An Internet Book on Fluid Dynamics

Solution to Problem 123A

From the previous problem, the velocity potential for the flow past a sphere is

$$
\phi(r, \theta)=U \cos \theta\left(r+\frac{1}{2} \frac{R^{3}}{r^{2}}\right)
$$

The tangential velocity component on the surface of the sphere is:

$$
u_{\theta}(R, \theta)=-\left.U \sin \theta\left(1+\frac{1}{2} \frac{R^{3}}{r^{3}}\right)\right|_{r=R}=-\frac{3}{2} U \sin \theta
$$

Using Bernoulli's equation, we find the relation between the pressure at infinity, P_{∞}, and the pressure, P_{s}, on the surface at a point where the angle from the front stagnation point is θ is

$$
\begin{aligned}
P_{\infty}+\frac{1}{2} \rho U^{2} & =P_{s}+\frac{1}{2} \rho\left(-\frac{3}{2} U \sin \theta\right)^{2} \\
P_{\infty}-P_{s} & =-\frac{1}{2} \rho U^{2}\left(1-\frac{9}{4} \sin ^{2} \theta\right)
\end{aligned}
$$

If the pressures match at the equator $\theta=\pi / 2$, it follows that the uniform pressure in the wake, P_{w}, is related to P_{∞} by

$$
P_{\infty}-P_{w}=\frac{5}{8} \rho U^{2}
$$

Since the drag, D, is defined as the force acting on the surface in the direction of the uniform stream, it follows that

$$
\begin{aligned}
D & =\int_{0}^{\pi / 2}\left(P_{s}-P_{w}\right) 2 \pi R^{2} \sin (\theta) \cos (\theta) d \theta \\
& =2 \pi R^{2} \int_{0}^{\pi / 2}\left(\frac{5}{8} \rho U^{2}+\frac{1}{2} \rho U^{2}\left(1-\frac{9}{4} \sin ^{2} \theta\right)\right) \sin (\theta) \cos (\theta) d \theta \\
& =\frac{9}{16} \rho U^{2} \pi R^{2}
\end{aligned}
$$

The drag coefficient, C_{D}, is defined as the drag divided by the frontal projected area of the body πR^{2} and by $0.5 \rho U_{\infty}^{2}$ and therefore becomes

$$
C_{D}=\frac{9}{8}
$$

Note that the actual drag coefficient of a sphere is substantially smaller than this because the pressure in the wake is normally much larger than given by the above conditions.

