An Internet Book on Fluid Dynamics

Solution to Problem 450A:

A two-dimensional open channel flow proceeds over the crest of a spillway (where the depth $h_{c}=0.2 m$), down the spillway and onto a section where the bed is horizontal. Shortly downstream a hydraulic jump occurs

Since the flow over the crest is choked, it follows that the velocity, u_{c}, of the flow at the crest is given by $\left(g h_{c}\right)^{1 / 2}$ and therefore the volume flow rate per unit breadth, Q, is

$$
\begin{equation*}
Q=u_{c} h_{c}=\left(g h_{c}^{3}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

Now

$$
\begin{equation*}
Q=u_{1} h_{1}=u_{2} h_{2} \tag{2}
\end{equation*}
$$

and the relation between the quantities on each side of the hydraulic jump is given by

$$
\begin{equation*}
h_{2}^{2}+h_{1} h_{2}=\frac{2 Q^{2}}{g h_{1}} \tag{3}
\end{equation*}
$$

which, as shown in the text, is derived from the continuity and momentum equations applied to the jump. Then, since $Q^{2}=g h_{c}^{3}$ we can solve the quadratic equation to obtain

$$
\begin{equation*}
h_{2}=\left[\frac{h_{1}^{2}}{4}+\frac{2 h_{c}^{3}}{h_{1}}\right]^{1 / 2}-\frac{h_{1}}{2} \tag{4}
\end{equation*}
$$

and substituting $h_{c}=0.2 m$ and $h_{1}=0.1 m$ this yields $h_{2}=0.353 m$.

