Solution to Problem 404A:

Given the distribution function of nuclei or microbubbles in a water tunnel:

$$N_1(R) = N^*/R^{3.5} \qquad R > R_{min}$$
 (1)

where $N^* = 10^{-5}$ (units $m^{-0.5}$), $R_{min} = 0.00002m$ and R is the microbubble radius in meters. This distribution is evaluated at atmospheric pressure, p_1 , and at a known temperature, T.

[A] Find the microbubble population density in number/ cm^3 .

Population =
$$\int_{R_{min}}^{\infty} N_1(R) dR = \frac{N^*}{2.5R_{min}^{2.5}} = 2.24 \times 10^6 m^{-3} = 2.24 \text{ per } cm^3$$
 (2)

[B] Find the distribution at a different pressure, p_2 , if the bubbles contain a fixed mass of noncondensable gas. If the pressure is changed from p_1 to p_2 while the temperature remains the same then pV = constant and the new bubble radius, R_2 , is

$$R_2 = \left(\frac{p_1}{p_2}\right)^{1/3} R_1 \quad \text{and} \quad dR_2 = \left(\frac{p_1}{p_2}\right)^{1/3} dR_1$$
 (3)

Therefore the number of bubbles with sizes between R_1 and $R_1 + dR_1$ per unit volume is $N_1(R_1)dR_1$ and this becomes the same as the number per unit volume at the new pressure with size between R_2 and $R_2 + dR_2$. In other words

$$N_2(R_2)dR_2 = N_1(R_1)dR_1 (4)$$

$$N_2(R_2) = N_1(R_1) \left(\frac{p_2}{p_1}\right)^{1/3} = \frac{N^*}{R_2^{7/2}} \left(\frac{p_1}{p_2}\right)^{5/6}$$
 (5)

[C] Find the distribution at a different pressure, p_2 , if the bubbles contain both water vapor and a fixed mass of noncondensable gas. Then

$$p_B = p_V + p_G \quad \text{and} \quad p_G = p_2 - p_V \tag{6}$$

where p_V is the vapor pressure and p_G is the partial pressure of gas. Then

$$N_2(R_2) = \frac{N^*}{R_2^{7/2}} \left(\frac{(p_1 - p_V)}{(p_2 - p_V)} \right)^{5/6} \tag{7}$$