An Internet Book on Fluid Dynamics

Solution to Problem 422A:

[A] The mixture density, ρ, is given by

$$
\begin{equation*}
\rho=\frac{\text { Total Mass }}{\text { Total Volume }}=\frac{\rho_{A} V_{A}+\rho_{L} V_{L}}{V_{A}+V_{L}}=\frac{\rho_{A} \alpha V+\rho_{L}(1-\alpha) V}{V}=\rho_{A} \alpha+\rho_{L}(1-\alpha) \tag{1}
\end{equation*}
$$

where ρ_{L} and ρ_{A} are respectively the liquid and air densities.
[B] Since $\rho_{A} \ll \rho_{L}$, we use $\rho \approx(1-\alpha) \rho_{L}$. Then neglecting surface tension so that the pressure, p, is the same in both the air and the liquid, that the mixture responds isothermally at the temperature, T, and that the air behaves as a perfect gas so that $p=\rho_{A} \mathcal{R} T$ it follows that

$$
\begin{equation*}
\rho=\rho_{L}\left[1-\frac{\mathcal{R} T / p}{V_{L}+\mathcal{R} T / p}\right] \tag{2}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
p=\frac{\mathcal{R} T}{V_{L}}\left[\frac{\rho_{L}}{\rho_{L}-\rho}-1\right] \tag{3}
\end{equation*}
$$

But by definition, the speed of sound, c, is given by

$$
\begin{equation*}
c=\left[\frac{d p}{d \rho}\right]_{T}^{1 / 2} \tag{4}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
c=\left[\frac{p}{\rho_{L} \alpha(1-\alpha)}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

Now consider a large reservoir containing a bubbly mixture of void fraction, α_{0}, at an absolute pressure, p_{0}. The mixture flows out of the reservoir through a nozzle of throat area, A^{*}.
[C] We now seek an expression relating the pressure, p, at any point in the nozzle to the void fraction, α, at that point. The expression will include p_{0}, α_{0} and the constant ρ_{L}. Since the flow is isothermal $p_{A^{*}} V_{A^{*}}=p_{A} V_{A}=p V_{A}=$ constant and therefore

$$
\begin{equation*}
\frac{p}{p_{0}}=\frac{V_{A_{0}}}{V_{A}}=\frac{V_{A_{0}} / V T_{0}}{V_{A} / V T_{0}}=\frac{\alpha_{0}}{V_{A} /\left(V_{A_{0}}+V_{L}\right)}=\frac{\alpha_{0}}{V_{A} /\left(V_{L}+p V_{A} / p_{0}\right)}=\alpha_{0}\left[\frac{p}{p_{0}}+\frac{V_{L}}{V_{A}}\right] \tag{6}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\frac{p}{p_{0}}=\alpha_{0}\left[\frac{p}{p_{0}}+\frac{(1-\alpha)}{\alpha}\right]=\frac{\alpha_{0}}{\alpha} \frac{(1-\alpha)}{\left(1-\alpha_{0}\right)} \tag{7}
\end{equation*}
$$

[D] Integrating the momentum equation for a steady, one-dimensional, frictionless flow $u d u=-d p / \rho$ using

$$
\begin{equation*}
p=\frac{\alpha_{0} p_{0}}{\alpha} \frac{(1-\alpha)}{\left(1-\alpha_{0}\right)} \tag{8}
\end{equation*}
$$

we find

$$
\begin{equation*}
\frac{u^{2}}{2}=\frac{\alpha_{0} p_{0}}{\rho_{L}\left(1-\alpha_{0}\right)}\left[\ln \left(\frac{\alpha}{1-\alpha}\right)-\frac{1}{\alpha}\right]+C \tag{9}
\end{equation*}
$$

where C is the integration constant determined by the conditions in the reservoir so that

$$
\begin{equation*}
C=\frac{\alpha_{0} p_{0}}{\rho_{L}\left(1-\alpha_{0}\right)}\left[\frac{1}{\alpha_{0}}-\ln \left(\frac{\alpha_{0}}{1-\alpha_{0}}\right)\right] \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{u^{2}}{2}=\frac{\alpha_{0} p_{0}}{\rho_{L}\left(1-\alpha_{0}\right)}\left[\ln \left(\frac{\alpha\left(1-\alpha_{0}\right)}{\alpha_{0}(1-\alpha)}\right)-\frac{1}{\alpha}+\frac{1}{\alpha_{0}}\right] \tag{11}
\end{equation*}
$$

[E] Assuming the nozzle is choked we seek the relation between α^{*} and α_{0}. A choked nozzle implies $u=c$ and therefore

$$
\begin{equation*}
\frac{p^{*}}{\rho_{L} \alpha^{*}\left(1-\alpha^{*}\right)}=\frac{\alpha_{0} p_{0}}{\rho_{L}\left(1-\alpha_{0}\right)}\left[\ln \left(\frac{\alpha^{*}\left(1-\alpha_{0}\right)}{\alpha_{0}\left(1-\alpha^{*}\right)}\right)-\frac{1}{\alpha^{*}}+\frac{1}{\alpha_{0}}\right] \tag{12}
\end{equation*}
$$

and with

$$
\begin{equation*}
\frac{p^{*}}{p_{0}}=\frac{\alpha_{0}}{\alpha^{*}} \frac{\left(1-\alpha^{*}\right)}{\left(1-\alpha_{0}\right)} \tag{13}
\end{equation*}
$$

it follows that the relation between α^{*} and α_{0} is

$$
\begin{equation*}
2\left(\alpha^{*}\right)^{2}\left[\ln \left(\frac{\alpha^{*}\left(1-\alpha_{0}\right)}{\alpha_{0}\left(1-\alpha^{*}\right)}\right)-\frac{1}{\alpha^{*}}+\frac{1}{\alpha_{0}}\right]=1 \tag{14}
\end{equation*}
$$

