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Sonic Speed with Change of Phase

Turning now to the behavior of a two-phase rather than two-component mixture, it is necessary not only
to consider the additional thermodynamic constraint required to establish the mass exchange, δm, but also
to reconsider the two thermodynamic constraints, QA and QB, that were implicit in the two-component
analysis of sections (Nlb), (Nlc), in the choice of the polytropic index, k, for the gas and the choice of the
sonic speed, cL, for the liquid. Note that a nonisentropic choice for k (for example, k = 1) implies that heat
is exchanged between the components, and yet this heat transfer process was not explicitly considered, nor
was an overall thermodynamic constraint such as might be placed on the global change in entropy.

We shall see that the two-phase case requires more intimate knowledge of these factors because the results
are more sensitive to the thermodynamic constraints. In an ideal, infinitely homogenized mixture of vapor
and liquid the phases would everywhere be in such close proximity to each other that heat transfer between
the phases would occur instantaneously. The entire mixture of vapor and liquid would then always be in
thermodynamic equilibrium. Indeed, one model of the response of the mixture, called the homogeneous
equilibrium model, assumes this to be the case. In practice, however, there is a need for results for bubbly
flows and mist flows in which heat transfer between the phases does not occur so readily. A second common
model assumes zero heat transfer between the phases and is known as the homogeneous frozen model. In
many circumstances the actual response lies somewhere between these extremes. A limited amount of heat
transfer occurs between those portions of each phase that are close to the interface. In order to incorporate
this in the analysis, we adopt an approach that includes the homogeneous equilibrium and homogeneous
frozen responses as special cases but that requires a minor adjustment to the analysis of section (Nlb) in
order to reflect the degree of thermal exchange between the phases. As in section (Nlb) ?? the total mass
of the phases A and B after application of the incremental pressure, δp, are ρAαA + δm and ρBαB − δm,
respectively. We now define the fractions of each phase, εA and εB that, because of their proximity to the
interface, exchange heat and therefore approach thermodynamic equilibrium with each other. The other
fractions (1 − εA) and (1 − εB) are assumed to be effectively insulated so that they behave isentropically.
This is, of course, a crude simplification of the actual circumstances, but it permits qualitative assessment
of practical flows.

It follows that the volumes of the four fractions following the incremental change in pressure, δp, are

(1 − εA)(ρAαA + δm)

[ρA + δp(∂ρA/∂p)s]
;

εA(ρAαA + δm)

[ρA + δp(∂ρA/∂p)e]

(1 − εB)(ρBαB − δm)

[ρB + δp(∂ρB/∂p)s]
;

εB(ρBαB − δm)

[ρB + δp(∂ρB/∂p)e]
(Nld1)

where the subscripts s and e refer to isentropic and phase equilibrium derivatives, respectively. Then the
change in total volume leads to the following modified form for equation (Nlb7) in the absence of surface
tension:
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The exchange of mass, δm, is now determined by imposing the constraint that the entropy of the whole
be unchanged by the perturbation. The entropy prior to δp is

ρAαAsA + ρBαBsB (Nld3)



where sA and sB are the specific entropies of the two phases. Following the application of δp, the entropy
is

(1 − εA) {ρAαA + δm} sA + εA {ρAαA + δm} {
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/
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}
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Equating (Nld3) and (Nld4) and writing the result in terms of the specific enthalpies hA and hB rather
than sA and sB , one obtains
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Note that if the communicating fractions εA and εB were both zero, this would imply no exchange of mass.
Thus εA = εB = 0 corresponds to the homogeneous frozen model (in which δm = 0) whereas εA = εB = 1
clearly yields the homogeneous equilibrium model.

Substituting equation (Nld5) into equation (Nld2) and rearranging the result, one can write
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where the quantities fA, fB, gA, and gB are purely thermodynamic properties of the two phases defined by
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The sensitivity of the results to the, as yet, unspecified quantities εA and εB does not emerge until one
substitutes vapor and liquid for the phases A and B (A = V , B = L, and αA = α, αB = 1 − α for
simplicity). The functions fL, fV , gL, and gV then become
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where L = hV − hL is the latent heat. It is normally adequate to approximate fV and fL by the reciprocal
of the ratio of specific heats for the gas and zero respectively. Thus fV is of order unity and fL is very small.
Furthermore gL and gV can readily be calculated for any fluid as functions of pressure or temperature.
Some particular values are shown in figure 1. Note that gV is close to unity for most fluids except in the
neighborhood of the critical point. On the other hand, gL can be a large number that varies considerably
with pressure. To a first approximation, gL is given by g∗(pC/p)η where pC is the critical pressure and, as
indicated in figure 1, g∗ and η are respectively 1.67 and 0.73 for water. Thus, in summary, fL ≈ 0, fV and
gV are of order unity, and gL varies significantly with pressure and may be large.



With these magnitudes in mind, we now examine the sensitivity of 1/ρc2 to the interacting fluid fractions
εL and εV :
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Using gL = g∗(pc/p)
η this is written for future convenience in the form:
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where kV = (1−εV )fV +εV gV and kL = εLg∗(pc)
η. Note first that the result is rather insensitive to εV since

fV and gV are both of order unity. On the other hand 1/ρc2 is sensitive to the interacting liquid fraction
εL though this sensitivity disappears as α approaches 1, in other words for mist flow. Thus the choice of εL

is most important at low vapor volume fractions (for bubbly flows). In such cases, one possible qualitative
estimate is that the interacting liquid fraction, εL, should be of the same order as the gas volume fraction,
α. In section (Nlg) we will examine the effect of the choice of εL and εV on a typical vapor/liquid flow and
compare the model with experimental measurements.

Figure 1: Typical values of the liquid index, gL, and the vapor index, gV , for various fluids.


