Problem 401A

[1] Consider a spherical bubble containing vapor and an insoluble gas in an incompressible, inviscid liquid (density ρ_L) whose pressure far from the bubble is denoted by p_{∞} . The surface tension at the bubble surface is denoted by S. The bubble pressure, p_B , is the sum of the vapor pressure, p_V , of the vapor within the bubble (p_V is a known constant) and the partial pressure of the insoluble gas, p_G . The mass of the insoluble gas in the bubble, m, is known. Find the cubic equation which must be solved to find the equilibrium radius, R, of a bubble under these conditions. [In addition to p_{∞} , p_V , m, ρ_L , and S the equation contains the temperature, T_B , of the bubble and the gas constant, \mathcal{R} , of the insoluble gas.]

[2] By considering a small departure from this equilibrium size find the inequality which governs whether this equilibrium is stable or unstable [contains R, \mathcal{R} , m, T_B and S].