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Nonlinear Effects

Due to the nonlinearities in the governing equations, particularly the Rayleigh-Plesset equation (Ngc2), the
response of a bubble subjected to pressure oscillations will begin to exhibit important nonlinear effects as
the amplitude of the oscillations is increased. In the last few sections of this chapter we briefly review some
of these nonlinear effects. Much of the research appears in the context of acoustic cavitation, a subject
with an extensive literature that is reviewed in detail elsewhere (Flynn 1964; Neppiras 1980; Plesset and
Prosperetti 1977; Prosperetti 1982, 1984; Crum 1979; Young 1989). We include here a brief summary of
the basic phenomena.

As the amplitude increases, the bubble may continue to oscillate stably. Such circumstances are referred
to as stable acoustic cavitation to distinguish them from those of the transient regime described below.
Several different nonlinear phenomena can affect stable acoustic cavitation in important ways. Among
these are the production of subharmonics, the phenomenon of rectified diffusion (see section (Ngl)) and
the generation of Bjerknes forces (see section (Nfe)). At larger amplitudes the change in bubble size during
a single period of oscillation can become so large that the bubble undergoes a cycle of explosive cavitation
growth and violent collapse similar to that described earlier in the chapter. Such a response is termed
transient acoustic cavitation and is distinguished from stable acoustic cavitation by the fact that the bubble
radius changes by several orders of magnitude during each cycle.

As Plesset and Prosperetti (1977) have detailed in their review of the subject, when a liquid that will
inevitably contain microbubbles is irradiated with sound of a given frequency, ω, the nonlinear response
results in harmonic dispersion, that not only produces harmonics with frequencies that are integer multiples
of ω (superharmonics) but, more unusually, subharmonics with frequencies less than ω of the form mω/n
where m and n are integers. Both the superharmonics and subharmonics become more prominent as the
amplitude of excitation is increased. The production of subharmonics was first observed experimentally
by Esche (1952), and possible origins of this nonlinear effect were explored in detail by Noltingk and
Neppiras (1950, 1951), Flynn (1964), Borotnikova and Soloukin (1964), and Neppiras (1969), among others.
Lauterborn (1976) examined numerical solutions for a large number of different excitation frequencies and
was able to demonstrate the progressive development of the peak responses at subharmonic frequencies as
the amplitude of the excitation is increased. Nonlinear effects not only create these subharmonic peaks but
also cause the resonant peaks to be shifted to lower frequencies, creating discontinuities that correspond to
bifurcations in the solutions. The weakly nonlinear analysis of Brennen (1995) produces similar phenomena.
In recent years, the modern methods of nonlinear dynamical systems analysis have been applied to this
problem by Lauterborn and Suchla (1984), Smereka, Birnir, and Banerjee (1987), Parlitz et al. (1990),
and others and have led to further understanding of the bifurcation diagrams and strange attractor maps
that arise in the dynamics of single bubble oscillations.

Finally, we comment on the phenomenon of transient cavitation in which a phase of explosive cavitation
growth and collapse occurs each cycle of the imposed pressure oscillation. We seek to establish the level of
pressure oscillation at which this will occur, known as the threshold for transient cavitation (see Noltingk
and Neppiras 1950, 1951, Flynn 1964, Young 1989). The answer depends on the relation between the
radian frequency, ω, of the imposed oscillations and the natural frequency, ωn, of the bubble. If ω � ωn,
then the liquid inertia is relatively unimportant in the bubble dynamics and the bubble will respond
quasistatically. Under these circumstances the Blake criterion (see section (Nge), equation (Nge5)) will
hold and the critical conditions will be reached when the minimum instantaneous pressure just reaches the
critical Blake threshold pressure. On the other hand, if ω � ωn, the issue will involve the dynamics of



bubble growth since inertia will determine the size of the bubble perturbations. The details of this bubble
dynamic problem have been addressed by Flynn (1964) and convenient guidelines are provided by Apfel
(1981).


