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Equations for Conservation of Energy

The third fundamental conservation principle that is utilized in developing the basic equations of fluid
mechanics is the principle of conservation of energy. Even in single phase flow the general statement of this
principle is complicated when energy transfer processes such as heat conduction and viscous dissipation are
included in the analysis. Fortunately it is frequently possible to show that some of these complexities have
a negligible effect on the results. For example, one almost always neglects viscous and heat conduction
effects in preliminary analyses of gas dynamic flows. In the context of multiphase flows the complexities
involved in a general statement of energy conservation are so numerous that it is of little value to attempt
such generality. Thus we shall only present a simplified version that neglects, for example, viscous heating
and the global conduction of heat (though not the heat transfer from one phase to another).

However these limitations are often minor compared with other difficulties that arise in constructing an
energy equation for multiphase flows. In single-phase flows it is usually adequate to assume that the fluid
is in an equilibrium thermodynamic state at all points in the flow and that an appropriate thermodynamic
constraint (for example, constant and locally uniform entropy or temperature) may be used to relate
the pressure, density, temperature, entropy, etc. In many multiphase flows the different phases and/or
components are often not in equilibrium and consequently thermodynamic equilibrium arguments that
might be appropriate for single phase flows are no longer valid. Under those circumstances it is important
to evaluate the heat and mass transfer occuring between the phases and/or components; discussion on this
is delayed until the next section (Nbi).

In single phase flow application of the principle of energy conservation to the control volume (CV) uses
the following statement of the first law of thermodynamics:

Rate of heat addition to the CV, Q
+ Rate of work done on the CV, W
=
Net flux of total internal energy out of CV
+ Rate of increase of total internal energy in CV

In chemically non-reacting flows the total internal energy per unit mass, e∗, is the sum of the internal
energy, e, the kinetic energy uiui/2 (ui are the velocity components) and the potential energy gz (where z
is a coordinate measured in the vertically upward direction):

e∗ = e +
1

2
uiui + gz (Nbh1)

Consequently the energy equation in single phase flow becomes
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∂t
(ρe∗) +

∂

∂xi
(ρe∗ui) = Q + W − ∂

∂xj
(uiσij) (Nbh2)

where σij is the stress tensor. Then if there is no heat addition to (Q = 0) or external work done on
(W = 0) the CV and if the flow is steady with no viscous effects (no deviatoric stresses), the energy
equation for single phase flow becomes

∂
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where h∗ = e∗ + p/ρ is the total enthalpy per unit mass. Thus, when the total enthalpy of the incoming
flow is uniform, h∗ is constant everywhere.

Now examine the task of constructing an energy equation for each of the components or phases in a
multiphase flow. First, it is necessary to define a total internal energy density, e∗N , for each component N
such that

e∗N = eN +
1

2
uNiuNi + gz (Nbh4)

Then an appropriate statement of the first law of thermodynamics for each phase (the individual phase
energy equation, IPEE) is as follows:

Rate of heat addition to N from outside CV, QN

+ Rate of work done to N by the exterior surroundings, WAN

+ Rate of heat transfer to N within the CV, QIN

+ Rate of work done to N by other components in CV, WIN

=
Rate of increase of total kinetic energy of N in CV
+ Net flux of total internal energy of N out of the CV

where each of the terms is conveniently evaluated for a unit total volume.

First note that the last two terms can be written as

∂

∂t
(ρNαNe∗N) +

∂

∂xi
(ρNαNe∗NuNi) (Nbh5)

Turning then to the upper part of the equation, the first term due to external heating and to conduction
of heat from the surroundings into the control volume is left as QN . The second term contains two
contributions: (i) minus the rate of work done by the stresses acting on the component N on the surface of
the control volume and (ii) the rate of external shaft work, WN , done on the component N . In evaluating
the first of these, we make the same modification to the control volume as was discussed in the context
of the momentum equation; specifically we make small deformations to the control volume so that its
boundaries lie wholly within the continuous phase. Then using the continuous phase stress tensor, σCij,
as defined in equation ?? the expressions for WAN become:

WAC = WC +
∂

∂xj
(uCiσCij) and WAD = WD (Nbh6)

The individual phase energy equation may then be written as

∂

∂t
(ρNαNe∗N) +

∂

∂xi
(ρNαNe∗NuNi) =

QN + WN + QIN + WIN + δN
∂

∂xj
(uCiσCij) (Nbh7)

Note that the two terms involving internal exchange of energy between the phases may be combined into
an energy interaction term given by EN = QIN + WIN . It follows that∑

N

QIN = O and
∑
N

WIN = O and
∑
N

EN = O (Nbh8)

Moreover, the work done terms, WIN , may clearly be related to the interaction forces, FNk. In a two-phase
system with one disperse phase:

QIC = −QID and WIC = −WID = −uDiFDi and EC = −ED (Nbh9)



As with the continuity and momentum equations, the individual phase energy equations can be summed
to obtain the combined phase energy equation (CPEE). Then, denoting the total rate of external heat
added (per unit total volume) by Q and the total rate of external shaft work done (per unit total volume)
by W where

Q =
∑
N

QN and W =
∑
N

WN (Nbh10)

the CPEE becomes
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When the left hand sides of the individual or combined phase equations, (Nbh7) and (Nbh11), are expanded
and use is made of the continuity equation (Nbb2) and the momentum equation (Nbe5) (in the absence
of deviatoric stresses), the results are known as the thermodynamic forms of the energy equations. Using
the expressions (Nbh9) and the relation

eN = cvNTN + constant (Nbh12)

between the internal energy, eN , the specific heat at constant volume, cvN , and the temperature, TN , of
each phase, the thermodynamic form of the IPEE can be written as

ρNαNcvN
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and, summing these, the thermodynamic form of the CPEE is∑
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In equations (Nbh13) and (Nbh14), it has been assumed that the specific heats, cvN , can be assumed to
be constant and uniform.

Finally we note that the one-dimensional duct flow version of the IPEE, equation (Nbh7), is
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(puC) (Nbh15)

where AQN is the rate of external heat addition to the component N per unit length of the duct, AWN

is the rate of external work done on component N per unit length of the duct, AEN is the rate of energy
transferred to the component N from the other phases per unit length of the duct and p is the pressure in
the continuous phase neglecting deviatoric stresses. The CPEE, equation (Nbh11), becomes
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where AQ is the total rate of external heat addition to the flow per unit length of the duct and AW is the
total rate of external work done on the flow per unit length of the duct.


