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Bird Flight

Level bird flight is quite similar to fish swimming; the bird’s wings perform motions very similar to those
of the caudal fin or fluke of a fish or cetacean (see section (Dfd)) except that the bird must also produce a
time-averaged lift to counteract its weight. A bird does that by modifying the motion that was depicted for
fish locomotion in Figure 1 of section (Dfd) by adding a supplemental angle of inclination, α0, as depicted
in Figure 1. This supplemental angle of inclination, α0, generates a time-averaged upward lift that keeps
the bird aloft as we now demonstrate.

Figure 1: The motion of a foil simulating the dynamics of the wing of a flying bird.

It is convenient to develop a modified version of the analysis in section (Dfd) as follows. In this modified
analysis the wing now performs a motion that is a combination of the forward translation at velocity, U ,
a heaving motion y = h sinωt and a pitching motion of the foil defined by a constant angle of incidence,
α0, plus the sinusoidal pitching motion, α = α̃ cos ωt, so that the geometry of the motion is as depicted
in Figure 1. Note again that the phase relationship of the heaving and pitching motions is such that the
relative oscillating pitching motion, θ − α, lags the heaving motion by π/2. It follows that the inclination
of the wing centerline trajectory with respect to the x axis (as shown in Figure 1) is θ where
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The angle of incidence of the wing with respect to its relative motion through the air, α∗, is given by
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Moreover the magnitude of the velocity of relative motion, V , is given by
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Figure 2: Examples of bird flight motion.

and therefore the instantaneous lift and drag forces acting on the wings (planform area, AF ), L and D,
are given by 1

2
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ρV 2AFCD respectively where CL and CD are the lift and drag coefficients

for the wings. It follows that the component of the instantaneous propulsive force in the x direction, Fx,
is given by
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The force in the y direction normal to the forward motion, Fy, is given by
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Unlike the case for the neutrally-buoyant fish addressed in section (Dfd), the average of Fy over one cycle
is non-zero and this average Fy must balance the weight of the bird in level flight.

We first examine the thrust, T , which is given by the mean value of Fx averaged over one cycle of the
oscillation of the wings and therefore
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Before going any further it is evident that the thrust produced by the motion of the wings is due to the
component of the lift force in the x direction which may be positive during the entire cycle of wing motion.
It is also clear that the drag on the wings will decrease that propulsive force and so we recognize again the



importance of (1) a large lift/drag ratio (2) a well-designed wing cross-section and (3) as large an aspect
ratio as physically possible. All the best flying and fastest birds have wings with a large aspect ratio, that is
with a large span and small chord. The photographs of an albatross (Figure 3, left) and a starling (Figure
3, right) show examples, respectively, of high performance, long distance flight and of more manoevrable
bird flight.

Figure 3: Photographs of an albatross (left) and a starling (right) in flight.

Also note for reference below that the mean lift, L, generated by this wing motion is simply the value of
Fy averaged over one cycle of the oscillation or
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To evaluate the integrals in equations (Dfe7) and (Dfe8) it remains to specify CL and CD which, if we
assume that the oscillatory motions are sufficiently slow that quasisteady coefficients can be used, will be
functions primarily of the local angle of incidence, α∗ = θ−α+α0. For the purposes of this demonstration
we will neglect the drag and assume the lift coefficient is the same as that of a flat plate namely

CL ≈ 2π sinα∗ = 2π sin {θ − α̃ cosωt + α0} (Dfe9)
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Substituting this into equation (Dfe7) and setting CD = 0 yields
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while substituting this into equation (Dfe8) and setting CD = 0 yields
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Note that the dimensionless thrust, T ∗, and lift, L∗, are functions only of the three dimensionless param-
eters, ωh/U , α̃ and α0. If the angles α̃ and α0 are small the the above expressions may be approximately
evaluated as
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so that the thrust is the same as in the fish locomotion case (unchanged by α0) while the averaged
dimensionless lift takes the expected value of 2πα0. In level flight the lift, L, must balance the weight of
the bird while the thrust, T , must balance the drag on the body of the bird and its wings.

One of the features in bird flight that is more important than for fish and cetaceans is that the instantaneous
lift, Fy, oscillates in time and this could produce an unpleasant vertical oscillation of the body of the
bird. Most birds are adapted to minimize this oscillation using a wing structure and musculature that
generates a variation in the phase of the oscillation along the span of the wing in such a way that the
total instantaneous lift transferred to the body has a minimal oscillatory component. In contrast most
human-built ornithopters have rigid wings and tend to self-destruct under the oscillatory lift.

In the above analysis we have utilized the simple planar flow lift coefficient, CL = 2πα, and set CD = 0.
A more accurate analysis would utilize more precise lift and drag coefficients. Figure 4 presents some
measured lift/drag polars for bird-like airfoils.

Figure 4: Lift/drag polars for a variety of wings. Adapted from Nachtigall (1974) and Thom and Swart (1940).


