An Internet Book on Fluid Dynamics

Solution to Problem 404A:

Given the distribution function of nuclei or microbubbles in a water tunnel:

$$
\begin{equation*}
N_{1}(R)=N^{*} / R^{3.5} \quad R>R_{\min } \tag{1}
\end{equation*}
$$

where $N^{*}=10^{-5}$ (units $m^{-0.5}$), $R_{\text {min }}=0.00002 m$ and R is the microbubble radius in meters. This distribution is evaluated at atmospheric pressure, p_{1}, and at a known temperature, T.
[A] Find the microbubble population density in number $/ \mathrm{cm}^{3}$.

$$
\begin{equation*}
\text { Population }=\int_{R_{\min }}^{\infty} N_{1}(R) d R=\frac{N^{*}}{2.5 R_{\min }^{2.5}}=2.24 \times 10^{6} \mathrm{~m}^{-3}=2.24 \text { per } \mathrm{cm}^{3} \tag{2}
\end{equation*}
$$

[B] Find the distribution at a different pressure, p_{2}, if the bubbles contain a fixed mass of noncondensable gas. If the pressure is changed from p_{1} to p_{2} while the temperature remains the same then $p V=$ constant and the new bubble radius, R_{2}, is

$$
\begin{equation*}
R_{2}=\left(\frac{p_{1}}{p_{2}}\right)^{1 / 3} R_{1} \quad \text { and } \quad d R_{2}=\left(\frac{p_{1}}{p_{2}}\right)^{1 / 3} d R_{1} \tag{3}
\end{equation*}
$$

Therefore the number of bubbles with sizes between R_{1} and $R_{1}+d R_{1}$ per unit volume is $N_{1}\left(R_{1}\right) d R_{1}$ and this becomes the same as the number per unit volume at the new pressure with size between R_{2} and $R_{2}+d R_{2}$. In other words

$$
\begin{gather*}
N_{2}\left(R_{2}\right) d R_{2}=N_{1}\left(R_{1}\right) d R_{1} \tag{4}\\
N_{2}\left(R_{2}\right)=N_{1}\left(R_{1}\right)\left(\frac{p_{2}}{p_{1}}\right)^{1 / 3}=\frac{N^{*}}{R_{2}^{7 / 2}}\left(\frac{p_{1}}{p_{2}}\right)^{5 / 6} \tag{5}
\end{gather*}
$$

[C] Find the distribution at a different pressure, p_{2}, if the bubbles contain both water vapor and a fixed mass of noncondensable gas. Then

$$
\begin{equation*}
p_{B}=p_{V}+p_{G} \quad \text { and } \quad p_{G}=p_{2}-p_{V} \tag{6}
\end{equation*}
$$

where p_{V} is the vapor pressure and p_{G} is the partial pressure of gas. Then

$$
\begin{equation*}
N_{2}\left(R_{2}\right)=\frac{N^{*}}{R_{2}^{7 / 2}}\left(\frac{\left(p_{1}-p_{V}\right)}{\left(p_{2}-p_{V}\right)}\right)^{5 / 6} \tag{7}
\end{equation*}
$$

