An Internet Book on Fluid Dynamics

Problem 402A

This problem concerns a bubble growing in an infinite liquid (according to the Rayleigh-Plesset equation) when the pressure far from the bubble is $10,000 \mathrm{~kg} / \mathrm{m} \mathrm{sec}^{2}$ (or 0.1 atmospheres) less than the vapor pressure of the liquid. Assume the density of the liquid is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the surface tension is $0.07 \mathrm{~kg} / \mathrm{sec}^{2}$. Neglect any viscous effects. If we seek only constant rates of growth $\left(d^{2} R / d t^{2}=0\right)$ find

1. the velocity of growth $(d R / d t)$ when the surface tension is neglected
2. the velocity when surface tension is included and the bubble has a radius of 100 microns $\left(10^{-4} \mathrm{~m}\right)$
3. the critical size of the bubble which is in equilibrium (does not grow) under these conditions (include surface tension).
