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Example of Rapid Flow Equations

Later, the work of Savage and Jeffrey (1981) and Jenkins and Savage (1983) saw the beginning of a
more rigorous application of kinetic theory methods to rapid granular flows and there is now an extensive
literature on the subject (see, for example, Gidaspow 1994). The kinetic theories may be best exemplified
by quoting the results of Lun et al. (1984) who attempted to evaluate both the collisional and streaming
contributions to the stress tensor (since momentum is transported both by the collisions of finite-sized
particles and by the motions of the particles). In addition to the continuity and momentum equations,
equations (Npg1) and (Npg2), an energy equation must be constructed to represent the creation, transport
and dissipation of granular heat; the form adopted is
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where T is the granular temperature, qi is the granular heat flux vector, and Γ is the rate of dissipation of
granular heat into thermodynamic heat per unit volume. Note that this represents a balance between the
granular heat stored in a unit volume (the lefthand side), the conduction of granular heat into the unit
volume (first term on RHS), the generation of granular heat (second term on RHS) and the dissipation of
granular heat (third term on RHS).

Most of the kinetic theories begin in this way but vary in the expressions obtained for the stress/strain
relations, the granular heat flux and the dissipation term. As an example we quote here the results from
the kinetic theory of Lun et al. (1984) that have been subsequently used by a number of authors. Lun et
al. obtain a stress tensor related to the granular temperature, T (equation (Npj1)), by
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an expression for the granular heat flux vector,
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and an expression for the rate of dissipation of granular heat,

Γ = ρSg5T
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where g0(α), the radial distribution function, is chosen to be

g0 = (1 − α/α∗)−2.5α∗
(Npk5)

and α∗ is the maximum shearable solids fraction. In the expressions (Npk2), (Npk3), and (Npk4), the
quantities g1, g2, g3, g4, and g5, are functions of α and ε as follows:
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Figure 1: Left: the shear stress function, fs(α), from the experiments of Savage and Sayed (1984) with glass beads (symbol
I) and various computer simulations (open symbols: with hard particle model; solid symbols: with soft particle model; half
solid symbols: with Monte Carlo methods). Right: Several analytical results. Adapted from Campbell (1990).
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where η = (1 + ε)/2.

For two-dimensional shear flows in the (x, y) plane with a shear ∂u/∂y and no acceleration in the x direction
the Lun et al. relations yield stresses given by:

σxx = σyy = ρSg1T ; σxy = −ρSDg2T
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in accord with the expressions (Npj2). They also yield a granular heat flux component in the y direction
given by:
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These relations demonstrate the different roles played by the quantities g1, g2, g3, g4, and g5: g1 determines
the normal kinetic pressure, g2 governs the shear stress or viscosity, g3 and g4 govern the diffusivities
controlling the conduction of granular heat from regions of differing temperature and density and g5

determines the granular dissipation. While other kinetic theories may produce different specific expressions
for these quantities, all of them seem necessary to model the dynamics of a rapid granular flow.



Figure 1 shows typical results for the shear stress function, fs(α). The lefthand graph includes the data
of Savage and Sayed (1984) from shear cell experiments with glass beads as well as a host of computer
simulation results using both hard and soft particle models and both mechanistic and Monte Carlo methods.
The righthand graph presents some corresponding analytical results. The stress states to the left of the
minima in these figures are difficult to observe experimentally, probably because they are unstable in most
experimental facilities.

In summary, the governing equations, exemplified by equations (Npg1), (Npg2) and (Npk1) must be solved
for the unknowns, α, T and the three velocity components, ui given the expressions for σij, qi and Γ and
the physical constants D, ρS, ε, α∗ and gravity gk.

It was recognized early during research into rapid granular flows that some modification to the purely col-
lisional kinetic theory would be needed to extend the results towards lower shear rates at which frictional
stresses become significant. A number of authors explored the consequences of heuristically adding fric-
tional terms to the collisional stress tensor (Savage 1983, Johnson et al., 1987, 1990) though it is physically
troubling to add contributions from two different flow regimes.


