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Flow around a Sphere at Low Reynolds Number

At the other end of the Reynolds number spectrum is the classic Stokes solution for flow around a sphere.
In this limit the terms on the left-hand side of equation (Nea2) are neglected and the viscous term retained.
This solution has the form
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where A and B are constants to be determined from the boundary conditions on the surface of the sphere.
The force, F , on the particle in the x1 direction is
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Several subcases of this solution are of interest in the present context. The first is the classic Stokes (1851)
solution for a solid sphere in which the no-slip boundary condition, (uθ)r=R = 0, is applied (in addition to
the kinematic condition (ur)r=R = 0). This set of boundary conditions, referred to as the Stokes boundary
conditions, leads to
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and F1 = −6πρCνCWR (Nec5)

The second case originates with Hadamard (1911) and Rybczynski (1911) who suggested that, in the case
of a bubble, a condition of zero shear stress on the sphere surface would be more appropriate than a
condition of zero tangential velocity, uθ. Then it transpires that
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and F1 = −4πρCνCWR (Nec6)

Real bubbles may conform to either the Stokes or Hadamard-Rybczynski solutions depending on the degree
of contamination of the bubble surface, as we shall discuss in more detail in section (Nfd). Finally, it is of
interest to observe that the potential flow solution given in equations (Neb5) to (Neb8) is also a subcase
with
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However, another paradox, known as the Whitehead paradox, arises when the validity of these Stokes flow
solutions at small (rather than zero) Reynolds numbers is considered. The nature of this paradox can be
demonstrated by examining the magnitude of the neglected term, uj∂ui/∂xj, in the Navier-Stokes equations
relative to the magnitude of the retained term νC∂

2ui/∂xj∂xj. As is evident from equation (Nec1), far
from the sphere the former is proportional to W 2R/r2 whereas the latter behaves like νCWR/r3. It
follows that although the retained term will dominate close to the body (provided the Reynolds number
Re = 2WR/νC � 1), there will always be a radial position, rc, given by R/rc = Re beyond which the
neglected term will exceed the retained viscous term. Hence, even if Re � 1, the Stokes solution is
not uniformly valid. Recognizing this limitation, Oseen (1910) attempted to correct the Stokes solution



by retaining in the basic equation an approximation to uj∂ui/∂xj that would be valid in the far field,
−W∂ui/∂x1. Thus the Navier-Stokes equations are approximated by
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Oseen was able to find a closed form solution to this equation that satisfies the Stokes boundary conditions
approximately:
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which yields a drag force

F1 = −6πρCνCWR
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It is readily shown that equation (Nec9) reduces to equation (Nec1) as Re → 0. The corresponding solution
for the Hadamard-Rybczynski boundary conditions is not known to the author; its validity would be more
questionable since, unlike the case of Stokes boundary conditions, the inertial terms uj∂ui/∂xj are not
identically zero on the surface of the bubble.

Proudman and Pearson (1957) and Kaplun and Lagerstrom (1957) showed that Oseen’s solution is, in fact,
the first term obtained when the method of matched asymptotic expansions is used in an attempt to patch
together consistent asymptotic solutions of the full Navier-Stokes equations for both the near field close to
the sphere and the far field. They also obtained the next term in the expression for the drag force.
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The additional term leads to an error of 1% at Re = 0.3 and does not, therefore, have much practical
consequence.

The most notable feature of the Oseen solution is that the geometry of the streamlines depends on the
Reynolds number. The downstream flow is not a mirror image of the upstream flow as in the Stokes or
potential flow solutions. Indeed, closer examination of the Oseen solution reveals that, downstream of the
sphere, the streamlines are further apart and the flow is slower than in the equivalent upstream location.
Furthermore, this effect increases with Reynolds number. These features of the Oseen solution are entirely
consistent with experimental observations and represent the initial development of a wake behind the body.

The flow past a sphere at Reynolds numbers between about 0.5 and several thousand has proven intractable
to analytical methods though numerical solutions are numerous. Experimentally, it is found that a recir-
culating zone (or vortex ring) develops close to the rear stagnation point at about Re = 30 (see Taneda
1956 and figure 1). With further increase in the Reynolds number this recirculating zone or wake expands.
Defining locations on the surface by the angle from the front stagnation point, the separation point moves
forward from about 130◦ at Re = 100 to about 115◦ at Re = 300. In the process the wake reaches a
diameter comparable to that of the sphere when Re ≈ 130. At this point the flow becomes unstable and
the ring vortex that makes up the wake begins to oscillate (Taneda 1956). However, it continues to be
attached to the sphere until about Re = 500 (Torobin and Gauvin 1959).

At Reynolds numbers above about 500, vortices begin to be shed and then convected downstream. The
frequency of vortex shedding has not been studied as extensively as in the case of a circular cylinder and
seems to vary more with Reynolds number. In terms of the conventional Strouhal number, Str, defined as

Str = 2fR/W (Nec12)
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Figure 1: Streamlines of steady flow (from left to right) past a sphere at various Reynolds numbers (from Taneda 1956,
reproduced by permission of the author).

the vortex shedding frequencies, f , that Moller (1938) observed correspond to a range of Str varying from
0.3 at Re = 1000 to about 1.8 at Re = 5000. Furthermore, as Re increases above 500 the flow develops
a fairly steady near-wake behind which vortex shedding forms an unsteady and increasingly turbulent
far-wake. This process continues until, at a value of Re of the order of 1000, the flow around the sphere
and in the near-wake again becomes quite steady. A recognizable boundary layer has developed on the
front of the sphere and separation settles down to a position about 84◦ from the front stagnation point.
Transition to turbulence occurs on the free shear layer (which defines the boundary of the near-wake) and
moves progressively forward as the Reynolds number increases. The flow is similar to that of the top
photograph in section (Neb). Then the events described in the previous section occur with further increase
in the Reynolds number.

Since the Reynolds number range between 0.5 and several hundred can often pertain in multiphase flows,
one must resort to an empirical formula for the drag force in this regime. A number of empirical results



are available; for example, Klyachko (1934) recommends
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which fits the data fairly well up to Re ≈ 1000. At Re = 1 the factor in the square brackets is 1.167,
whereas the same factor in equation (Nec10) is 1.187. On the other hand, at Re = 1000, the two factors
are respectively 17.7 and 188.5.


