An Internet Book on Fluid Dynamics

Problem 330A

An automobile tire bursts sending a shock wave (assume a normal shock wave) propagating into the ambient air whose pressure is denoted by p_{1}, sonic speed by c_{1} and ratio of specific heats by γ. If the pressure behind the shock is p_{2} (roughly the inflated tire pressure) show that the speed of propagation of the shock, u_{s}, is given by

$$
u_{s}=c_{1}\left\{\frac{\gamma-1}{2 \gamma}+\frac{p_{2}}{p_{1}} \frac{(\gamma+1)}{2 \gamma}\right\}^{\frac{1}{2}}
$$

Calculate this speed if the temperature of the ambient air is $30^{\circ} \mathrm{C}$ and the pressure ratio, p_{2} / p_{1}, is 3.0 .

