An Internet Book on Fluid Dynamics

Solution to Problem 101B

Given that up to 40 km the atmosphere of Venus behaves adiabatically, it follows that

$$
\begin{equation*}
p=C \rho^{\gamma} \tag{1}
\end{equation*}
$$

where C is a constant. Now the pressure, p, as a function of the altitude, y, is given by

$$
\frac{d p}{d y}=-\rho g
$$

and substituting we obtain

$$
\frac{d p}{d y}=-\left(\frac{p}{C}\right)^{1 / \gamma} g=-p^{1 / \gamma}\left(\frac{1}{C}\right)^{1 / \gamma} g
$$

Now separate the variables p and y and integrate (introducing the dummy variables ξ for p and η for y to avoid confusion):

$$
\frac{d \xi}{\xi^{1 / \gamma}}=-g\left(\frac{1}{C}\right)^{1 / \gamma} d \eta
$$

and using the constants p_{s} and ρ_{s} :

$$
\begin{gathered}
\int_{p_{s}}^{p} \xi^{-1 / \gamma} d \xi=\int_{0}^{y}-g\left(\frac{1}{C}\right)^{1 / \gamma} d \eta \\
\frac{1}{1-1 / \gamma}\left(p^{1-1 / \gamma}-p_{s}^{1-1 / \gamma}\right)=-g\left(\frac{1}{C}\right)^{1 / \gamma} y \\
p=\left[\left(-1+\frac{1}{\gamma}\right) g\left(\frac{1}{C}\right)^{1 / \gamma} y+p_{s}^{1-1 / \gamma}\right]^{\frac{1}{1-1 / \gamma}}
\end{gathered}
$$

The result for p is thus

$$
p=\left[\left(\frac{1-\gamma}{\gamma}\right) g\left(\frac{\rho_{s}^{\gamma}}{p_{s}}\right)^{1 / \gamma} y+p_{s}^{1-1 / \gamma}\right]^{\frac{1}{1-1 / \gamma}}
$$

Part 2.

Plugging the values given in the problem statement into the expression for p :

$$
p=\left[\left(\frac{1-1.2}{1.2}\right) 8.7\left(\frac{63^{1.2}}{9.26 \times 10^{6}}\right)^{1 / 1.2} 30,000+\left(9.26 \times 10^{6}\right)^{\left(1-\frac{1}{1.2}\right)}\right]^{\frac{1}{1-\frac{1}{1.2}}}
$$

The pressure at an altitude of 30 km is thus

$$
p=1.13 \times 10^{6} \mathrm{~Pa}
$$

