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Non-Cavitating Pumps

Consider now the questions associated with transfer functions for pumps or other turbomachines. In
the simple fluid flows of the section “Some Simple Transfer Matrices” we were able to utilize the known
equations governing the flow in order to construct the transfer functions for those simple components. In
the case of more complex fluids or geometries, one cannot necessarily construct appropriate one-dimensional
flow equations, and therefore must resort to results derived from more global application of conservation
laws or to experimental measurements of transfer matrices. Consider first the transfer matrix, [TP ], for
incompressible flow through a pump (all pump transfer functions will be of the [T ] form defined in equation
(Bngc6)) which will clearly be a function not only of the frequency, ω, but also of the mean operating
point as represented by the flow coefficient, φ, and the cavitation number, σ. At very low frequencies one
can argue that the pump will simply track up and down the performance characteristic, so that, for small
amplitude perturbations and in the absence of cavitation, the transfer function becomes
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where d(ΔpT )/dm is the slope of the steady state operating characteristic of total pressure rise versus
mass flow rate. Thus we define the pump resistance, RP = −d(ΔpT )/dm, where RP is usually positive
under design flow conditions, but may be negative at low flow rates as discussed earlier (see the section on
“Surge”). At finite frequencies, the elements TP21 and TP22 will continue to be zero and unity respectively,
since the instantaneous flow rate into and out of the pump must be identical when the fluid and structure
are incompressible and no cavitation occurs. Furthermore, TP11 must continue to be unity since, in an
incompressible flow, the total pressure differences must be independent of the level of the pressure. It
follows that the transfer function at higher frequencies will become

[TP ] =
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where the pump impedence, IP , will, in general, consist of a resistive part, RP , and a reactive part,
jωLP . The resistance, RP , and inertance, LP , could be functions of both the frequency, ω, and the mean
flow conditions. Such simple impedance models for pumps have been employed, together with transfer
functions for the suction and discharge lines (equation (Bngg12)), to model the dynamics of pumping
systems. For example, Dussourd (1968) used frequency domain methods to analyse pulsation problems in
boiler feed pump systems. More recently, Sano (1983) used transfer functions to obtain natural frequencies
for pumping systems that agree well with those observed experimentally.

The first fundamental investigation of the dynamic response of pumps seems to have been carried out
by Ohashi (1968) who analyzed the oscillating flow through a cascade, and carried out some preliminary
experimental investigations on a centrifugal pump. These studies enabled him to evaluate the frequency at
which the response of the pump would cease to be quasistatic (see below). Fanelli (1972) appears to have
been the first to explore the nature of the pump transfer function, while the first systematic measurements
of the impedance of a noncavitating centrifugal pump are those of Anderson, Blade and Stevans (1971).
Typical resistive and reactive component measurements from the work of Anderson, Blade and Stevans
are reproduced in figure 1. Note that, though the resistance approaches the quasistatic value at low
frequencies, it also departs significantly from this value at higher frequencies. Moreover, the reactive part
is only roughly linear with frequency. The resistance and inertance are presented again in figure 2, where



Figure 1: Impedance measurements made by Anderson, Blade and Stevans (1971) on a centrifugal pump (impeller diameter
of 18.9 cm) operating at a flow coefficient of 0.442 and a speed of 3000 rpm. The real or resistive part of (−T12) and the
imaginary or reactive part of (T12) are plotted against the frequency of the perturbation.

Figure 2: Typical inertance and resistance values from the centrifugal pump data of figure 1. Data do not include the diffuser
contribution. The lines correspond to analytical values obtained as described in the text.

they are compared with the results of a dynamic model proposed by Anderson, Blade and Stevans. In
this model, each pump impeller passage is represented by a resistance and an inertance, and the volute by
a series of resistances and inertances. Since each impeller passage discharges into the volute at different



locations relative to the volute discharge, each impeller passage flow experiences a different impedance
on its way to the discharge. This results in an overall pump resistance and inertance that are frequency
dependent as shown in figure 2. Note that the comparison with the experimental observations (which are
also included in figure 2) is fair, but not completely satisfactory. Moreover, it should be noted, that the
comparison shown is for a flow coefficient of 0.442 (above the design flow coefficient), and that, at higher
flow coefficients, the model and experimental results exhibited poorer agreement.

Subsequent measurements of the impedance of non-cavitating axial and mixed flow pumps by Ng and
Brennen (1978) exhibit a similar increase in the resistance with frequency (see next section). In both sets
of dynamic data, it does appear that significant departure from the quasistatic values can be expected when
the reduced frequency, (frequency/rotation frequency) exceeds about 0.02 (see figure 2). This is roughly
consistent with the criterion suggested by Ohashi (1968) who concluded that non-quasistatic effects would
occur above a reduced frequency of 0.05ZRφ/ cos β. For the inducers of Ng and Brennen, Ohashi’s criterion
yields values for the critical reduced frequency of about 0.015.


