An Internet Book on Fluid Dynamics

Flow around a Sphere at High Reynolds Number

For steady flows about a sphere in which $d U_{i} / d t=d V_{i} / d t=d W_{i} / d t=0$, it is convenient to use a coordinate system, x_{i}, fixed in the particle as well as polar coordinates (r, θ) and velocities u_{r}, u_{θ} as defined in figure 1.

Then equations (Nea1) and (Nea2) become

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)=0 \tag{Neb1}
\end{equation*}
$$

and

$$
\begin{align*}
& \rho_{C}\left\{\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r}\right\}=-\frac{\partial p}{\partial r} \\
& \quad+\rho_{C} \nu_{C}\left\{\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u_{r}}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u_{r}}{\partial \theta}\right)-\frac{2 u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right\} \tag{Neb2}\\
& \rho_{C}\left\{\frac{\partial u_{\theta}}{\partial t}+u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r} u_{\theta}}{r}\right\}=-\frac{1}{r} \frac{\partial p}{\partial \theta} \\
& \quad+\rho_{C} \nu_{C}\left\{\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u_{\theta}}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u_{\theta}}{\partial \theta}\right)+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}}{r^{2} \sin ^{2} \theta}\right\} \tag{Neb3}
\end{align*}
$$

The Stokes streamfunction, ψ, is defined to satisfy continuity automatically:

$$
\begin{equation*}
u_{r}=\frac{1}{r^{2} \sin \theta} \frac{\partial \psi}{\partial \theta} \quad ; \quad u_{\theta}=-\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r} \tag{Neb4}
\end{equation*}
$$

and the inviscid potential flow solution is

$$
\begin{gather*}
\psi=-\frac{W r^{2}}{2} \sin ^{2} \theta-\frac{D}{r} \sin ^{2} \theta \tag{Neb5}\\
u_{r}=-W \cos \theta-\frac{2 D}{r^{3}} \cos \theta \tag{Neb6}\\
u_{\theta}=+W \sin \theta-\frac{D}{r^{3}} \sin \theta \tag{Neb7}
\end{gather*}
$$

Figure 1: Notation for a spherical particle.

Figure 2: Smoke visualization of the nominally steady flows (from left to right) past a sphere showing, at the top, laminar separation at $R e=2.8 \times 10^{5}$ and, on the bottom, turbulent separation at $R e=3.9 \times 10^{5}$. Photographs by F.N.M.Brown, reproduced with the permission of the University of Notre Dame.

$$
\begin{equation*}
\phi=-W r \cos \theta+\frac{D}{r^{2}} \cos \theta \tag{Neb8}
\end{equation*}
$$

where, because of the boundary condition $\left(u_{r}\right)_{r=R}=0$, it follows that $D=-W R^{3} / 2$. In potential flow one may also define a velocity potential, ϕ, such that $u_{i}=\partial \phi / \partial x_{i}$. The classic problem with such solutions is the fact that the drag is zero, a circumstance termed D'Alembert's paradox. The flow is symmetric about the $x_{2} x_{3}$ plane through the origin and there is no wake.

The real viscous flows around a sphere at large Reynolds numbers, $R e=2 W R / \nu_{C}>1$, are well documented. In the range from about 10^{3} to 3×10^{5}, laminar boundary layer separation occurs at $\theta \cong 84^{\circ}$ and a large wake is formed behind the sphere (see figure 2). Close to the sphere the near-wake is laminar; further downstream transition and turbulence occurring in the shear layers spreads to generate a turbulent far-wake. As the Reynolds number increases the shear layer transition moves forward until, quite abruptly, the turbulent shear layer reattaches to the body, resulting in a major change in the final position of separation $\left(\theta \cong 120^{\circ}\right)$ and in the form of the turbulent wake (figure 2). Associated with this change in flow pattern is a dramatic decrease in the drag coefficient, C_{D} (defined as the drag force on the body in the negative x_{1} direction divided by $\frac{1}{2} \rho_{C} W^{2} \pi R^{2}$), from a value of about 0.5 in the laminar separation regime to a value of about 0.2 in the turbulent separation regime (figure 3). At values of Re less than about 10^{3} the flow becomes quite unsteady with periodic shedding of vortices from the sphere.

Figure 3: Drag coefficient on a sphere as a function of Reynolds number. Dashed curves indicate the drag crisis regime in which the drag is very sensitive to other factors such as the free stream turbulence.

