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Normal Shock Waves in Bubbly Flows

The propagation and structure of shock waves in bubbly cavitating flows represent a rare circumstance in
which fully nonlinear solutions of the governing equations can be obtained. Shock wave analyses of this
kind were investigated by Campbell and Pitcher (1958), Crespo (1969), Noordzij (1973), and Noordzij and
van Wijngaarden (1974), among others, and for more detail the reader should consult these works. Since
this chapter is confined to flows without significant relative motion, this section will not cover some of the
important effects of relative motion on the structural evolution of shocks in bubbly liquids. For this the
reader is referred to Noordzij and van Wijngaarden (1974).

Consider a normal shock wave in a coordinate system moving with the shock so that the flow is steady
and the shock stationary (figure 1). If x and u represent a coordinate and the fluid velocity normal to the
shock, then continuity requires

ρu = constant = ρ1u1 (Nme1)

where ρ1 and u1 will refer to the mixture density and velocity far upstream of the shock. Hence u1 is also
the velocity of propagation of a shock into a mixture with conditions identical to those upstream of the
shock. It is assumed that ρ1 ≈ ρL(1 − α1) = ρL/(1 + ηv1) where the liquid density is considered constant
and α1, v1 = 4
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1, and η are the void fraction, individual bubble volume, and population of the mixture
far upstream.

Substituting for ρ in the equation of motion and integrating, one also obtains
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This expression for the pressure, p, may be substituted into the Rayleigh-Plesset equation using the
observation that, for this steady flow,
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Figure 1: Schematic of the flow relative to a bubbly shock wave.



where v = 4
3
πR3 has been used for clarity. It follows that the structure of the flow is determined by solving

the following equation for R(x):
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It will be found that dissipation effects in the bubble dynamics strongly influence the structure of the
shock. Only one dissipative effect, namely that due to viscous effects (last term on the left-hand side) has
been explicitly included in equation (Nme5). However, as discussed in the last section, other dissipative
effects may be incorporated approximately by regarding νL as a total effective viscosity.

The pressure within the bubble is given by

pB = pV + pG1
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and the equilibrium state far upstream must satisfy

pV − p1 + pG1 = 2S
/
R1 (Nme7)

Furthermore, if there exists an equilibrium state far downstream of the shock (this existence will be explored
shortly), then it follows from equations (Nme5) and (Nme6) that the velocity, u1, must be related to the
ratio, R2

/
R1 (where R2 is the bubble size downstream of the shock), by
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where α2 is the void fraction far downstream of the shock and(
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R1

)3
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(Nme9)

Hence the shock velocity, u1, is given by the upstream flow parameters α1, (p1 − pV )/ρL, and 2S/ρLR1,
the polytropic index, k, and the downstream void fraction, α2. An example of the dependence of u1 on α1

and α2 is shown in figure 2 for selected values of (p1 − pV )/ρL = 100 m2/sec2, 2S/ρLR1 = 0.1 m2/sec2,
and k = 1.4. Also displayed by the dotted line in this figure is the sonic velocity of the mixture (at zero
frequency), c1, under the upstream conditions; it is readily shown that c1 is given by
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Alternatively, the presentation conventional in gas dynamics can be adopted. Then the upstream Mach
number, u1/c1, is plotted as a function of α1 and α2. The resulting graphs are functions only of two
parameters, the polytropic index, k, and the parameter, R1(p1 − pV )/S. An example is included as figure
3 in which k = 1.4 and R1(p1 − pV )/S = 200. It should be noted that a real shock velocity and a
real sonic speed can exist even when the upstream mixture is under tension (p1 < pV ). However, the
numerical value of the tension, pV − p1, for which the values are real is limited to values of the parameter
R1(p1 − pV )/2S > −(1 − 1/3k) or −0.762 for k = 1.4. Also note that figure 3 does not change much with
the parameter, R1(p1 − pV )/S.



Figure 2: Shock speed, u1, as a function of the upstream and downstream void fractions, α1 and α2, for the particular case
(p1 − pV )/ρL = 100 m2/sec2, 2S/ρLR1 = 0.1 m2/sec2, and k = 1.4. Also shown by the dotted line is the sonic velocity, c1,
under the same upstream conditions.

Figure 3: The upstream Mach number, u1/c1, as a function of the upstream and downstream void fractions, α1 and α2, for
k = 1.4 and R1(p1 − pV )/S = 200.


