An Internet Book on Fluid Dynamics

Problem 401A

[1] Consider a spherical bubble containing vapor and an insoluble gas in an incompressible, inviscid liquid (density ρ_{L}) whose pressure far from the bubble is denoted by p_{∞}. The surface tension at the bubble surface is denoted by S. The bubble pressure, p_{B}, is the sum of the vapor pressure, p_{V}, of the vapor within the bubble (p_{V} is a known constant) and the partial pressure of the insoluble gas, p_{G}. The mass of the insoluble gas in the bubble, m, is known. Find the cubic equation which must be solved to find the equilibrium radius, R, of a bubble under these conditions. [In addition to $p_{\infty}, p_{V}, m, \rho_{L}$, and S the equation contains the temperature, T_{B}, of the bubble and the gas constant, \mathcal{R}, of the insoluble gas.]
[2] By considering a small departure from this equilibrium size find the inequality which governs whether this equilibrium is stable or unstable [contains R, \mathcal{R}, m, T_{B} and S].

