## An Internet Book on Fluid Dynamics

## Solution to Problem 145A:

This problem involves an idealized flow of a uniform stream around a cylinder of radius, $R$ : in which the

normal stress, $\sigma_{r r}$, and the tangential stress, $\sigma_{r \theta}$, acting on the surface of the cylinder vary with angular location, $\theta$, according to:

$$
\begin{gathered}
\sigma_{r r}=-A \cos 2 \theta-B \cos \theta \\
\sigma_{r \theta}=C \sin \theta
\end{gathered}
$$

where $A, B$, and $C$ are known constants.
The drag, $D$, acting on the cylinder per unit depth normal to the sketch is given by

$$
D=2 \int_{0}^{\pi}\left(\sigma_{r \theta} \sin \theta-\sigma_{r r} \cos \theta\right) R d \theta
$$

The term involving $\sigma_{r r}$ constitutes the form drag which is therefore

$$
\text { Form Drag }=-2 \int_{0}^{\pi} \sigma_{r r} \cos \theta R d \theta=\pi R B
$$

The term in $D$ involving $\sigma_{r \theta}$ constitutes the skin friction drag which is therefore

$$
\text { Skin Friction Drag }=2 \int_{0}^{\pi} \sigma_{r \theta} \sin \theta R d \theta=\pi R C
$$

