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Unsteady Stokes Flow

In order to elucidate some of the issues raised in the last section, it is instructive to examine solutions
for the unsteady flow past a sphere in low Reynolds number Stokes flow. In the asymptotic case of zero
Reynolds number, the solution of section (Nec) is unchanged by unsteadiness, and hence the solution at
any instant in time is identical to the steady-flow solution for the same particle velocity. In other words,
since the fluid has no inertia, it is always in static equilibrium. Thus the instantaneous force is identical
to that for the steady flow with the same Vi(t).

The next step is therefore to investigate the effects of small but nonzero inertial contributions. The Oseen
solution provides some indication of the effect of the convective inertial terms, uj∂ui/∂xj, in steady flow.
Here we investigate the effects of the unsteady inertial term, ∂ui/∂t. Ideally it would be best to include both
the ∂ui/∂t term and the Oseen approximation to the convective term, U∂ui/∂x. However, the resulting
unsteady Oseen flow is sufficiently difficult that only small-time expansions for the impulsively started
motions of droplets and bubbles exist in the literature (Pearcey and Hill 1956).

Consider, therefore the unsteady Stokes equations in the absence of the convective inertial terms:
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Since both the equations and the boundary conditions used below are linear in ui, we need only consider
colinear particle and fluid velocities in one direction, say x1. The solution to the general case of noncolinear
particle and fluid velocities and accelerations may then be obtained by superposition. As in section (Neg)
the colinear problem is solved by first transforming to an accelerating coordinate frame, xi, fixed in the
center of the particle so that P = p+ ρCx1dV/dt. Elimination of P by taking the curl of equation (Neh1)
leads to
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where L is the same operator as defined in equation (Neg4). Guided by both the steady Stokes flow and
the unsteady potential flow solution, one can anticipate a solution of the form

ψ = sin2 θ f(r, t) + cos θ sin2 θ g(r, t) + cos θ h(t) (Neh3)

plus other spherical harmonic functions. The first term has the form of the steady Stokes flow solution; the
last term would be required if the particle were a growing spherical bubble. After substituting equation
(Neh3) into equation (Neh2), the equations for f, g, h are
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Moreover, the form of the expression for the force, F1, on the spherical particle (or bubble) obtained by
evaluating the stresses on the surface and integrating is
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It transpires that this is independent of g or h. Hence only the solution to equation (Neh4) for f(r, t) need
be sought in order to find the force on a spherical particle, and the other spherical harmonics that might
have been included in equation (Neh3) are now seen to be unnecessary.

Fourier or Laplace transform methods may be used to solve equation (Neh4) for f(r, t), and we choose
Laplace transforms. The Laplace transforms for the relative velocity W (t), and the function f(r, t) are

denoted by Ŵ (s) and f̂(r, s):
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Then equation (Neh4) becomes

(L1 − ξ2)L1f̂ = 0 (Neh9)

where ξ = (s/νC)
1
2 , and the solution after application of the condition that û1(s, t) far from the particle
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where A and B are functions of s whose determination requires application of the boundary conditions on
r = R. In terms of A and B the Laplace transform of the force F̂1(s) is
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The classical solution (see Landau and Lifshitz 1959) is for a solid sphere (i.e., constant R) using the no-slip
(Stokes) boundary condition for which
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so that
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For a motion starting at rest at t = 0 the inverse Laplace transform of this yields
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where t̃ is a dummy time variable. This result must then be written in the original coordinate framework
with W = V − U and can be generalized to the noncolinear case by superposition so that
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where d/dt∗ is the Lagrangian time derivative following the particle. This is then the general force on the
particle or bubble in unsteady Stokes flow when the Stokes boundary conditions are applied.

Compare this result with that obtained from the potential flow analysis, equation (Neg18) with v taken
as constant. It is striking to observe that the coefficients of the added mass terms involving dVi/dt

∗ and
dUi/dt

∗ are identical to those of the potential flow solution. On superficial examination it might be noted
that dUi/dt

∗ appears in equation (Neh17) whereas DUi/Dt
∗ appears in equation (Neg18); the difference

is, however, of order Wj∂Ui/dxj and terms of this order have already been dropped from the equation
of motion on the basis that they were negligible compared with the temporal derivatives like ∂Wi/∂t.
Hence it is inconsistent with the initial assumption to distinguish between d/dt∗ and D/Dt∗ in the present
unsteady Stokes flow solution.

The term 9νCW/2R
2 in equation (Neh17) is, of course, the steady Stokes drag. The new phenomenon

introduced by this analysis is contained in the last term of equation (Neh17). This is a fading memory
term that is often named the Basset term after one of its identifiers (Basset 1888). It results from the fact
that additional vorticity created at the solid particle surface due to relative acceleration diffuses into the
flow and creates a temporary perturbation in the flow field. Like all diffusive effects it produces an ω

1
2

term in the equation for oscillatory motion.

Before we conclude this section, comment should be included on three other analytical results. Morrison and
Stewart (1976) considered the case of a spherical bubble for which the Hadamard-Rybczynski boundary
conditions rather than the Stokes conditions are applied. Then, instead of the conditions of equation
(Neh13), the conditions for zero normal velocity and zero shear stress on the surface require that
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and hence in this case (see Morrison and Stewart 1976)
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R2
{

1 + s
1
2R/3ν

1
2
C

} (Neh20)

The inverse Laplace transform of this for motion starting at rest at t = 0 is
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Comparing this with the solution for the Stokes conditions, we note that the first two terms are unchanged
and the third term is the expected Hadamard-Rybczynski steady drag term (see equation (Nec6)). The
last term is significantly different from the Basset term in equation (Neh17) but still represents a fading
memory.

More recently, Magnaudet and Legendre (1998) have extended these results further by obtaining an ex-
pression for the force on a particle (bubble) whose radius is changing with time.



Another interesting case is that for unsteady Oseen flow, which essentially consists of attempting to solve
the Navier-Stokes equations with the convective inertial terms approximated by Uj∂ui/∂xj. Pearcey and
Hill (1956) have examined the small-time behavior of droplets and bubbles started from rest when this
term is included in the equations.


