An Internet Book on Fluid Dynamics

Solution to Problem 401A:

[1] Since the mass of insoluble gas in the bubble is m and the volume of a bubble of radius, R, is $4 \pi R^{3} / 3$, the density of the insoluble gas is $3 m / 4 \pi R^{3}$. Therefore if the temperature of the bubble is T and the insoluble gas constant is \mathcal{R} it follows that the partial pressure, p_{G}, of insoluble gas in the bubble and the total pressure in the bubble, p_{B}, are

$$
\begin{equation*}
p_{G}=\frac{3 m \mathcal{R} T}{4 \pi R^{3}} \quad \text { and } \quad p_{B}=p_{V}+\frac{3 m \mathcal{R} T}{4 \pi R^{3}} \tag{1}
\end{equation*}
$$

It follows from the Rayleigh-Plesset equation that

$$
\begin{equation*}
p_{V}+\frac{3 m \mathcal{R} T}{4 \pi R^{3}}-p_{\infty}=\rho_{L} R \frac{d^{2} R}{d t^{2}}+\frac{3}{2} \rho_{L}\left(\frac{d R}{d t}\right)^{2}+\frac{2 S}{R} \tag{2}
\end{equation*}
$$

The equilibrium radius, R_{E}, is the solution of this equation when $d^{2} R / d t^{2}=0$ and $d R / d t=0$, in other words

$$
\begin{equation*}
p_{V}+\frac{3 m \mathcal{R} T}{4 \pi R_{E}^{3}}-p_{\infty}=\frac{2 S}{R_{E}} \tag{3}
\end{equation*}
$$

so the cubic equation that must be solved for R_{E} is

$$
\begin{equation*}
R_{E}^{3}\left(p_{V}-p_{\infty}\right)-2 S R_{E}^{2}+\frac{3 m \mathcal{R} T}{4 \pi}=0 \tag{4}
\end{equation*}
$$

[2] To consider the stability of this equilibrium, we consider what happens when we force this bubble to a slightly larger radius, $R=R_{E}+\Delta R$, hold it there and then release it at time $t=0$ when $d R / d t=0$. Then according to the Rayleigh-Plesset equation

$$
\begin{equation*}
\rho_{L}\left(R_{E}+\Delta R\right)\left(\frac{d^{2} R}{d t^{2}}\right)_{t=0}=p_{V}+\frac{3 m \mathcal{R} T}{4 \pi\left(R_{E}+\Delta R\right)^{3}}-p_{\infty}-\frac{2 S}{R_{E}} \tag{5}
\end{equation*}
$$

and since we assume $\Delta R \ll R_{E}$ and neglecting all terms of order $(\Delta R)^{2}$ or higher

$$
\begin{equation*}
\rho_{L}\left(R_{E}+\Delta R\right)\left(\frac{d^{2} R}{d t^{2}}\right)_{t=0} \approx \frac{\Delta R}{R_{E}}\left[\frac{2 S}{R_{E}}-\frac{9 m \mathcal{R} T}{4 \pi R_{E}^{3}}\right] \tag{6}
\end{equation*}
$$

Therefore if ΔR is positive, then $\left(d^{2} R / d t^{2}\right)_{t=0}$ will be negative and the bubble will accelerate back toward its equilibrium state if and only if

$$
\begin{equation*}
\frac{9 m \mathcal{R} T}{4 \pi R_{E}^{3}}>\frac{2 S}{R_{E}} \tag{7}
\end{equation*}
$$

and hence the equilibrium is stable if and only if

$$
\begin{equation*}
R_{E}<\left(\frac{9 m \mathcal{R} T}{8 \pi S}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

Alternatively using the equilibrium equation this can be written as

$$
\begin{equation*}
R_{E}<\frac{4 S}{3\left(p_{V}-p_{\infty}\right)} \tag{9}
\end{equation*}
$$

