An Internet Book on Fluid Dynamics

Solution to Problem 116B

Purely radial flow requires that $u_{\theta}=u_{\phi}=0$ and that $\partial / \partial \theta=0$ and $\partial / \partial \phi=0$. Moreover the continuity equation is

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}=0
$$

Since the flow is purely radial, this reduces to:

$$
\frac{\partial}{\partial r}\left(r^{2} u_{r}\right)=0
$$

Integrating with respect to r:

$$
r^{2} u_{r}=f(t)
$$

Since at $r=R(t), u_{r}=d R / d t$ it follows that

$$
f(t)=R^{2} \frac{d R}{d t} \quad \text { and } \quad u_{r}=\frac{R^{2}}{r^{2}} \frac{d R}{d t}
$$

For purely radial flow, Euler's equations in the θ and ϕ directions are automatically satisfied. In the r direction, Euler's equation reduces to:

$$
\rho \frac{D u_{r}}{D t}=\rho\left(\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}\right)=-\frac{\partial p}{\partial r}
$$

Substituting the expression derived for u_{r} :

$$
-\frac{\partial p}{\partial r}=\rho\left(\left[\frac{2 R}{r^{2}}\left(\frac{d R}{d t}\right)^{2}+\frac{R^{2}}{r^{2}} \frac{d^{2} R}{d t^{2}}\right]+\frac{R^{2}}{r^{2}} \frac{d R}{d t}\left[-2 \frac{R^{2}}{r^{3}} \frac{d R}{d t}\right]\right)
$$

Separating and integrating:

$$
\int \partial p=\int-\rho\left(\frac{1}{r^{2}}\left[2 R\left(\frac{d R}{d t}\right)^{2}+R^{2} \frac{d^{2} R}{d t^{2}}\right]-2 \frac{R^{4}}{r^{5}}\left(\frac{d R}{d t}\right)^{2}\right) \partial r
$$

and therefore

$$
p(r, t)=\rho\left(\frac{1}{r}\left[2 R\left(\frac{d R}{d t}\right)^{2}+R^{2} \frac{d^{2} R}{d t^{2}}\right]-\frac{1}{2} \frac{R^{4}}{r^{4}}\left(\frac{d R}{d t}\right)^{2}\right)+c(t)
$$

The unknown integration function $c(t)$ is evaluated knowing the pressure as $r \rightarrow \infty$, which is denoted by p_{∞} :

$$
p(r \rightarrow \infty, t)=c(t)=p_{\infty}
$$

and therefore

$$
p(r, t)=\rho\left(\frac{1}{r}\left[2 R\left(\frac{d R}{d t}\right)^{2}+R^{2} \frac{d^{2} R}{d t^{2}}\right]-\frac{1}{2} \frac{R^{4}}{r^{4}}\left(\frac{d R}{d t}\right)^{2}\right)+p_{\infty}
$$

The pressure inside the bubble, p_{B}, equal to $p(r, t)$ evaluated at $r=R$, then completes the application of the boundary conditions:

$$
p_{B}=p(R, t)=\rho\left[2\left(\frac{d R}{d t}\right)^{2}+R \frac{d^{2} R}{d t^{2}}-\frac{1}{2}\left(\frac{d R}{d t}\right)^{2}\right]+p_{\infty}
$$

and therefore

$$
p_{B}-p_{\infty}=\rho\left[\frac{3}{2}\left(\frac{d R}{d t}\right)^{2}+R \frac{d^{2} R}{d t^{2}}\right]
$$

This is known as the Rayleigh equation for bubble growth and collapse; it connects the pressures at infinity and inside the bubble with the radius/time history, $R(t)$.

