An Internet Book on Fluid Dynamics

Solution to Problem 406A:

This problem is concerned with the growth of boiling bubbles at a surface to which heat is being supplied at a rate Q (heat/unit area/unit time). If the nucleation site density is N (sites/unit area) and if the bubbles are modeled as spherical with a radius, $R(t)$, where t is time, then we seek the bubble growth rate, $d R / d t$, for steady state boiling in which the mean temperature of the liquid remains unchanged. It is assumed that both the latent heat, \mathcal{L}, and the density of the vapor in the bubbles, ρ_{V}, are known and fixed.

First note that the heat supplied to each nucleation site per unit time is Q / N. Therefore the mass of liquid evaporated at each site per unit time is $Q / \mathcal{L} N$ and this must be equal to the mass of vapor generated at each site per unit time. Therefore the volume of vapor generated at each site per unit time is $Q / \rho_{V} \mathcal{L} N$. And since this must be equal to the volume rate of increase of the bubbles it follows that

$$
\begin{equation*}
\frac{Q}{\rho_{V} \mathcal{L} N}=\frac{d}{d t}\left(\frac{4}{3} \pi R^{3}\right)=4 \pi R^{2} \frac{d R}{d t} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d R}{d t}=\frac{Q}{4 \pi R^{2} \rho_{V} \mathcal{L} N} \tag{2}
\end{equation*}
$$

