelli correlation); this also neglects the effects of changes in the fluid densities with
distance, s, along the pipe axis so that the fluid velocities also remain invariant with s. Moreover, in
all cases, it is assumed that the hydrostatic pressure gradient has been accounted for so that the only
remaining contribution to the pressure gradient, −dp/ds, is that due to the wall shear stress, τw. A simple
balance of forces requires that

−dp

ds
=

P

A
τw (Nkf1)

where P is the perimeter of the cross-section of the pipe. For a circular pipe, P/A = 4/d, where d is the
pipe diameter and, for non-circular cross-sections, it is convenient to define a hydraulic diameter, 4A/P .
Then, defining the dimensionless friction coefficient, Cf , as

Cf = τw/
1

2
ρj2 (Nkf2)

the more general form of equation (Nkb1) becomes

−dp

ds
= 2Cfρj2 P

4A
(Nkf3)

In single phase flow the coefficient, Cf , is a function of the Reynolds number, ρdj/μ, of the form

Cf = K
{

ρdj

μ

}−m

(Nkf4)

where K is a constant that depends on the roughness of the pipe surface and will be different for laminar
and turbulent flow. The index, m, is also different, being 1 in the case of laminar flow and 1

4
in the case

of turbulent flow.
These relations from single phase flow are applied to the two cocurrent streams in the following way.

First, we define hydraulic diameters, dL and dG, for each of the two streams and define corresponding area
ratios, κL and κG, as

κL = 4AL/πd2
L ; κG = 4AG/πd2

G (Nkf5)

where AL = A(1−α) and AG = Aα are the actual cross-sectional areas of the two streams. The quantities
κL and κG are shape parameters that depend on the geometry of the flow pattern. In the absence of any
specific information on this geometry, one might choose the values pertinent to streams of circular cross-
section, namely κL = κG = 1, and the commonly used form of the Lockhart-Martinelli correlation employs
these values. However, as an alternative example, we shall also present data for the case of annular flow



in which the liquid coats the pipe wall with a film of uniform thickness and the gas flows in a cylindrical
core. When the film is thin, it follows from the annular flow geometry that

κL = 1/(1 − α) ; κG = 1 (Nkf6)

where it has been assumed that only the exterior perimeter of the annular liquid stream experiences
significant shear stress.

In summary, the basic geometric relations yield

α = 1 − κLd2
L/d2 = κGd2

G/d2 (Nkf7)

Then, the pressure gradient in each stream is assumed given by the following coefficients taken from single
phase pipe flow:

CfL = KL

{
ρLdLuL

μL

}−mL

; CfG = KG

{
ρGdGuG

μG

}−mG

(Nkf8)

and, since the pressure gradients must be the same in the two streams, this imposes the following relation
between the flows:

−dp
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=

2ρLu2
LKL
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GKG

dG
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}−mG

(Nkf9)

In the above, mL and mG are 1 or 1
4

depending on whether the stream is laminar or turbulent. It follows
that there are four permutations namely:

• both streams are laminar so that mL = mG = 1, a permutation denoted by the double subscript LL

• a laminar liquid stream and a turbulent gas stream so that mL = 1, mG = 1
4

(LT )

• a turbulent liquid stream and a laminar gas stream so that mL = 1
4
, mG = 1 (TL) and

• both streams are turbulent so that mL = mG = 1
4

(TT )

Equations (Nkf7) and (Nkf9) are the basic relations used to construct the Lockhart-Martinelli cor-
relation. However, the solutions to these equations are normally and most conveniently presented in
non-dimensional form by defining the following dimensionless pressure gradient parameters:

φ2
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(
dp
ds

)
actual(
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)
L

; φ2
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)
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)
G

(Nkf10)

where (dp/ds)L and (dp/ds)G are respectively the hypothetical pressure gradients that would occur in the
same pipe if only the liquid flow were present and if only the gas flow were present. The ratio of these two
hypothetical gradients, Ma2, given by

Ma2 =
φ2

G
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)
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(Nkf11)

defines the Martinelli parameter, Ma, and allows presentation of the solutions to equations (Nkf7) and
(Nkf9) in a convenient parametric form. Using the definitions of equations (Nkf10), the non-dimensional
forms of equations (Nkf7) become

α = 1 − κ
−(1+mL)/(mL−5)
L φ

4/(mL−5)
L = κ

−(1+mG)/(mG−5)
G φ

4/(mG−5)
G (Nkf12)

and the solution of these equations produces the Lockhart-Martinelli prediction of the non-dimensional
pressure gradient.

To summarize: for given values of



Figure 1: The Lockhart-Martinelli correlation results for φL and φG and the void fraction, α, as functions of the Martinelli
parameter, Ma, for the case, κL = κG = 1. Results are shown for the four laminar and turbulent stream permutations, LL,
LT , TL and TT .
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Figure 2: As figure 1 but for the annular flow case with κL = 1/(1 − α) and κG = 1.

Figure 3: Comparison of the Lockhart-Martinelli correlation (the TT case) for φG (solid line) with experimental data.
Adapted from Turner and Wallis (1965).
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Figure 4: Ratios demonstrating the velocity ratio, uL/uG, implicit in the Lockhart-Martinelli correlation as functions of the
Martinelli parameter, Ma, for the LL and TT cases. Solid lines: κL = κG = 1; dashed lines: κL = 1/(1 − α), κG = 1.

• the fluid properties, ρL, ρG, μL and μG

• a given type of flow LL, LT , TL or TT along with the single phase correlation constants, mL, mG,
KL and KG

• given values or expressions for the parameters of the flow pattern geometry, κL and κG

• and a given value of α

equations (Nkf12) can be solved to find the non-dimensional solution to the flow, namely the values of φ2
L

and φ2
G. The value of Ma2 also follows and the rightmost expression in equation (Nkf11) then yields a

relation between the liquid mass flux, GL, and the gas mass flux, GG. Thus, if one is also given just one
mass flux (often this will be the total mass flux, G), the solution will yield the individual mass fluxes,
the mass quality and other flow properties. Alternatively one could begin the calculation with the mass
quality rather than the void fraction and find the void fraction as one of the results. Finally the pressure
gradient, dp/ds, follows from the values of φ2

L and φ2
G.

The solutions for the cases κL = κG = 1 and κL = 1/2(1 − α), κG = 1 are presented in figures 1
and 2 and the comparison of these two figures yields some measure of the sensitivity of the results to the
flow geometry parameters, κL and κG. Similar charts are commonly used in the manner described above
to obtain solutions for two-component gas/liquid flows in pipes. A typical comparison of the Lockhart-
Martinelli prediction with the experimental data is presented in figure 3. Note that the scatter in the
data is significant (about a factor of 3 in φG) and that the Lockhart-Martinelli prediction often yields
an overestimate of the friction or pressure gradient. This is the result of the assumption that the entire
perimeter of both phases experiences static wall friction. This is not the case and part of the perimeter of
each phase is in contact with the other phase. If the interface is smooth this could result in a decrease in
the friction; one the other hand a roughened interface could also result in increased interfacial friction.

It is important to recognize that there are many deficiencies in the Lockhart-Martinelli approach. First,
it is assumed that the flow pattern consists of two parallel streams and any departure from this topology
could result in substantial errors. In figure 4, the ratios of the velocities in the two streams which are implicit
in the correlation (and follow from equation (Nkf11)) are plotted against the Martinelli parameter. Note
that large velocity differences appear to be predicted at void fractions close to unity. Since the flow is
likely to transition to mist flow in this limit and since the relative velocities in the mist flow are unlikely



to become large, it seems inevitable that the correlation would become quite inaccurate at these high void
fractions. Similar inaccuracies seem inevitable at low void fraction. Indeed, it appears that the Lockhart-
Martinelli correlations work best under conditions that do not imply large velocity differences. Figure 4
demonstrates that smaller velocity differences are expected for turbulent flow (TT ) and this is mirrored in
better correlation with the experimental results in the turbulent flow case (Turner and Wallis 1965).

Second, there is the previously discussed deficiency regarding the suitability of assuming that the perime-
ters of both phases experience friction that is effectively equivalent to that of a static solid wall. A third
source of error arises because the multiphase flows are often unsteady and this yields a multitude of
quadratic interaction terms that contribute to the mean flow in the same way that Reynolds stress terms
contribute to turbulent single phase flow.


