
## An Internet Book on Fluid Dynamics

## Problem 290B

Suppose that the lift force experienced by a spinning baseball is to be estimated by  $\rho U \Gamma a$  where  $\rho$  is the air density  $(1 \ kg/m^3)$ , U is its forward velocity (say  $40 \ m/s$ ), a is its radius  $(0.03 \ m)$  and  $\Gamma$  is a circulation which is estimated as  $2\pi a^2 \omega$  where  $\omega$  is the velocity of spin (take  $\omega = 200 \ rad/s$ ). If the path of the baseball between the pitcher's mound and home plate (distance  $\approx 20m$ ) is modelled as part of a circle, estimate the distance (in m) between the home plate arrival locations with and without the spin, in other words estimate the distance, H:



Neglect gravity. My estimate(?) of the mass of the baseball is  $0.2 \ kg$ .