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Meniscus

Surface energy effects (surface tension and contact angle) at the junction of a liquid surface and a
solid boundary can cause the formation of a meniscus. Consider first the simple case of a single vertical
wall bounding a pool of liquid at rest as sketched in Figure 1. The geometry is assumed invariant in the
direction normal to the sketch and the liquid surface asymptotes to the horizontal far off to the right.

Figure 1: A meniscus at a single vertical wall.

The liquid surface elevation, y(x), is defined so that y → 0 for large x and the radius of curvature, R,
is given by the normal formula:
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so that at a general point such as A the pressure in the liquid at A, pL, and the pressure in the air at A,
pA, are related by

pA − pL =
S

R
(Cp2)

But assuming uniform pressure in the air, the pressure in the air at large x must be the same pA and since
the curvature of the surface for large x is zero that must also be the pressure in the liquid just under the
surface at large x. Since the pressure in the liquid is the same on a horizontal plane, it follows that the
pressure at a point in the liquid at a depth y below the point A must be pA and therefore the pressure in
the liquid at A must also be pA − ρgy where ρ is the liquid density and g is the gravitational acceleration.
Consequently
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= pA − (pA − ρgy) = ρgy (Cp3)

and therefore the differential equation governing the shape of the liquid surface is
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The two boundary conditions which the solution to this differential equation must satisfy are

[1] y → 0 as x → ∞ (Cp5)

[2]
dy

dx
= − cot θ at x = 0 (Cp6)

where θ is the contact angle for that liquid/solid/gas junction.

Clearly the non-linear equation (Cp4) must be solved numerically. However, it is instructive here to
detail the approximate solution that results by assuming that the slope of the surface is everywhere small
so that the right hand side of equation (Cp4) is approximately y. Then the differential equation becomes
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and the general solution of this equation under the above boundary conditions is
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Thus the height, h, of the meniscus is given by

h = cot θ
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It follows that the height, h, is positive when the contact angle is less than π/2 (for example for water and
glass or metal) and negative when the angle is greater than π/2 (for example for mercury and glass). It
also increases with the surface tension, S.

Figure 2: A meniscus at a single vertical wall.

The case of a liquid between two vertical walls (shown in Figure 2) is readily treated by a similar
analysis except that the location within the liquid, y = 0 at which the liquid pressure is equal to the atmo-
spheric pressure must be determined as part of the solution. The appropriate solution to the approximate
differential equation (Cp7) is then
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where C1 and C2 are constants to be determined by the boundary conditions on the walls, namely
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From these conditions it follows that
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and the height, h, of the meniscus at the wall above the datum level, y = 0, is
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Recalling that y = 0 is the level at which the pressure is atmospheric, it follows that the elevation of the
center of the meniscus above the atmospheric pressure level, c, is given by
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If the two walls were placed in a larger tank of the liquid as shown in Figure 3 the entire meniscus would
be elevated above the liquid level far from the walls such that the bottom of the meniscus was a height c
above that distant liquid level. This is a simple demonstration of the phenomenon of capillarity in which
a liquid confined between walls will rise above the surrounding liquid level provided the contact angle,
θ < π/2. Conversely it will be depressed if θ > π/2.

Figure 3: Meniscus between two walls in a larger body of liquid.

We now consider this phenomenon of capillarity in more detail and derive results for the elevation or
depression of meniscii in narrow tubes which, unlike the above results, are not limited to slopes, dy/dx,
which are small.


