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Effect of Concentration on Particle Drag

Section (Neb) reviewed the dependence of the drag coefficient on the Reynolds number for a single particle
in a fluid and the effect on the sedimentation of that single particle in an otherwise quiescent fluid was ex-
amined as a particular example. Such results would be directly applicable to the evaluation of the relative
velocity between the disperse phase (the particles) and the continuous phase in a very dilute multiphase
flow. However, at higher concentrations, the interactions between the flow fields around individual particles
alter the force experienced by those particles and therefore change the velocity of sedimentation. Further-
more, the volumetric flux of the disperse phase is no longer negligible because of the finite concentration
and, depending on the boundary conditions in the particular problem, this may cause a non-negligible
volumetric flux of the continuous phase. For example, particles sedimenting in a containing vessel with a
downward particle volume flux, −jS (upward is deemed the positive direction), at a concentration, α, will
have a mean velocity,

−uS = −jS/α (Nel1)

and will cause an equal and opposite upward flux of the suspending liquid, jL = −jS, so that the mean
velocity of the liquid,

uL = jL/(1 − α) = −jS/(1 − α) (Nel2)

Hence the relative velocity is

uSL = uS − uL = jS/α(1 − α) = uS/(1 − α) (Nel3)

Thus care must be taken to define the terminal velocity and here we shall focus on the more fundamental
quantity, namely the relative velocity, uSL, rather than quantities such as the sedimentation velocity, uS,
that are dependent on the boundary conditions.

Figure 1: Relative velocity of sedimenting particles, uSL (normalized by the velocity as α → 0, (uSL)0) as a function of the
volume fraction, α. Experimental data from Mertes and Rhodes (1955) are shown for various Reynolds numbers, Re, as
follows: Re = 0.003 (+), 0.019 (×), 0.155 (�), 0.98 (�), 1.45 (�), 4.8 (∗), 16 (�), 641 (�), 1020 (�) and 2180 (�). Also shown
are the analytical results of Brinkman (equation (Nel5)) and Zick and Homsy and the empirical results of Wallis (equation
(Nel8)) and Barnea and Mizrahi (equation (Nel6)).



Barnea and Mizrahi (1973) have reviewed the experimental, theoretical and empirical data on the sedi-
mentation of particles in otherwise quiescent fluids at various concentrations, α. The experimental data
of Mertes and Rhodes (1955) on the ratio of the relative velocity, uSL, to the sedimentation velocity for a
single particle, (uSL)0 (equal to the value of uSL as α → 0), are presented in figure 1. As one might antici-
pate, the relative motion is hindered by the increasing concentration. It can also be seen that uSL/(uSL)0

is not only a function of α but varies systematically with the Reynolds number, 2R(uSL)0/νL, where νL is
the kinematic viscosity of the suspending medium. Specifically, uSL/(uSL)0 increases significantly with Re
so that the rate of decrease of uSL/(uSL)0 with increasing α is lessened as the Reynolds number increases.
One might intuitively expect this decrease in the interactions between the particles since the far field effects
of the flow around a single particle decline as the Reynolds number increases.

We also note that complementary to the data of figure 1 is extensive data on the flow through packed
beds of particles. The classical analyses of that data by Kozeny (1927) and, independently, by Carman
(1937) led to the widely used expression for the pressure drop in the low Reynolds number flow of a fluid
of viscosity, μC , and superficial velocity, jCD, through a packed bed of spheres of diameter, D, and solids
volume fraction, α, namely:

dp

ds
=

180α3μCjCD

(1 − α)3D2
(Nel4)

where the 180 and the powers on the functions of α were empirically determined. This expression, known
as the Carman-Kozeny equation, will be used shortly.

Several curves that are representative of the analytical and empirical results are also shown in figure 1
(and in figure 2). One of the first approximate, analytical models to include the interactions between
particles was that of Brinkman (1947) for spherical particles at asymptotically small Reynolds numbers
who obtained

uSL

(uSL)0
=

(2 − 3α)2

4 + 3α + 3(8α − 3α2)
1
2

(Nel5)

and this result is included in figures 1 and 2. Other researchers (see, for example, Tam 1969 and Brady
and Bossis 1988) have studied this low Reynolds number limit quite closely. Exact solutions for the
sedimentation velocity of a various regular arrays of spheres at asymptotically low Reynolds number were
obtained by Zick and Homsy (1982) and the particular result for a simple cubic array is included in figure
1. Clearly, these results deviate significantly from the experimental data and it is currently thought that
the sedimentation process cannot be modeled by a regular array because the fluid mechanical effects are
dominated by the events that occur when particles happen to come close to one another.

Switching attention to particle Reynolds numbers greater than unity, it was mentioned earlier that the
work of Fortes et al. (1987) and others has illustrated that the interactions between particles become very
complex since they result, primarily, from the interactions of particles with the wakes of the particles ahead
of them. Fortes et al. (1987) have shown this results in a variety of behaviors they term drafting, kissing
and tumbling that can be recognized in fluidized beds. As yet, these behaviors have not been amenable to
theoretical analyses.

The literature contains numerous empirical correlations but three will suffice for present purposes. At
small Reynolds numbers, Barnea and Mizrahi (1973) show that the experimental data closely follow an
expression of the form

uSL

(uSL)0

≈ (1 − α)

(1 + α
1
3 )e5α/3(1−α)

(Nel6)



Figure 2: The drift flux, jSL (normalized by the velocity (uSL)0) corresponding to the relative velocities of figure 1 (see that
caption for codes).

By way of comparison the Carman-Kozeny equation (Nel4) implies that a sedimenting packed bed would
have a terminal velocity given by

uSL

(uSL)0
=

1

80

(1 − α)2

α2
(Nel7)

which has magnitudes comparable to the expression (Nel6) at the volume fractions of packed beds.

At large rather than small Reynolds numbers, the ratio uSL/(uSL)0 seems to be better approximated by
the empirical relation

uSL

(uSL)0
≈ (1 − α)b−1 (Nel8)

where Wallis (1969) suggests a value of b = 3. Both of these empirical formulae are included in figure 1.

In later sections discussing sedimentation phenomena, we shall use the drift flux, jSL, more frequently than
the relative velocity, uSL. Recalling that, jSL = α(1−α)uSL, the data from figure 1 are replotted in figure
2 to display jSL/(uSL)0.

It is appropriate to end by expressing some reservations regarding the generality of the experimental
data presented in figures 1 and 2. At the higher concentrations, vertical flows of this type often develop
instabilities that produce large scale mixing motions whose scale is of the same order as the horizontal
extent of the flow, usually the pipe or container diameter. In turn, these motions can have a substantial
effect on the mean sedimentation velocity. Consequently, one might expect a pipe size effect that would
manifest itself non-dimensionally as a dependence on a parameter such as the ratio of the particle to pipe
diameter, 2R/d, or, perhaps, in a Froude number such as (uSL)0/(gd)

1
2 . Another source of discrepancy

could be a dependence on the overall flow rate. Almost all of the data, including that of Mertes and Rhodes
(1955), has been obtained from relatively quiescent sedimentation or fluidized bed experiments in which the
overall flow rate is small and, therefore, the level of turbulence is limited to that produced by the relative
motion between the particles and the suspending fluid. However, when the overall flow rate is increased so
that even a single phase flow of the suspending fluid would be turbulent, the mean sedimentation velocities
may be significantly altered by the enhancement of the mixing and turbulent motions. Figure 3 presents
data from some experiments by Bernier (1982) in which the relative velocity of bubbles of air in a vertical



Figure 3: Data indicating the variation in the bubble relative velocity, uGL, with the void fraction, α, and the overall flow
rate (as represented by jL) in a vertical, 10.2cm diameter tube. The dashed line is the correlation of Wallis, equation (Nel8).
Adapted from Bernier (1982).

water flow were measured for various total volumetric fluxes, j. Small j values cause little deviation from
the behavior at j = 0 and are consistent with the results of figure 1. However, at larger j values for which a
single phase flow would be turbulent, the decrease in uGL with increasing α almost completely disappears.
Bernier surmised that this disappearance of the interaction effect is due to the increase in the turbulence
level in the flow that essentially overwhelms any particle/particle or bubble/bubble interaction.


