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Rheology of Blood

[This section developed from the publication A concentrated suspension model for the Couette rheology of
blood, Can. J. Chem. Eng., 53, 126-133, by C.E.Brennen.]

In this section we present a simple ”cell” model for the rheological behavior of blood. The model includes
the physical properties of the suspending medium, red cell membrane and red cell fluid content. Predictions
of the gross viscosity of red cell suspensions are found to agree very well with experiment in the cases of
hardened red cells (or normal red cells at very low shear rate) and of normal red cells in the asymptotic
limit of high shear rates. The behavior at intermediate shear rates requires a knowledge of the viscoplastic
properties of the membrane and a number of membrane models are investigated. Of particular interest is a
plastic membrane which employs a membrane yield stress obtained from other experiments (see preceding
section) and whose results are qualitatively in agreement with the viscometric data at these intermediate
shear rates.

This section is motivated by a desire to construct a model for the gross rheological behavior of human blood
(and red cell suspensions) which includes the physical properties of the constituents of that suspension;
namely, the plasma, or exterior fluid viscosity, the mechanical properties of the red cell membrane and the
rheological properties of the red cell contents. As Cokelet (1972) points out this has been the aim of many
recent investigations.

One of the primary difficulties in a physical rather than empirical approach is the fact that blood is
essentially a concentrated suspension of red blood cells; that is to say the volumetric concentration, c, in
terms of the ratio of volume of red cells to total volume is outside the range which can be handled by the
sophisticated dilute suspensions theories (see, for example, Happel and Brenner (1965)) derived from the
original work of Einstein (1956). The comparative lack of hydrodynamic theory on concentrated as opposed
to dilute suspensions can be ascribed to the difficulties in dealing with particle/particle interactions. The
precise fluid mechanics of this situation is almost prohibitively complicated especially when the particles
themselves change their shape in response to the flow, as blood cells do. We are thus forced by necessity to
seek some simplified fluid mechanical model which will preserve the essence of the motions while dispensing
with features which we might judge to be of lesser importance. Only by comparison with experimental
observation can such a model be justified or improved upon.

Of the theories which do exist perhaps the best known and most widely used are the ”cell” methods
employed by Simha(1952), Happel (1957), Kynch (1954) and others derived from the pioneering works
of Taylor(1932) and Oldroyd (1953, 55). Gal-Or (1970) and Yaron and Gal-Or (1972) envisaged ”cell”
models as representing the ensemble average or typical velocity field surrounding a suspended particle (or
red blood cell). This velocity field is comprised of a component due to the mean flow of the suspension plus
localized influences due to motions of individual particles. It is assumed that the average hydrodynamic
effect on one particle of the presence of all the other particles is equivalent to that of a spherical boundary,
radius b, enclosing the particle as depicted in figure 1. When the total volume of fluid is shared between
particles this requires that the volumetric concentration, c, be given by c = γ3 where γ = a/b and a is
the ensemble average of the particle radii. Various boundary conditions on the outer spherical ”cell” have
been suggested; we shall follow Simha (1952), and Yaron and Gal-Or (1972) in assuming zero particle
disturbance velocity on r = b.

Despite their rather crude nature, ”cell” methods have provided surprisingly successful and useful models
for predicting the effective characteristic viscosity of concentrated suspensions. Since the ”cell” flow can



only be considered as qualitatively characteristic of the fluid motions due to individual particles in the
real suspension, this success is undoubtedly due in part to the fact that the effective viscosity is computed
by integration over the volume of ”cell” fluid to obtain the total dissipation; many imperfections may be
minimized by such integration.

It is with this success in mind that we will attempt to construct a ”cell” model for blood flow which
incorporates many of the important physical features of the erythrocyte and its contents. Before proceed-
ing it should however be noted that more sophisticated theories have been developed for concentrated
suspensions by Batchelor (1972), Saffman (1973), Batchelor and Green (1972) and others. That effort
is mostly limited to undeformable spherical particles; however, it is clear from these works that there
may be important differences between the characteristics of models which assume that the particles are
arranged in a regular array (including ”cell” models) and those which assume a random distribution of
the particles in the dispersion. Such differences arise when the fluid mechanical results are dominated by
two-particle-interactions between close neighbors, a situation which is excluded when a regular array is
assumed. In a dispersion, the effect is to alter the functional dependence of the sedimentation rate on
concentration (Batchelor (1972), Saffman (1973)). In a suspension of neutrally buoyant particles similar
effects are indicated for the effective viscosity but occur in higher order terms in concentration (Batchelor
and Green (1972)). A somewhat different approach was taken by Frankel and Acrivos (1967) who restricted
their attention to the lubrication films between particles. The neglect of the possibility of dominant close
neighbor interactions in existing ”cell” models represents a deficiency in the ”cell” method approach.

Contrary to some early experimental reports it has now been well established that the plasma or exterior
fluid in which the red blood cells are suspended is, to all intents and purposes, Newtonian (see, for example,
Cokelet (1972) and Brooks, Goodwin and Seaman (1970)). We will concern ourselves with flows in which
the typical velocities are much greater than the sedimentation velocity for red blood cells so that the latter
can be regarded as effectively neutrally buoyant. The red blood cell or erythrocyte consists of a membrane
filled with a solution of hemoglobin and various salts. This interior fluid is also Newtonian and the viscosity
as a function of hemoglobin concentration has been fairly well documented (Cokelet and Meisleman (1968),
Chien, Usami and Bertles (1970), Wells and Schmid-Schonbein (1969) and Dintenfass (1964,68)). This
viscosity is commonly some five or ten times that of the exterior fluid.

The nature of the red cell membrane and its deformation stress/strain relationship is much less well estab-
lished; a review article by Gitler (1972) on the plasticity of biological membranes indicates the complexity
of this subject. He concludes that recent evidence suggests that biological membranes are quasi-fluid
structures in which the constituent molecules are restricted only in an overall bilayer packing arrangement.
In this section the results for some simple viscoplastic models of the membrane will be compared with
experiments. One property of the red-cell membrane on which there is some data is the force required to
distort the erythrocyte, and this is used below.

At rest the red blood cell is shaped like a bi-concave discoid which for human blood has a maximum
thickness of about 2.4 microns and a diameter of about 8 microns. However in a flow situation this shape
is rarely recognizable and the red blood cell is continuously deforming like a flimsy liquid-filled balloon.
Such deformations clearly create motion of the interior fluid and the dissipation within this flow must
be included in evaluating the effective viscosity of the whole. Thus a necessary aspect of this analytical
treatment will be the velocity components creating distortion of the shape of the red blood cell. An
exact treatment of such a situation seems algebraically prohibitive; thus in the spirit of the statistical
”cell” methods we construct a characteristic solution which is more readily handled. In doing so we
solve the flow for a particular instant at which the shape happens to be nearspherical but in which the
velocities are such that distortion is taking place. Indeed this would be the potentially exact zeroth order



Figure 1: Schematic of the ”cell” method geometry.

solution for small deformations from a mean spherical shape. However in comparing the results with the
experimental measurements on blood flow we will also consider the solution as characteristic of the actual
large deformation flows.

Red blood cells in quiescent plasma suspension tend to form aggregates known as rouleaux which may
persist in flows at low shear rates with consequent rheological effects. The present paper will not deal with
problems of aggregation. Fortunately however aggregates do not form in suspensions of red blood cells
in saline. Thus, while valid comparison of theory and experiment at low shear rates is proper for saline
suspensions, caution must be exercized in comparing with the plasma suspension. Further comment in
this regard is included below.

Fluid motions

The basic ”cell” model is shown in figure 1 and the formulation of the fluid motion is similar to those of
previous ”cell” methods. The red cell membrane is at r = a, the fluid ”cell” boundary at r = b. The flow
in the exterior region, Σ1, will consist of a simple shear flow velocity u(0) (shear rate q) plus a particle
disturbance velocity u(1). The Reynolds numbers of these motions is assumed to be much less than unity
so that the flows are Stokesian; that is they obey the equations of creeping flow and are additive so that
the total velocity in Σ1 is u(0) + u(1). The motion in Σ2 within the red cell is denoted by u(2). Defining

spherical coordinates r, θ, φ as shown, the components u
(0)
r , u

(0)
θ , u

(0)
φ are then

u(0)
r = qr cos φ sin θ cos θ (Ebb1)

u
(0)
θ =

1

2
qr cosφ (cos2 θ − sin2 θ) (Ebb2)

u
(0)
φ =

1

2
qr sinφ cos θ (Ebb3)

With these is associated a uniform, constant pressure p(0). The general solution of the incompressible
creeping flow equations in terms of spherical harmonics is given by Lamb (1932). However, due to the



boundary conditions to be applied at r = b only the harmonics of orders −3 and 2 can have non-zero

coefficients so that appropriate general forms for u
(1)
r , u

(1)
θ , u

(1)
φ , p(1) are

u(1)
r = (6Ar3 + 2Cr + 6Er−2 − 3Gr−4) cos φ sin θ cos θ (Ebb4)

u
(1)
θ = (5Ar3 + Cr + Gr−4) cos φ (cos2 θ − sin2 θ) (Ebb5)

u
(1)
φ = −(5Ar3 + Cr + Gr−4) sinφ cos θ (Ebb6)

p(1) = μ1(42Ar2 + 12Er−3) cos φ sin θ cos θ (Ebb7)

where μ1 is the viscosity of the fluid in the exterior region and A, B, C , and D are constants to be
determined.

In the interior of the red cell terms corresponding to r−2 or r−4 cannot be permitted due to their singular
behavior at the origin so that the components of the interior flow will be of the form

u(2)
r = (6Kr3 + 2Lr) cos φ sin θ cos θ (Ebb8)

u
(2)
θ = (5Kr3 + Lr) cos φ (cos2 θ − sin2 θ) (Ebb9)

u
(2)
φ = −(5Kr3 + Lr) sin φ cos θ (Ebb10)

p(2) = μ2(42Kr2) cos φ sin θ cos θ + P (Ebb11)

where μ2 is the viscosity of the contents of the red cell, K and L are constants to be determined and P is
a hydrostatic pressure difference which may exist between the interior and exterior of the red cell.

General expressions for the components of the stress dyad, Π, acting upon the exterior of a spherical
surface in incompressible flow will be required later and these are

Πrr = − p + 2μ
∂ur

∂r
(Ebb12)

Πrθ = μ

[
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r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

]
(Ebb13)

Πrφ = μ

[
1

r
sin θ sinφ

∂ur

∂φ
+

∂uφ

∂r
− uφ

r

]
(Ebb14)

In all of the cases treated in this section the conditions taken to apply on the fluid boundary, r = b,

are those of Simha (1952), namely that the disturbance velocities u
(1)
r , u

(1)
θ and u

(1)
φ are zero. From the

equations (Ebb4), (Ebb5) and (Ebb6) these lead to

Ga−5 = −5Aa2γ−7 − Cγ−5 (Ebb15)

6Ea−3 = −21Aa2γ−5 − 5Cγ−3 (Ebb16)

so the unknown constants G, E may be eliminated and all further expressions for the exterior flow will
contain only the unknowns A and C .

The effective viscosity of the concentrated suspension, μ∗, is obtained from energy considerations as the
ratio of energy dissipation within the total ”cell” system to the energy dissipated in the simple shear flow
which would occur in the absence of any particle or red cell. The energy dissipation of the total ”cell”



system is most easily obtained from its equality with the rate of work done on the boundary, r = b, and
this is found to yield

μ∗/μ1 = 1 + 21Aa2γ−2/q + 5C/q (Ebb17)

It remains to discuss in detail the conditions on the red cell membrane interface; these conditions will
eventually lead to expressions for (Aa2/q) and (C/q) and therefore to values of the relative viscosity ratio,
μ∗/μ1.

Red cell membrane rates

The kinematic condition relating the fluid velocities on the interior and exterior surfaces of the red cell
membrane in conjunction with the viscous flow conditions of no-slip requires that[

u
(0)
i + u

(1)
i

]
r=a

=
[
u

(2)
i

]
r=a

(Ebb18)

for i = r, θ and φ. Substituting the expressions (Ebb1) to (Ebb10) for the velocities, one finds that K and
L must be given in terms of A and C by

4Ka2 = Aa2(4 + 21γ−5 − 25γ−7)) + 5C(γ−3 − γ−5) (Ebb19)

4L = 2q − 105Aa2(γ−5 − γ−7) + C(4− 25γ−3 + 21γ−5) (Ebb20)

and the membrane velocities may then be written as

(ur)r=a = V1a cosφ sin θ cos θ (Ebb21)

(uθ)r=a = V2a cosφ cos 2θ (Ebb22)

(uφ)r=a = −V2a sinφ cos θ (Ebb23)

where
V1 = q + Aa2(6 − 21γ−5 + 15γ−7) + C(2 − 5γ−3 + 3γ−5) (Ebb24)

V2 = q/2 + 5Aa2(1 − γ−7) + C(1 − γ−5) (Ebb25)

In terms of conventional membrane or shell theory (Flügge (1960)) it follows that the membrane strain
rates ėθθ, ėφφ and ėθφ are

ėθθ =
1

a

∂uθ

∂θ
+

ur

a
=

1

2
[V1 − 4V2] cos φ sin 2θ (Ebb26)

ėφφ =
1

a sin θ

∂uφ

∂φ
+

ur

a
+

1

2

uθ cot θ

a
= [V1 − 2V2] cos φ sin 2θ (Ebb27)

ėθφ =
1

2a

[
sin θ

∂(uφ/ sin θ)

∂θ
+

1

sin θ

∂uθ

∂φ

]
= V2 sinφ sin θ (Ebb28)

Membrane stresses

To complete the picture, the forces acting upon the membrane are also required; external forces are due to
the viscous stresses from both the interior and exterior flows. If Σr, Σθ, Σφ denote the externally imposed
stresses on the membrane in the three directions then their net values are

Σr = Π(1)
rr + Π(0)

rr − Π(2)
rr (Ebb29)

Σθ = Π
(1)
rθ + Π

(0)
rθ − Π

(2)
rθ (Ebb30)



Σφ = Π
(1)
rφ + Π

(0)
rφ − Π

(2)
rφ (Ebb31)

The R.H.S. can he evaluated from the equations of the last section to yield

Σr = −P1 + P2 cos φ sin θ cos θ (Ebb32)

Σθ = P3 cosφ cos 2θ (Ebb33)

Σφ = −P3 cos θ sinφ (Ebb34)

where

P2/μ1 = 2q(1 − λ) + Aa2[−6 + 126γ−5 − 120γ−7 + λ(12 + 273γ−5 − 285γ−7)/2]

+C [4 + 30γ−3 − 25γ−5 + λ(−8 + 65γ−3 − 57γ−5)/2] (Ebb35)

P3/μ1 = q(1− λ) + Aa2[16 − 21γ−5 + 40γ−7 − λ(32 + 63γ−5 − 95γ−7)/2]

+C [2− 5γ−3 + 8γ−5 − λ(4 + 15γ−3 − 19γ−5)/2] (Ebb36)

where the constant, λ, denotes the ratio of internal to external viscosity, μ2/μ1.

The fundamental stress equations for a spherical (or near spherical) membrane or shell can be found in a
shell theory text (for example, Flügge (1960)); they relate the internal membrane stresses σθ, σφ and τθφ

to the imposed stresses Σr , Σθ and Σφ as follows

−aΣθ/t =
∂σθ

∂θ
+

1

sin θ

∂τθφ

∂φ
+ cot θ(σθ − σφ) (Ebb37)

−aΣφ/t =
∂τθφ

∂θ
+

1

sin θ

∂σφ

∂φ
+ 2cot θτθφ (Ebb38)

aΣr/t = σθ + σphi (Ebb39)

where t is the membrane thickness which is assumed constant throughout. The solution of these equations
given the forms of the equations (Ebb32) to (Ebb34) of Σθ, Σφ, Σr is relatively straightforward; with the
restriction that the stresses must be everywhere finite the resulting solution is

tσθ = −aP1/2 + a(P2 − 2P3) sin 2θ cos φ/8 (Ebb39)

tσφ = −aP1/2 + a(3P2 + 2P3) sin 2θ cosφ/8 (Ebb40)

tτθφ = a(P2 + 2P3) sin θ sin φ/4 (Ebb41)

These then are the shell theory stresses within the red membrane itself where P2, P3 are given by equations
(Ebb35) and (Ebb36).

Limiting Cases - hardened red cells

Before proceeding to more complex cases it is of value to examine two simple limiting solutions of particular
interest:

[i] the case in which the forces on the membrane are so small or the membrane so strong that it is virtually
undeformed during the flow process,

[ii] the case (or cases) in which the forces on the membrane are very large compared with its ability to
resist.



It is anticipated that case [i] may occur in blood and red cell suspensions when the shear rate is very small
or for suspensions of hardened red cells whereas [ii] may be the case when the shear rate is very large.

Case [i] corresponds simply to the problem of solid spherical particles and the result is obtained by setting
the strain rates given by equations (Ebb26) to (Ebb28) equal to zero. Thus V1 = V2 = 0 and equations
(Ebb24) and (Ebb25) yield two equations for the unknowns (Aa2/q) and (C/q). When these are substituted
into (17) the resulting expression for the effective viscosity is, of course, identical with that of Simha (1952)
for solid spherical particles:

μ∗/μ1 = 1 + 10γ3(1 − γ7)/(4 − 25γ3 + 42γ5 − 25γ7 + 4γ10) (Ebb43)

For small concentrations, c = γ3, this reduces most satisfactorily to Einstein’s classical result for very
dilute solutions, namely as c → 0,

μ∗/μ1 → 1 + 5c/2 (Ebb44)

For concentrated solutions the expression (Ebb43) has been found by Simha (1952), Happel(1957) and
others to agree surprisingly well with experimental measurements despite the approximations of the ”cell”
approach.

Figure 2: Comparison of equation (Ebb43) with data for hardened red cell suspensions by Chien, Usami, Dellenback and
Gregersen (1967) and Brooks, Goodwin and Seaman (1970).

In figure 2, the theoretical result (Ebb43) is compared with the experimental measurements of Chien,
Usami, Dellenback and Gregersen (1967) on hardened red cells in water and of Brooks, Goodwin and
Seaman (1970) on hardened red cells in isotonic saline. The result is very satisfactory although there is
some deviation at higher hematocrits or concentrations. Cokelet (1972) compares the same experimental
values with an empirical formula due to Landel, Moser and Bauman (1965) of

μ∗/μ1 = (1 − 5c/cM )5/2 (1)



where cM is the maximum packing concentration. The degree of agreement is comparable. It might be
expected that suspensions of normal red cells would approach the same relative viscosity as the shear rate
became very small. The isotonic saline suspension data of Brooks, Goodwin and Seaman (1970) suggests
that the shear rates at which this occurs is indeed very small (probably significantly less than 1/s(−1) and
may decrease with increasing hematocrit or concentration. The search for this trend must be confined to
suspensions in which aggregates do not form at low shear rates; as mentioned in the preceding section the
presence of rouleaux in plasma suspensions would invalidate the comparison with the present theory.

Liquid droplets

The second limiting case that we will examine is that in which the membrane has no resistance to defor-
mation. This has two subcases which are of interest.

The first subcase corresponds to the problem of liquid droplets for which Taylor(1932) examined the
problem of dilute suspensions. Here the interfacial or surface tension forces are assumed sufficiently large
so that the interface does not deviate from its prescribed spherical shape. The first condition is therefore

that (u
(0)
r + u

(1)
r )r=a = 0 or from (Ebb21) that V1 = 0. The second condition is that shear stresses on the

interface should balance. That is that Σθ = Σphi = 0 on r = a or from (Ebb33) and (Ebb34) that P3 = 0.
Then the conditions V1 = 0 and P3 = 0 permit solution for (Aa2/q) and (C/q) and lead to an effective
viscosity

μ∗

μ1
= 1 +

[4 + 10γ7 + 10λ(1 − γ7)] γ3

[4 − 10γ3 + 10γ7 − 4γ10 + λ(4 − 25γ3 + 42γ5 − 25γ7 + 4γ10)]
(Ebb45)

where, as before, λ, is the ratio of internal to external viscosity or λ = μ2/μ1. Note that when λ is large
this precisely approaches the equation (Ebb43) for solid particles. Also when the concentration, c = γ3, is
small it reduces to

μ∗

μ1
→ 1 +

γ3(1 + 5λ/2)

(1 + λ)
(Ebb46)

which is precisely Taylor’s result for a dilute suspension of spherical liquid drops. Further note that as the
concentration or γ approaches unity the expression (Ebb45) indicates that μ∗/μ1 will approach infinity.
This might be described as a direct result of not permitting any deviation from the spherical shape; a
suspension of particles of fixed shape might be expected to have an infinite viscosity as the concentration
approaches its maximum value.

When the interior and exterior fluids are considered to be separated by a membrane rather than an interface
the stresses in that membrane, given by equations (Ebb40), (Ebb42), become relevant. Then it is clear
that in the limiting case when the membrane is infinitely deformable, the appropriate conditions should
be those of zero membrane stress or P1 = P2 = P3 = 0. The condition P1 = 0 leads no further than the
prescription that the hydrostatic pressures of the interior and exterior be identical. However, the condition
P2 = P3 = 0 along with the relations (Ebb35) and (Ebb36) lead to an effective viscosity

μ∗

μ1
= 1 +

[10(λ − 1) {16 + 19γ7 + 19λ(1 − γ7)} γ3]

96 + 400γ3 − 672γ5 + 450γ7 + 76γ10 + λ(178 + 75γ3 − 126γ5 + 25γ7 − 152γ10)

+λ2(76 − 475γ3 + 798γ5 − 475γ7 + 76γ10) (Ebb47)

When the suspension is dilute this reduces to

μ∗

μ1

= 1 +
5γ3(λ − 1)

(3 + 2λ)
(Ebb48)



which, as expected, again reduces to Einstein’s formula (Ebb4) when λ is large. However, (Ebb48) does
differ from Taylor’s result; most significantly when the interior and exterior viscosities are identical (λ = 1)
the suspension viscosity given by (Ebb47) takes that same value. This is clearly the correct result since
an infinitely deformable membrane was prescribed and the restriction on spherical shape has not been
employed. In the case of λ = 1, the membrane is then merely a material surface in the pure shear flow, q,
of an effectively homogeneous medium. This second sub case seems more appropriate to the case of blood

flow at shear rates which are sufficiently high to completely dominate the resistive ability of the red cell
membrane. Indeed there is, as expected, a wide disparity between the results for equation (Ebb45) and
for equation (Ebb47) as indicated by the single comparison included in figure 3.

Figure 3: Normal red cell suspensions at high shear rates. Asymptotic data of Brooks, Goodwin and Seaman at high shear
rates: (i) in plasma (λ = 5):� and (ii) in saline (λ ≈ 10): �. Theoretical predictions using equation (Ebb47) with λ = 5 and
10: long dashed line. Also shown are the line for hardened red cells from Figure 2: solid line, and a result from equation
(Ebb45) for λ = 10 (short dashed line).

The results of the theoretical expression (Ebb47) will be compared with the effective viscosities of red
blood cell suspensions in saline and in ACD plasma as measured by Brooks, Goodwin and Seaman (1970).
They found that at high shear rates of about 500s−1 the effective viscosities of their suspensions had closely
approached asymptotic values and the data clearly suggests that further increase in shear rate would cause
little change. These asymptotic values are plotted in figure 3 (the viscosity of the saline at 25◦C is 0.96cp
and that of the plasma was about 1.70cp (Seaman (1972)). It should also he noted that Brooks, Goodwin
and Seaman (1970) conclude that rouleaux will not be present to any significant degree at these high shear
rates so that direct comparison of theory and experiment should be valid in this respect.

The content of the red cell is primarily a solution of hemoglobin in saline. The Newtonian nature and
viscosity of such solutions has been well documented experimentally by Chien, Usami and Bertles (1970),



by Cokelet and Meiselman (1968) and by Wells and SchmidSchöbein (1969). At normal hemoglobin
concentrations of around 32% by weight (Dintenfass (1964,68)) the viscosity of the solution is expected
from the experimental data to be in the neighborhood of 9cp. But the relevant value of λ for use in equation
(Ebb47) will also depend on the viscosity μ of the suspending medium. Thus the appropriate value of λ for
the saline suspension is about 10 whereas that for the plasma suspension is about 5. Values from equation
(Ebb47) for both λ are shown in figure 3 and agree most satisfactorily with the experimental measurement.
As before the only significant deviation seems to occur at the highest hematocrits and probably for the
reason suggested earlier.

Erythrocyte suspensions at arbitrary shear rate

Having established some validity for the theory in the two limiting cases of hardened red cells and red
cells at high shear rates it is of interest to try to complete the analysis in an attempt to predict the
properties of red cell suspensions at moderate or transitional shear rates. For this purpose some model of
the properties of deformation of the membrane is required. That is to say some constitutive equation which
would enable the membrane stresses (equations (Ebb40), (Ebb42) ) to be related to the strains and strain
rates (equations (Ebb26) to (Ebb28)) thus leading to an effective viscosity which would be a function of
the constants in that constitutive equation as well as λ and c.

As mentioned previously there is really insufficient knowledge of the elastic/plastic nature of the red cell
membrane to allow such an approach to be implemented directly. Instead we will compare the experimental
data at these intermediate shear rates with some admittedly oversimplified membrane models in an attempt
to find trends which would suggest not only superior models but also some clues as to the nature of the
membrane deformation itself. First it is to be noted that in the context of the present formulation purely
elastic deformations of the membrane will yield little energy dissipation and will not, therefore, contribute to
the relative viscosity of the suspension. Thus only viscoplastic membrane deformations will be considered;
the analysis and results of some simple models are as follows:

[A] Viscous Membrane. The form of the equation for membrane stress and strain rate are such that
the simplest model is to assume that the membrane behaves like a Bingham solid with a negligibly small
yield stress (see model [C) so that

σij = −pδij + 2η∗ėij + δij + ξ∗Ė for i, j = θ, φ

where δij is the Kronecker delta, η∗ is the coefficient of viscosity of the membrane, ξ∗ is the dilation modulus

and Ė is the dilation rate, ėθθ + ėφφ. Using the relations for σij and ėij this constitutive equation leads to
three conditions one of which is redundant so that

(P2 − 2P3)/μ1 = 8η(V1 − 4V2) + 8ξ(V1 − 3V2) (Ebb49)

(P2 + 2P3)/μ1 = 8ηV2 (Ebb50)

where η = η∗a/t and ξ = ξ∗a/t. The solution of these equations for (Aa2/q) and (C/q) given the definitions
(Ebb24), (Ebb25), (Ebb35) and (Ebb36) enables one to obtain a relative viscosity μ∗/μ1, as a function of
λ, η, ξ and of course c. It transpires that the results are to all intents and purposes independent of the
dilation modulus ξ; they are altered very little whether ξ is 0 or 104. It is for this reason that the results
of this model are omitted since they are virtually identical with those of the following model.

Shear Viscous Membrane. Here it is assumed that as the red cell is distorted a segment of membrane
does not change in area; that is to say the dilation E is zero or V1 = 3V2. If in addition there is viscous



resistance, η∗, to its changing shape then this second condition merely repeats equation (Ebb50), namely
(P2 + 2P3)/μ1 = 8ηV1. The consequent relative viscosity becomes

μ∗

μ1
= 1 +

[10γ3 {(23(1 − γ7) − 16 + 23γ7 + 16η(1 − γ7)}]
128 + 400γ3 − 336γ5 − 100γ7 − 92γ10 + λ(92 − 575γ3 + 996γ5 − 575γ7 + 92γ10)

+η(64 − 400γ3 + 672γ5 − 400γ7 + 64γ10) (Ebb51)

Figure 4: Comparison of results for ”shear viscous membrane” model (dashed lines) with experimental results for suspensions
of normal red cells in plasma (λ = 5) at various shear rates.

The results of this model (which are virtually identical with those of [A] for the reasons given above) are
shown in figures 4 and 5 for λ = 5 and λ = 10 respectively and a series of values of the membrane viscosity
η. When η → ∞ equation (Ebb51) reduces to the case of solid particles (equation (Ebb43)) and when
η → 0 the numerical result is very close to that of equation (Ebb47). The data of Brooks, Goodwin and
Seaman (1970) for suspensions of normal red cells in plasma (λ = 5) and in saline (λ = 10) are also shown
in figures 4 and 5 for shear rates, q, of 0.5, 5 and 50s−1.

This model is however not particularly satisfactory since even if the membrane could be characterized by
a simple viscosity, figures 4 and 5 illustrate how that viscosity would have to increase with decreasing
shear rate in order to correlate with the experimental data. (The limits of the validity of the comparison



Figure 5: Comparison of results for ”shear viscous membrane” model (dashed lines) with experimental results for suspensions
of normal red cells in saline (λ = 10) at various shear rates.

in figure 4 due to aggregation at low shear rates are more conveniently delayed until later). Though such
a trend is not beyond the realm of possibility there is insufficient data on the membrane properties to
adequately evaluate the results of this model at the present time. It can only be pointed out that the
membrane viscosities are the same order of magnitude as the figure of 100 − 200cp quoted by Frye and
Edidin (1970) for a different biological membrane. For these reasons a somewhat different model based on
known properties of the red cell membrane but fitting the data rather more crudely is presented below.

[C] Plastic Membrane. Comparison of the model [B] with the experimental data indicated (figures 4
and 5) that the ”apparent membrane viscosity” increases with decreasing shear rate. This suggests that
a purely plastic membrane model might be worth investigation; this would represent the membrane as
undeformable up to a certain membrane yield stress and unable to sustain any greater stress. It also
happens that there exist experimental observations from which a value for this membrane yield stress can
be deduced. It is worth emphasizing, however, that the yield stress referred to is not the rupture stress
measured by Rand and Burton (1964), Leverett et al. (1972) and others but merely the stress required to
initiate deformation of the erythrocyte.

Brooks Goodwin and Seaman (1970) report that the height of a column of sedimented red cells in which
deformation is first detected is .042 cm. At this height the force on the bottom layer of cells due to the
weight of those above and in terms of an average pressure over the mean cross sectional area of each cell
is about 3.8 dynes/cm2. If this is then equated to a membrane yield stress of k dynes/cm2 it follows



that 2kt/a = 3.8 dynes/cm2 where a is the average radius of the cross-sectional area and t the membrane
thickness. The membrane yield stress, k = 1.9a/t dynes/cm2 will be employed in this membrane model.

Figure 6: Comparison of results for the plastic membrane model with experimental results for suspensions of normal red
cells in plasma (λ = 5) at various shear rates).

The plastic yield criterion which will be used is that of von Mises (Hill(1950)); that is to say the membrane
stresses at yield will satisfy

[(σθ − σφ)
2/4 + τ 2

θφ]MAX = k2 (Ebb52)

Substituting for σθ, σφ and τθφ from equations (Ebb40), (Ebb41) and (Ebb42) this condition becomes

|P2 + 2P3| = kt/a (Ebb53)

Then if P2 + 2P3 is less than kt/a the red cells will act like solid particles and the suspension will conform
to equation (Ebb43). Using the details of that earlier section to evaluate P2 and P3 the condition (Ebb53)
becomes

5(8 + 7γ5 + 15γ7)

(4 − 25γ3 + 42γ5 − 25γ7 + 4γ10)
=

4kt

aqμ1

= T, say (Ebb54)

Note that this condition also involves μ1 and the shear rate q. Further assume that once the yield has
taken place the maximum membrane stress will remain at the yield value; it follows that equation (Ebb53)
is the first condition required for solution. Retaining from model [B] the second condition of zero dilation
(or V1 = 3V2) leads to a post-yield relative viscosity of

μ∗

μ1
= 1 +

[γ3 {−80 + 115γ7 + λ(115 − 115γ7) + T (96 + 84γ5 − 180γ7)}]
{64 + 200γ3 − 168γ5 − 50γ7 − 46γ10 + λ(92 − 575γ3 + 996γ5 − 575γ7 + 92γ10)/2} (Ebb56)



Using the above mentioned value for kt/a, the values of T which correspond to the experimental data
of figures 4 and 5 for shear rates of 0.5, 5.0 and 50s−1 are respectively 220, 22 and 2.2 for the plasma
suspension and 420, 42 and 4.2 for the saline suspension of normal red blood cells. The appropriate results
of equation (Ebb55) are compared with the experimental results for the plasma and saline suspensions in
figures 6 and 7.

Figure 7: Comparison of results for the plastic membrane model with experimental results for suspensions of normal red
cells in saline (λ = 10) at various shear rates.

As mentioned previously there is some question concerning the validity of the comparison in figure 6
(also figure 4) since aggregates may be present in the plasma suspension at very low shear rates. Brooks,
Goodwin and Seaman (1970) estimate that the force required to disaggregate red cells is less than the force
required to initiate deformation of an erythrocyte and may be as little as one hundreth of that value. Thus
when the shear rate and hematocrit in the plasma suspension are sufficiently large for red cell deformation
to occur (the dashed lines in figure 6) we would not expect significant numbers of aggregates to be present
and comparison with the theoretical model would then be appropriate. But, furthermore, the other portion
of the model (solid line, figure 6) corresponds to essentially solid or undeforming particles the equation for
which, (Ebb43), is independent of particle size in the first order and would hold equally well for aggregates.
Of course, this is overly simplistic but indicates that the effect of rouleaux on the viscosity of blood is
not entirely obvious. Indeed comparison of the experimental data in figure 6 with that of figure 7 (where
aggregation is not a factor) for unyielded flows suggests that if rouleaux is present in the plasma it has a
relatively small effect on that relative viscosity. The only substantial difference occurs at the lowest shear
rate and with intermediate hematocrits; the reason for this is not clear. We conclude that though figure
7 (and figure 5) represent a more reliable comparison of theory and experiment the data of figure 6 (and
figure 4) are also worth some thought.



It is to be expected that there would be some discrepancy between theory and experiment considering
the oversimplification of the plastic membrane model. No real plastic material has the step-function like
behavior assumed here and we would expect that there would be a smoother transition from the state of no
deformation to the state of maximum stress as figures 6 and 7 suggest. With this in mind the quantitative
agreement at the higher shear rates and the general qualitative agreement at lower q is most remarkable.
It suggests that, aside from the questions of aggregation discussed above, good quantitative agreement at
all shear rates may be achieved with better detailed knowledge of the structural properties of the red cell
membrane. It is worth stressing that this model [C] has employed only properties of the red cell membrane
and contents which are known from other experiments and that no additional factors or properties have
been introduced.

Conclusions

A simple cell method approach to concentrated suspensions has been employed in an attempt to construct
a model for the rheological properties of blood. Predictions of the gross viscosity of red cell suspensions
have been found to agree very well with the experimental data for the case of hardened red cells (or normal
red cells at very low shear rates) and the case of normal red cell suspensions in the asymptotic limit of high
shear rates. The latter case requires the appropriate value of the ratio of the viscosity of the surrounding
medium to that of the red cell content, namely a solution primarily of hemoglobin.

In order to analyze the rheology at intermediate shear rates a knowledge of the stress/strain relationship
for the membrane is required. A number of simple membrane models are investigated. Most significantly
the model based on a membrane yield stress whose value is known from other experiments leads to results
which are compatible with the experimental observations at intermediate shear rates. The significance of
these results lies in the fact that the model incorporates properties of the red cell membrane and red cell
contents which are known from other sources and that no additional factors or unknown properties are
incorporated.


