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Solution to Problem 401A:

[1] Since the mass of insoluble gas in the bubble is m and the volume of a bubble of radius, R, is 4πR3/3,
the density of the insoluble gas is 3m/4πR3. Therefore if the temperature of the bubble is T and the
insoluble gas constant is R it follows that the partial pressure, pG, of insoluble gas in the bubble and the
total pressure in the bubble, pB , are
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It follows from the Rayleigh-Plesset equation that
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The equilibrium radius, RE , is the solution of this equation when d2R/dt2 = 0 and dR/dt = 0, in other
words
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so the cubic equation that must be solved for RE is
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[2] To consider the stability of this equilibrium, we consider what happens when we force this bubble to
a slightly larger radius, R = RE + ΔR, hold it there and then release it at time t = 0 when dR/dt = 0.
Then according to the Rayleigh-Plesset equation
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and since we assume ΔR � RE and neglecting all terms of order (ΔR)2 or higher
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Therefore if ΔR is positive, then (d2R/dt2)t=0 will be negative and the bubble will accelerate back toward
its equilibrium state if and only if
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and hence the equilibrium is stable if and only if
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Alternatively using the equilibrium equation this can be written as
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