An Internet Book on Fluid Dynamics

Disperse Phase Number Continuity

Complementary to the equations of conservation of mass are the equations governing the conservation of the number of bubbles, drops, particles, etc. that constitute a disperse phase. If no such particles are created or destroyed within the elemental volume and if the number of particles of the disperse component, D, per unit total volume is denoted by n_{D}, it follows that

$$
\begin{equation*}
\frac{\partial n_{D}}{\partial t}+\frac{\partial}{\partial x_{i}}\left(n_{D} u_{D i}\right)=0 \tag{Nbc1}
\end{equation*}
$$

This will be referred to as the Disperse Phase Number Equation (DPNE).
If the volume of the particles of component D is denoted by v_{D} it follows that

$$
\begin{equation*}
\alpha_{D}=n_{D} v_{D} \tag{Nbc2}
\end{equation*}
$$

and substituting this into equation (Nbc1) one obtains

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(n_{D} \rho_{D} v_{D}\right)+\frac{\partial}{\partial x_{i}}\left(n_{D} u_{D i} \rho_{D} v_{D}\right)=\mathcal{I}_{D} \tag{Nbc3}
\end{equation*}
$$

Expanding this equation using equation (Nbc1) leads to the following relation for \mathcal{I}_{D} :

$$
\begin{equation*}
\mathcal{I}_{D}=n_{D}\left(\frac{\partial\left(\rho_{D} v_{D}\right)}{\partial t}+u_{D i} \frac{\partial\left(\rho_{D} v_{D}\right)}{\partial x_{i}}\right)=n_{D} \frac{D_{D}}{D_{D} t}\left(\rho_{D} v_{D}\right) \tag{Nbc4}
\end{equation*}
$$

where $D_{D} / D_{D} t$ denotes the Lagrangian derivative following the disperse phase. This demonstrates a result that could, admittedly, be assumed, a priori. Namely that the rate of transfer of mass to the component D in each particle, \mathcal{I}_{D} / n_{D}, is equal to the Lagrangian rate of increase of mass, $\rho_{D} v_{D}$, of each particle.

It is sometimes convenient in the study of bubbly flows to write the bubble number conservation equation in terms of a population, η, of bubbles per unit liquid volume rather than the number per unit total volume, n_{D}. Note that if the bubble volume is v and the volume fraction is α then

$$
\begin{equation*}
\eta=\frac{n_{D}}{(1-\alpha)} ; n_{D}=\frac{\eta}{(1+\eta v)} ; \alpha=\eta \frac{v}{(1+\eta v)} \tag{Nbc5}
\end{equation*}
$$

and the bubble number conservation equation can be written as

$$
\begin{equation*}
\frac{\partial u_{D i}}{\partial x_{i}}=-\frac{(1+\eta v)}{\eta} \frac{D_{D}}{D_{D} t}\left(\frac{\eta}{1+\eta v}\right) \tag{Nbc6}
\end{equation*}
$$

If the number population, η, is assumed uniform and constant (which requires neglect of slip and the assumption of liquid incompressibility) then equation (Nbc6) can be written as

$$
\begin{equation*}
\frac{\partial u_{D i}}{\partial x_{i}}=\frac{\eta}{1+\eta v} \frac{D_{D} v}{D_{D} t} \tag{Nbc7}
\end{equation*}
$$

In other words the divergence of the velocity field is directly related to the Lagrangian rate of change in the volume of the bubbles.

