Solution to Problem 403A:

Consider first the hydrophobic case $(\theta>\pi / 2)$ with the cavity entirely in the crevice The geometry in this

case is such that the bubble radius, r, is related to the diameter of the contact line, d, by

$$
\begin{equation*}
\frac{d}{2}=r \cos (\theta-\alpha) \tag{1}
\end{equation*}
$$

and therefore the equilibrium balance of forces across the bubble surface implies that the tension, $\left(p_{B}-p_{L}\right)$, is

$$
\begin{equation*}
p_{B}-p_{L}=\frac{2 S}{r}=\frac{4 S \cos (\theta-\alpha)}{d} \tag{2}
\end{equation*}
$$

Therefore, the deeper the cavity is in the crevice, the smaller are d and r and the larger the tension needs to be to grow the cavity. In other words the smaller d and r are, the larger the tension which the bulk of the liquid can sustain.

On the other hand in the hydrophilic case $(\theta<\pi / 2)$ with the cavity entirely in the crevice, the curvature of the bubble surface is reversed:

The bubble radius, r, is related to the diameter of the contact line, d, by

$$
\begin{equation*}
\frac{d}{2}=r \cos (\theta-\alpha) \tag{3}
\end{equation*}
$$

and the tension, $p_{B}-p_{L}$, becomes

$$
\begin{equation*}
p_{B}-p_{L}=-\frac{2 S}{r}=-\frac{4 S \cos (\theta-\alpha)}{d} \tag{4}
\end{equation*}
$$

Consequently when $\theta>\pi / 2+\alpha$ the liquid can sustain a small equilibrium tension but when the surface is very wetting and $\theta<\pi / 2+\alpha$ no tension can be sustained and the bubble will expand out of the crevice.

When the bubble becomes large enough to emerge from the crevice as shown below:

the bubble radius is related to the bubble footprint diameter, d, by

$$
\begin{equation*}
\frac{d}{2}=r \sin \theta \tag{5}
\end{equation*}
$$

and the equilibrium tension becomes

$$
\begin{equation*}
p_{B}-p_{L}=\frac{2 S}{r}=\frac{4 S \sin \theta}{d} \tag{6}
\end{equation*}
$$

In summary we may plot the possible equilibrium tension, $\left(p_{B}-p_{L}\right)$, against the bubble base diameter, d :

Note the discontinuity as the bubble transitions out of the crevice. The point B is above the point A when $\theta>\alpha / 2+\pi / 4$ which would usually be true in the hydrophilic case. In such a circumstance one can envisage that under these circumstances a growing bubble would become stationary at the crevice exit. On the other had when $\theta>\alpha / 2+\pi / 4$ the point B would be below the point A and a growing bubble would pop out of the crevice.

