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Flow around a Sphere at High Reynolds Number

For steady flows about a sphere in which dUi/dt = dVi/dt = dWi/dt = 0, it is convenient to use a coordinate
system, xi, fixed in the particle as well as polar coordinates (r, θ) and velocities ur, uθ as defined in figure
1.

Then equations (Nea1) and (Nea2) become
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The Stokes streamfunction, ψ, is defined to satisfy continuity automatically:
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and the inviscid potential flow solution is
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Figure 1: Notation for a spherical particle.



Figure 2: Smoke visualization of the nominally steady flows (from left to right) past a sphere showing, at the top, laminar
separation at Re = 2.8 × 105 and, on the bottom, turbulent separation at Re = 3.9 × 105. Photographs by F.N.M.Brown,
reproduced with the permission of the University of Notre Dame.
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where, because of the boundary condition (ur)r=R = 0, it follows that D = −WR3/2. In potential flow one
may also define a velocity potential, φ, such that ui = ∂φ/∂xi. The classic problem with such solutions is
the fact that the drag is zero, a circumstance termed D’Alembert’s paradox. The flow is symmetric about
the x2x3 plane through the origin and there is no wake.

The real viscous flows around a sphere at large Reynolds numbers, Re = 2WR/νC > 1, are well docu-
mented. In the range from about 103 to 3 × 105, laminar boundary layer separation occurs at θ ∼= 84◦

and a large wake is formed behind the sphere (see figure 2). Close to the sphere the near-wake is laminar;
further downstream transition and turbulence occurring in the shear layers spreads to generate a turbulent
far-wake. As the Reynolds number increases the shear layer transition moves forward until, quite abruptly,
the turbulent shear layer reattaches to the body, resulting in a major change in the final position of sep-
aration (θ ∼= 120◦) and in the form of the turbulent wake (figure 2). Associated with this change in flow
pattern is a dramatic decrease in the drag coefficient, CD (defined as the drag force on the body in the
negative x1 direction divided by 1

2
ρCW

2πR2), from a value of about 0.5 in the laminar separation regime
to a value of about 0.2 in the turbulent separation regime (figure 3). At values of Re less than about 103

the flow becomes quite unsteady with periodic shedding of vortices from the sphere.



Figure 3: Drag coefficient on a sphere as a function of Reynolds number. Dashed curves indicate the drag crisis regime in
which the drag is very sensitive to other factors such as the free stream turbulence.


