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Acoustic Damping

Another important consequence of relative motion is the effect it has on the propagation of plane acoustic
waves in a dusty gas. Here we will examine both the propagation velocity and damping of such waves.
To do so we postulate a uniform dusty gas and denote the mean state of this mixture by an overbar so
that p̄, T̄ , ρ̄C , ξ̄ are respectively the pressure, temperature, gas density and mass loading of the uniform
dusty gas. Moreover we chose a frame of reference relative to the mean dusty gas so that ūC = ūD = 0.
Then we investigate small, linearized perturbations to this mean state denoted by p̃, T̃C , T̃D, ρ̃C , α̃D,
ũC, and ũD. Substituting into the basic continuity, momentum and energy equations (Nnb1), (Nnb2) and
(Nnb3), utilizing the expressions and assumptions of section (Nnd) and retaining only terms linear in the
perturbations, the equations governing the propagation of plane acoustic waves become
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where γ = cpC/cvC . Note that the particle volume fraction perturbation only occurs in one of these,
equation (Nnf2); consequently this equation may be set aside and used after the solution has been obtained

in order to calculate α̃D and therefore the perturbations in the particle loading ξ̃. The basic form of a
plane acoustic wave is

Q(x, t) = Q̄ + Q̃(x, t) = Q̄ + Re
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where Q(x, t) is a generic flow variable, ω is the acoustic frequency and κ is a complex function of ω; clearly
the phase velocity of the wave, cκ, is given by cκ = Re{−ω/κ} and the non-dimensional attenuation is
given by Im{−κ}. Then substitution of the expressions (Nnf7) into the five equations (Nnf1), (Nnf3),
(Nnf4), (Nnf5) and (Nnf6) yields the following dispersion relation for κ:(
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where cC = (γRC T̄ )
1
2 is the speed of sound in the gas alone. Consequently, the phase velocity is readily

obtained by taking the real part of the square root of the right hand side of equation (Nnf8). It is a
function of frequency, ω, as well as the relaxation times, tu and tT , the loading, ξ, and the specific heat
ratios, γ and cpC/csD. Typical results are shown in figures 1 and 2.

The mechanics of the variation in the phase velocity (acoustic speed) are evident by inspection of equation
(Nnf8) and figures 1 and 2. At very low frequencies such that ωtu � 1 and ωtT � 1, the velocity and



Figure 1: Non-dimensional attenuation, Im{−κcC/ω} (dotted lines), and phase velocity, cκ/cC (solid lines), as functions of
reduced frequency, ωtu, for a dusty gas with various loadings, ξ, as shown and γ = 1.4, tT /tu = 1 and cpC/csD = 0.3.

Figure 2: Non-dimensional attenuation, Im{−κcC/ω} (dotted lines), and phase velocity, cκ/cC (solid lines), as functions of
reduced frequency, ωtu, for a dusty gas with various loadings, ξ, as shown and γ = 1.4, tT /tu = 30 and cpC/csD = 0.3.

temperature relaxations are essentially instantaneous. Then the phase velocity is simply obtained from
the effective properties and is given by equation (Nnc8). These are the phase velocity asymptotes on the
left-hand side of figures 1 and 2. On the other hand, at very high frequencies such that ωtu � 1 and
ωtT � 1, there is negligible time for the particles to adjust and they simply do not participate in the
propagation of the wave; consequently, the phase velocity is simply the acoustic velocity in the gas alone,
cC . Thus all phase velocity lines asymptote to unity on the right in the figures. Other ranges of frequency
may also exist (for example ωtu � 1 and ωtT � 1 or the reverse) in which other asymptotic expressions for
the acoustic speed can be readily extracted from equation (Nnf8). One such intermediate asymptote can
be detected in figure 2. It is also clear that the acoustic speed decreases with increased loading, ξ, though
only weakly in some frequency ranges. For small ξ the expression (Nnf8) may be expanded to obtain the
linear change in the acoustic speed with loading, ξ, as follows:
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This expression shows why, in figures 1 and 2, the effect of the loading, ξ, on the phase velocity is small
at higher frequencies.



Figure 3: Non-dimensional attenuation, Im{−κcC/ω}, as a function of reduced frequency for a droplet-laden gas flow with
ξ = 0.01, γ = 1.4, tT /tu = 1 and cpC/csD = 1. The dashed line is the result without phase change; the solid line is an
example of the alteration caused by phase change. Adapted from Marble and Wooten (1970).

Now we examine the attenuation manifest in the dispersion relation (Nnf8). The same expansion for small
ξ that led to equation (Nnf9) also leads to the following expression for the attenuation:
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In figures 1 and 2, a dimensionless attenuation, Im{−κcC/ω}, is plotted against the reduced frequency.
This particular non-dimensionalization is somewhat misleading since, plotted without the ω in the denom-
inator, the attenuation increases monotonically with frequency. However, this presentation is commonly
used to demonstrate the enhanced attenuations that occur in the neighborhoods of ω = t−1

u and ω = t−1
T

and which are manifest in figures 1 and 2.

When the gas contains liquid droplets rather than solid particles, the same basic approach is appropriate
except for the change that might be caused by the evaporation and condensation of the liquid during the
passage of the wave. Marble and Wooten (1970) present a variation of the above analysis that includes the
effect of phase change and show that an additional maximum in the attenuation can result as illustrated
in figure 3. This additional peak results from another relaxation process embodied in the phase change
process. As Marble (1970) points out it is only really separate from the other relaxation times when
the loading is small. At higher loadings the effect merges with the velocity and temperature relaxation
processes.


