An Internet Book on Fluid Dynamics

Solution to Problem 241D

The actual cross-section of the duct as a function of x is

$$
b\left[h_{0}+H x^{k}\right]
$$

but due to the displacement thickness of the boundary layers on the walls, $\delta_{D}(x)$, the effective cross-sectional area of the duct is

$$
b h_{0}+b H x^{k}-2 b \delta_{D}
$$

Using the Falkner-Skan solutions for $U=C x^{m}$ we find that the displacement thickness

$$
\delta_{D}=\left\{\frac{4 \nu x^{(1-m)}}{C}\right\}^{\frac{1}{2}} \int_{0}^{\infty}\left\{1-\frac{d F}{d \eta}\right\} d \eta
$$

For convenience we denote the number that the integral represents by

$$
I(m)=\int_{0}^{\infty}\left\{1-\frac{d F}{d \eta}\right\} d \eta
$$

where, since $F(\eta)$ depends on m, the value of $I(m)$ changes with m.
If the longitudinal pressure gradient is to be zero, we must have U constant and therefore $m=0$ so that the appropriate boundary layer solution is the Blasius laminar boundary layer solution for which

$$
\delta_{D}=1.72\left\{\frac{\nu x}{U}\right\}^{\frac{1}{2}}
$$

But conservation of mass requires that U multiplied by the effective cross-sectional area must be a constant and since U is a constant in this case, it follows that the effective cross-sectional area must be a constant. The only way that this can be true is if

$$
H x^{k}=2 \delta_{D}
$$

and it therefore follows that, in this case,

$$
k=1 / 2 \quad \text { and } \quad H=3.44(\nu / U)^{\frac{1}{2}}
$$

