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In the Absence of Thermal Effects; Bubble Growth

First we consider some of the characteristics of bubble dynamics in the absence of any significant thermal
effects. This kind of bubble dynamic behavior is termed inertially controlled to distinguish it from the
thermally controlled behavior discussed later. Under these circumstances the temperature in the liquid is
assumed uniform and term (2) in the Rayleigh-Plesset equation (Ngc2) is zero.

For simplicity, it will be assumed that the behavior of the gas in the bubble is polytropic so that
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where k is approximately constant. Clearly k = 1 implies a constant bubble temperature and k = γ would
model adiabatic behavior. It should be understood that accurate evaluation of the behavior of the gas in
the bubble requires the solution of the mass, momentum, and energy equations for the bubble contents
combined with appropriate boundary conditions that will include a thermal boundary condition at the
bubble wall.

With these assumptions the Rayleigh-Plesset equation becomes
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Equation (Ngd2) without the viscous term was first derived and used by Noltingk and Neppiras (1950,
1951); the viscous term was investigated first by Poritsky (1952).

Equation (Ngd2) can be readily integrated numerically to find R(t) given the input p∞(t), the temperature
T∞, and the other constants. Initial conditions are also required and, in the context of cavitating flows, it
is appropriate to assume that the bubble begins as a microbubble of radius Ro in equilibrium at t = 0 at
a pressure p∞(0) so that

pGo = p∞(0) − pV (T∞) +
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and that dR/dt|t=0 = 0. A typical solution for equation (Ngd2) under these conditions is shown in figure 1;
the bubble in this case experiences a pressure, p∞(t), that first decreases below p∞(0) and then recovers to
its original value. The general features of this solution are characteristic of the response of a bubble as it
passes through any low pressure region; they also reflect the strong nonlinearity of equation (Ngd2). The
growth is fairly smooth and the maximum size occurs after the minimum pressure. The collapse process
is quite different. The bubble collapses catastrophically, and this is followed by successive rebounds and
collapses. In the absence of dissipation mechanisms such as viscosity these rebounds would continue
indefinitely without attenuation.

Analytic solutions to equation (Ngd2) are limited to the case of a step function change in p∞. Nevertheless,
these solutions reveal some of the characteristics of more general pressure histories, p∞(t), and are therefore
valuable to document. With a constant value of p∞(t > 0) = p∗∞, equation (Ngd2) is integrated by
multiplying through by 2R2dR/dt and forming time derivatives. Only the viscous term cannot be integrated
in this way, and what follows is confined to the inviscid case. After integration, application of the initial
condition (dR/dt)t=0 = 0 yields(
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Figure 1: Typical solution of the Rayleigh-Plesset equation for a spherical bubble. The nucleus of radius, Ro, enters a
low-pressure region at a dimensionless time of 0 and is convected back to the original pressure at a dimensionless time of 500.
The low-pressure region is sinusoidal and symmetric about 250.

where, in the case of isothermal gas behavior, the term involving pGo becomes

2
pGo

ρL

R3
o

R3
ln

(
Ro

R

)
(Ngd5)

By rearranging equation (Ngd4) it follows that
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where, in the case k = 1, the gas term is replaced by
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This integral can be evaluated numerically to find R(t), albeit indirectly.

Consider first the characteristic behavior for bubble growth that this solution exhibits when p∗∞ < p∞(0).
Equation (Ngd4) shows that the asymptotic growth rate for R � Ro is given by
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Thus, following an initial period of acceleration, the velocity of the interface is relatively constant. It
should be emphasized that equation (Ngd8) implies explosive growth of the bubble, in which the volume
displacement is increasing like t3.

Now contrast the behavior of a bubble caused to collapse by an increase in p∞ to p∗∞. In this case when
R � Ro equation (Ngd4) yields
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where, in the case of k = 1, the gas term is replaced by 2pGo ln(Ro/R)/ρL. However, most bubble collapse
motions become so rapid that the gas behavior is much closer to adiabatic than isothermal, and we will
therefore assume k �= 1.

For a bubble with a substantial gas content the asymptotic collapse velocity given by equation (Ngd9) will
not be reached and the bubble will simply oscillate about a new, but smaller, equilibrium radius. On the
other hand, when the bubble contains very little gas, the inward velocity will continually increase (like
R−3/2) until the last term within the curly brackets reaches a magnitude comparable with the other terms.
The collapse velocity will then decrease and a minimum size given by
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will be reached, following which the bubble will rebound. Note that, if pGo is small, Rmin could be very
small indeed. The pressure and temperature of the gas in the bubble at the minimum radius are then
given by pm and Tm where

pm = pGo {(k − 1)(p∗∞ − pV + 3S/Ro)/pGo}k/(k−1) (Ngd11)

Tm = To {(k − 1)(p∗∞ − pV + 3S/Ro)/pGo} (Ngd12)

We will comment later on the magnitudes of these temperatures and pressures (see sections (Nhc) and
(Nhh)).

The case of zero gas content presents a special albeit somewhat hypothetical problem, since apparently
the bubble will reach zero size and at that time have an infinite inward velocity. In the absence of both
surface tension and gas content, Rayleigh (1917) was able to integrate equation (Ngd6) to obtain the time,
ttc, required for total collapse from R = Ro to R = 0:
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It is important at this point to emphasize that while the results for bubble growth are quite practical,
the results for bubble collapse may be quite misleading. Apart from the neglect of thermal effects, the
analysis was based on two other assumptions that may be violated during collapse. Later we shall see
that the final stages of collapse may involve such high velocities (and pressures) that the assumption of
liquid incompressibility is no longer appropriate. But, perhaps more important, it transpires (see section
(Nhd)) that a collapsing bubble loses its spherical symmetry in ways that can have important engineering
consequences.


