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Transfer Functions for Uniform Homogeneous Flow

As an example of a multiphase flow that exhibits the solution structure described in section (Nrl), we
shall explore the form of the solution for the inviscid, frictionless flow of a two component, gas and liquid
mixture in a straight, uniform pipe. The relative motion between the two components is neglected so there
is only one velocity, u(s, t). Surface tension is also neglected so there is only one pressure, p(s, t). Moreover,
the liquid is assumed incompressible (ρL constant) and the gas is assumed to behave barotropically with
p ∝ ρk

G. Then the three equations governing the flow are the continuity equations for the liquid and for
the gas and the momentum equation for the mixture which are, respectively
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where ρ is the usual mixture density. Note that this is a system of order N = 3 and the most convenient
flow variables are p, u and α. These relations yield the following equations for the perturbations:
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where ρ̃G = p̃ρ̄G/kp̄. Assuming the solution has the simple form⎧⎨
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it follows from equations (Nrm4), (Nrm5) and (Nrm6) that
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Eliminating An, Un and Pn leads to the dispersion relation
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The solutions to this dispersion relation yield the following wavenumbers and velocities, cn = −ω/κn, for
the perturbations:



• κ1 = −ω/ū which has a wave velocity, c0 = ū. This is a purely kinematic wave, a concentration wave
that from equations (Nrm8) and (Nrm10) has U1 = 0 and P1 = 0 so that there are no pressure or
velocity fluctuations associated with this type of wave. In other, more complex flows, kinematic waves
may have some small pressure and velocity perturbations associated with them and their velocity may
not exactly correspond with the mixture velocity but they are still called kinematic waves if the major
feature is the concentration perturbation.

• κ2, κ3 = −ω/(ū ± c) where c is the sonic speed in the mixture, namely c = (kp̄/ᾱρ̄)
1
2 . Consequently,

these two modes have wave speeds c2, c3 = ū± c and are the two acoustic waves traveling downstream
and upstream respectively.

Finally, we list the solution in terms of three unknown, complex constants P2, P3 and A1:⎧⎨
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and the transfer function between two locations s = s1 and s = s2 follows by eliminating the vector
{A1, P2, P3} from the expressions (Nrm12) for the state vectors at those two locations.

Transfer function methods for multiphase flow are nowhere near as well developed as they are for single
phase flows but, given the number and ubiquity of instability problems in multiphase flows (Ishii 1982),
it is inevitable that these methods will gradually develop into a tool that is useful in a wide spectrum of
applications.


