
An Internet Book on Fluid Dynamics

Bubble Natural Frequencies

In this and the sections that follow we will consider the response of a bubble to oscillations in the prevailing
pressure. We begin with an analysis of bubble natural frequencies in the absence of thermal effects and
liquid compressibility effects. Consider the linearized dynamic solution of equation (Ngd2) when the
pressure at infinity consists of a mean value, p̄∞, upon which is superimposed a small oscillatory pressure
of amplitude, p̃, and radian frequency, ω, so that

p∞ = p̄∞ + Re{p̃ejωt} (Ngj1)

The linear dynamic response of the bubble will be represented by

R = Re[1 + Re{ϕejωt}] (Ngj2)

where Re is the equilibrium size at the pressure, p̄∞, and the bubble radius response, ϕ, will in general
be a complex number such that Re|ϕ| is the amplitude of the bubble radius oscillations. The phase of ϕ
represents the phase difference between p∞ and R.

For the present we shall assume that the mass of gas in the bubble, mG, remains constant. Then substi-
tuting equations (Ngj1) and (Ngj2) into equation (Ngd2), neglecting all terms of order |ϕ|2 and using the
equilibrium condition (Nge1) one finds
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where, as before,
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It follows that for a given amplitude, p̃, the maximum or peak response amplitude occurs at a frequency,
ωp, given by the minimum value of the spectral radius of the left-hand side of equation (Ngj3):
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or in terms of (p̄∞ − pV ) rather than pGe:
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At this peak frequency the amplitude of the response is, of course, inversely proportional to the damping:
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It is also convenient for future purposes to define the natural frequency, ωn, of oscillation of the bubbles
as the value of ωp for zero damping:
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Figure 1: Bubble resonant frequency in water at 300◦K (S = 0.0717, μL = 0.000863, ρL = 996.3) as a function of the radius
of the bubble for various values of (p̄∞ − pV ) as indicated.

The connection with the stability criterion of section (Nge) is clear when one observes that no natural
frequency exists for tensions (pV − p̄∞) > 4S/3Re (for isothermal gas behavior, k = 1); stable oscillations
can only occur about a stable equilibrium.

Note from equation (Ngj6) that ωp is a function only of (p̄∞−pV ), Re, and the liquid properties. A typical
graph for ωp as a function of Re for several (p̄∞ − pV ) values is shown in figure 1 for water at 300◦K (S
= 0.0717, μL = 0.000863, ρL = 996.3). As is evident from equation (Ngj6), the second and third terms
on the right-hand side dominate at very small Re and the frequency is almost independent of (p̄∞ − pV ).
Indeed, no peak frequency exists below a size equal to about 2ν2

LρL/S. For larger bubbles the viscous term
becomes negligible and ωp depends on (p̄∞−pV ). If the latter is positive, the natural frequency approaches
zero like R−1

e . In the case of tension, pV > p̄∞, the peak frequency does not exist above Re = Rc.

For typical nuclei found in water (1 to 100 μm) the natural frequencies are of the order, 5 to 25kHz.
This has several important practical consequences. First, if one wishes to cause cavitation in water by
means of an imposed acoustic pressure field, then the frequencies that will be most effective in producing
a substantial concentration of large cavitation bubbles will be in this frequency range. This is also the
frequency range employed in magnetostrictive devices used to oscillate solid material samples in water (or
other liquid) in order to test the susceptibility of that material to cavitation damage (Knapp et al. 1970).
Of course, the oscillation of the nuclei produced in this way will be highly nonlinear and therefore peak
response frequencies will be significantly lower than those given above.

There are two important footnotes to this linear dynamic analysis of an oscillating bubble. First, the
assumption that the gas in the bubble behaves polytropically is a dubious one. Prosperettti (1977) has
analysed the problem in detail with particular attention to heat transfer in the gas and has evaluated the
effective polytropic exponent as a function of frequency. Not surprisingly the polytropic exponent increases
from unity at very low frequencies to γ at intermediate frequencies. However, more unexpected behaviors
develop at high frequencies. At the low and intermediate frequencies, the theory is largely in agreement
with Crum’s (1983) experimental measurements. Prosperetti, Crum, and Commander (1988) provide a
useful summary of the issue.

A second, related concern is the damping of bubble oscillations. Chapman and Plesset (1971) presented



Figure 2: Bubble damping components and the total damping as a function of the equilibrium bubble radius, Re, for water.
Damping is plotted as an effective viscosity, μe, nondimensionalized as shown (from Chapman and Plesset 1971).

a summary of the three primary contributions to the damping of bubble oscillations, namely that due to
liquid viscosity, that due to liquid compressibility through acoustic radiation, and that due to thermal
conductivity. It is particularly convenient to represent the three components of damping as three additive
contributions to an effective liquid viscosity, μe, that can then be employed in the Rayleigh-Plesset equation
in place of the actual liquid viscosity, μL :

μe = μL + μt + μa (Ngj9)

where the acoustic viscosity, μa, is given by
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where cL is the velocity of sound in the liquid. The thermal viscosity, μt, follows from the analysis by
Prosperettti (1977) mentioned in the last paragraph (see also Brennen 1995). The relative magnitudes of
the three components of damping (or effective viscosity) can be quite different for different bubble sizes or
radii, Re. This is illustrated by the data for air bubbles in water at 20◦C and atmospheric pressure that
is taken from Chapman and Plesset (1971) and reproduced as figure 2.


