An Internet Book on Fluid Dynamics

Problem 422A

This problem concerns the flow of a liquid containing air bubbles. The presence of the air bubbles causes the mixture to behave like a compressible fluid. The fraction of the volume of air in a unit volume of mixture is called the "void fraction" and is commonly denoted by α.
[A] Show that the density of the mixture, ρ, is given by

$$
\begin{equation*}
\rho=(1-\alpha) \rho_{L}+\alpha \rho_{A} \tag{1}
\end{equation*}
$$

where ρ_{L} and ρ_{A} are respectively the liquid and air densities. For the rest of this problem the above will be replaced by

$$
\begin{equation*}
\rho=(1-\alpha) \rho_{L} \tag{2}
\end{equation*}
$$

since $\rho_{A} \ll \rho_{L}$ and ρ_{L} will be regarded as a known constant.
[B] If the air behaves like a perfect gas and if the response of the mixture is isothermal, show that the speed of sound in the mixture, c, is given by

$$
\begin{equation*}
c=\left[\frac{p}{\rho_{L} \alpha(1-\alpha)}\right]^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

where p is the absolute pressure. [Neglect surface tension effects.]

Now consider a large reservoir containing a bubbly mixture of void fraction, α_{0}, at an absolute pressure, p_{0}. The mixture flows out of the reservoir through a nozzle of throat area, A^{*}.
[C] Use the above relations to find an expression relating the pressure, p, at any point in the nozzle to the void fraction, α, at that point. The expression will include p_{0}, α_{0} and the constant ρ_{L}.
[D] Integrate the momentum equation for a steady, one-dimensional, frictionless flow, namely

$$
\begin{equation*}
\rho u \frac{d u}{d x}=-\frac{d p}{d x} \tag{4}
\end{equation*}
$$

to find a relation for the velocity, u, of the mixture at any point in the nozzle in terms of the local value of α (as well as p_{0}, α_{0} and $\left.\rho_{L}\right)$.
[E] If the nozzle is choked use the results of $[\mathrm{C}]$ and $[\mathrm{D}]$ to find the relation between the void fraction in the throat, α^{*}, and that in the reservoir, α_{0}.

Note:

$$
\begin{gather*}
\int \frac{d \alpha}{\alpha(1-\alpha)}=\ln \frac{\alpha}{(1-\alpha)} \tag{5}\\
\int \frac{d \alpha}{\alpha^{2}(1-\alpha)}=-\frac{1}{\alpha}+\ln \frac{\alpha}{(1-\alpha)} \tag{6}
\end{gather*}
$$

