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Natural Modes of a Spherical Bubble Cloud

A second illustrative example of the effect of bubble dynamics on the behavior of a homogeneous bubbly
mixture is the study of the dynamics of a finite cloud of bubbles. One of the earliest investigations of the
collective dynamics of bubble clouds was the work of van Wijngaarden (1964) on the oscillations of a layer
of bubbles near a wall. Later d’Agostino and Brennen (1983) investigated the dynamics of a spherical
cloud (see also d’Agostino and Brennen 1989, Omta 1987), and we will choose the latter as a example of
that class of problems with one space dimension in which analytical solutions may be obtained but only
after linearization of the Rayleigh-Plesset equation (Nmb3).

The geometry of the spherical cloud is shown in figure 1. Within the cloud of radius, A(t), the population
of bubbles per unit liquid volume, η, is assumed constant and uniform. The linearization assumes small
perturbations of the bubbles from an equilibrium radius, Ro:

R(r, t) = Ro [1 + ϕ(r, t)] , |ϕ| � 1 (Nmh1)

We will seek the response of the cloud to a correspondingly small perturbation in the pressure at infinity,
p∞(t), that is represented by

p∞(t) = p(∞, t) = p̄ + Re
{
p̃eiωt

}
(Nmh2)

where p̄ is the mean, uniform pressure and p̃ and ω are the perturbation amplitude and frequency, re-
spectively. The solution will relate the pressure, p(r, t), radial velocity, u(r, t), void fraction, α(r, t), and
bubble perturbation, ϕ(r, t), to p̃. Since the analysis is linear, the response to excitation involving multiple
frequencies can be obtained by Fourier synthesis.

Figure 1: Notation for the analysis of a spherical cloud of bubbles.

One further restriction is necessary in order to linearize the governing equations (Nmb1), (Nmb2) and
(Nmb3). It is assumed that the mean void fraction in the cloud, αo, is small so that the term (1 + ηv) in
equations (Nmb1) and (Nmb2) is approximately unity. Then these equations become
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It is readily shown that the velocity u is of order ϕ and hence the convective component of the material
derivative is of order ϕ2; thus the linearization implies replacing D/Dt by ∂/∂t. Then to order ϕ the
Rayleigh-Plesset equation yields

p(r, t) = p̄ − ρR2
o
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]
; r < A(t) (Nmh5)

where ωn is the natural frequency of an individual bubble if it were alone in an infinite fluid (equation
(Nmc10)). It must be assumed that the bubbles are in stable equilibrium in the mean state so that ωn is
real.

Upon substitution of equations (Nmh1) and (Nmh5) into (Nmh3) and (Nmh4) and elimination of u(r, t)
one obtains the following equation for ϕ(r, t) in the domain r < A(t):
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The incompressible liquid flow outside the cloud, r ≥ A(t), must have the standard solution of the form:

u(r, t) =
C(t)

r2
; r ≥ A(t) (Nmh7)
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where C(t) is of perturbation order. It follows that, to the first order in ϕ(r, t), the continuity of u(r, t)
and p(r, t) at the interface between the cloud and the pure liquid leads to the following boundary condition
for ϕ(r, t): (
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The solution of equation (Nmh6) under the above boundary condition is
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where:

λ2 = 4πηRo
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(Nmh11)

Another possible solution involving (cos λr)/λr has been eliminated since ϕ(r, t) must clearly be finite as
r → 0. Therefore in the domain r < Ao:
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The entire flow has thus been determined in terms of the prescribed quantities Ao, Ro, η, ω, and p̃.



Figure 2: Natural mode shapes as a function of the normalized radial position, r
/
Ao, in the cloud for various orders m = 1

(solid line), 2 (dash-dotted line), 3 (dotted line), 4 ( broken line). The arbitrary vertical scale represents the amplitude of the
normalized undamped oscillations of the bubble radius, the pressure, and the bubble concentration per unit liquid volume.
The oscillation of the velocity is proportional to the slope of these curves.

Note first that the cloud has a number of natural frequencies and modes of oscillation. From equation
(Nmh10) it follows that, if p̃ were zero, oscillations would only occur if

ω = ωn or λAo = (2m − 1)
π

2
, m = 0 , ±2 . . . (Nmh15)

and, therefore, using equation (Nmh11) for λ, the natural frequencies, ωm, of the cloud are found to be:

1. ω∞ = ωn, the natural frequency of an individual bubble in an infinite liquid, and

2. ωm = ωn [1 + 16ηRoA
2
o/π(2m − 1)2]

1
2 ; m = 1, 2, . . ., which is an infinite series of frequencies of which

ω1 is the lowest. The higher frequencies approach ωn as m tends to infinity.

The lowest natural frequency, ω1, can be written in terms of the mean void fraction, αo = ηvo/(1 + ηvo),
as
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Hence, the natural frequencies of the cloud will extend to frequencies much smaller than the individual
bubble frequency, ωn, if the initial void fraction, αo, is much larger than the square of the ratio of bubble
size to cloud size (αo � R2

o/A
2
o). If the reverse is the case (αo � R2

o/A
2
o), all the natural frequencies of the

cloud are contained in a small range just below ωn.

Typical natural modes of oscillation of the cloud are depicted in figure 2, where normalized amplitudes
of the bubble radius and pressure fluctuations are shown as functions of position, r/Ao, within the cloud.
The amplitude of the radial velocity oscillation is proportional to the slope of these curves. Since each
bubble is supposed to react to a uniform far field pressure, the validity of the model is limited to wave
numbers, m, such that m � Ao/Ro. Note that the first mode involves almost uniform oscillations of the
bubbles at all radial positions within the cloud. Higher modes involve amplitudes of oscillation near the
center of the cloud, that become larger and larger relative to the amplitudes in the rest of the cloud. In



Figure 3: The distribution of bubble radius oscillation amplitudes, |ϕ|, within a cloud subjected to forced excitation at various
frequencies, ω, as indicated (for the case of αo(1 − αo)A2

o/R2
o = 0.822). From d’Agostino and Brennen (1989).

effect, an outer shell of bubbles essentially shields the exterior fluid from the oscillations of the bubbles in
the central core, with the result that the pressure oscillations in the exterior fluid are of smaller amplitude
for the higher modes.


