An Internet Book on Fluid Dynamics

Problem 290B

Suppose that the lift force experienced by a spinning baseball is to be estimated by $\rho U \Gamma a$ where ρ is the air density $\left(1 \mathrm{~kg} / \mathrm{m}^{3}\right)$, U is its forward velocity (say $40 \mathrm{~m} / \mathrm{s}$), a is its radius $\left(0.03 \mathrm{~m}\right.$) and Γ is a circulation which is estimated as $2 \pi a^{2} \omega$ where ω is the velocity of spin (take $\omega=200 \mathrm{rad} / \mathrm{s}$). If the path of the baseball between the pitcher's mound and home plate (distance $\approx 20 \mathrm{~m}$) is modelled as part of a circle, estimate the distance (in m) between the home plate arrival locations with and without the spin, in other words estimate the distance, H :

Neglect gravity. My estimate(?) of the mass of the baseball is 0.2 kg .

