Problem 420A

A bluff body with a frontal projected area of A_B is placed in the liquid flow in a pipe or tunnel of crosssectional area, $A_T = \alpha A_B$. The liquid velocity far upstream of the body is adjusted to a constant value, U. The pressure far upstream of the body, p_{∞} , is then reduced until the wake behind the body becomes filled with vapor:

Figure 1: Body with infinitely long cavity under choked flow conditions.

As p_{∞} is further reduced this fully-developed cavity increases in size. At a particular value of the cavitation number, $\sigma = 2(p_{\infty} - p_V)/\rho U^2$ (where p_V is the vapor pressure and ρ is the liquid density) this cavity tends to become infinitely long and the cross-sectional area of the cavity far downstream of the body tends to $A_C = \beta A_B$. Find the particular cavitation number, say σ_C , that corresponds to this asymptotic condition in terms of α and β assuming:

- 1. the liquid is incompressible and inviscid and the flow is irrotational
- 2. surface tension is neglected and gravity effects can be ignored
- 3. the amount of liquid vaporized to fill the cavity is negligible

Also: If, instead of fixing U, p_{∞} and p_V are fixed and the asymptotic condition is approached by increasing the velocity, U. What is the maximum or choked tunnel velocity, U, that can be achieved in terms of p_{∞} , p_V , α and β ?

Also: Find σ_C when condition (3) does not hold and the ratio of the vapor density to the liquid density is denoted by γ . Assume that far downstream of the body the liquid and vapor velocities are equal.