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Solution to Problem 123A

From the previous problem, the velocity potential for the flow past a sphere is

φ(r, θ) = U cos θ
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The tangential velocity component on the surface of the sphere is:

uθ(R, θ) = −U sin θ
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Using Bernoulli’s equation, we find the relation between the pressure at infinity, P∞, and the pressure, Ps, on the surface at
a point where the angle from the front stagnation point is θ is
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If the pressures match at the equator θ = π/2, it follows that the uniform pressure in the wake, Pw, is related to P∞ by
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Since the drag, D, is defined as the force acting on the surface in the direction of the uniform stream, it follows that
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The drag coefficient, CD, is defined as the drag divided by the frontal projected area of the body πR2 and by 0.5ρU2
∞ and

therefore becomes
CD =

9
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Note that the actual drag coefficient of a sphere is substantially smaller than this because the pressure in the wake is normally
much larger than given by the above conditions.


