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Homogeneous Flow with Gas Dynamics

Though the focus in these sections is on the effect of relative motion, we must begin by examining the
simplest case in which both the relative motion between the phases or components and the temperature
differences between the phases or components are sufficiently small that they can be neglected. This will
establish the base state that, through perturbation methods, can be used to examine flows in which the
relative motion and temperature differences are small. As we established in sections (Nl), a flow with
no relative motion or temperature differences is referred to as homogeneous. The effect of mass exchange
will also be neglected in the present discussion and, in such a homogeneous flow, the governing equations,
(Nnb6), (Nnb7), and (Nnb8) clearly reduce to
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where ui and T are the velocity and temperature common to all phases.

An important result that follows from the individual continuity equations (Nnb1) in the absence of exchange
of mass (IN = 0) is that
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Consequently, if the flow develops from a uniform stream in which the loading ξ is constant and uniform,
then ξ is uniform and constant everywhere and becomes a simple constant for the flow. We shall confine
the remarks in this section to such flows.

At this point, one particular approximation is very advantageous. Since in many applications the volume
occupied by the particles is very small, it is reasonable to set αC ≈ 1 in equation (Nnb2) and elsewhere.
This approximation has the important consequence that equations (Nnc1), (Nnc2) and (Nnc3) are now
those of a single phase flow of an effective gas whose thermodynamic and transport properties are as
follows. The approximation allows the equation of state of the effective gas to be written as

p = ρRT (Nnc5)

where R is the gas constant of the effective gas. Setting αC ≈ 1, the thermodynamic properties of the
effective gas are given by

ρ = ρC(1 + ξ) ; R = RC/(1 + ξ)

cv =
cvC + ξcsD

1 + ξ
; cp =

cpC + ξcsD

1 + ξ
; γ =

cpC + ξcsD

cvC + ξcsD
(Nnc6)

and the effective kinematic viscosity is

ν = μC/ρC(1 + ξ) = νC/(1 + ξ) (Nnc7)



Moreover, it follows from equations (Nnc6), that the relation between the isentropic speed of sound, c, in
the effective gas and that in the continuous phase, cC , is

c = cC

[
1 + ξcsD/cpC

(1 + ξcsD/cvC)(1 + ξ)

] 1
2

(Nnc8)

It also follows that the Reynolds, Mach and Prandtl numbers for the effective gas flow, Re, M and Pr
(based on a typical dimension, 	, typical velocity, U , and typical temperature, T0, of the flow) are related
to the Reynolds, Mach and Prandtl numbers for the flow of the continuous phase, ReC , MC and PrC , by
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Thus the first step in most investigations of this type of flow is to solve for the effective gas flow using
the appropriate tools from single phase gas dynamics. Here, it is assumed that the reader is familiar with
these basic methods. Thus we focus on the phenomena that constitute departures from single phase flow
mechanics and, in particular, on the process and consequences of relative motion or slip.


