An Internet Book on Fluid Dynamics

Joukowski Airfoils

In section (Bmbb), the following expression for the added mass matrix in potential flow was derived

$$
\begin{equation*}
M_{j k}=-\rho \int_{S} \phi_{j} \frac{\partial \phi_{k}}{\partial n} d S \tag{Bmbe1}
\end{equation*}
$$

where S is the surface of the body, n is the outward normal to that surface and ϕ_{j} and ϕ_{k} are the velocity potentials on the surface of the object whose added mass matrix we seek; specifically they are the velocity potentials of the steady potential flows due to translation of the foil with unit velocity in the j and k directions (and zero fluid velocity far from the foil). Moreover, the condition of zero normal velocity on the surface means that

$$
\begin{equation*}
\frac{\partial \phi_{k}}{\partial n}=n_{k} \tag{Bmbe2}
\end{equation*}
$$

where n_{k} is the component of the unit outward normal in the k direction. Substituting this into equation (Bmbe1) it follows that

$$
\begin{equation*}
M_{j k}=-\rho \int_{S} \phi_{j} n_{k} d S \tag{Bmbe3}
\end{equation*}
$$

Now the steady potential flow past a Joukowski airfoil was detailed in section (Bged) where the velocity potential on the surface of the foil, $\phi^{* *}$, was given by equation (Bged19) as

$$
\begin{equation*}
\frac{\phi^{* *}}{U}=2 R[\cos (\theta-\alpha)-(\theta-\alpha) \sin (\alpha+\beta)] \tag{Bmbe4}
\end{equation*}
$$

where the surface begins at the trailing edge at $\theta=-\beta$ and ends at the trailing edge at $\theta=2 \pi-\beta$. However, $\phi^{* *}$, is not the surface velocity potential that is needed for present purposes. As described in section (Bged), it is the velocity potential for a flow in which the foil is fixed in position and the flow far from the foil is a uniform stream of velocity U inclined at an angle α to the ξ direction. The velocity potential we need for present purposes is that in which the flow far from the foil is at rest and the foil is moving with a velocity U at an angle α to the ξ direction. The adjustment is simply a matter of reversing the sign of the right hand side of equation (Bmbe4) and adding a uniform stream component of magnitude, U, and inclination α to obtain the following adjusted velocity potential, $\phi^{* * *}$:

$$
\begin{equation*}
\frac{\phi^{* * *}}{U}=\xi e^{-i \alpha}-2 R[\cos (\theta-\alpha)-(\theta-\alpha) \sin (\alpha+\beta)] \tag{Bmbe5}
\end{equation*}
$$

It follows from this that the earlier defined ϕ_{j} in equation (Bmbe3) is given by

$$
\begin{equation*}
\left[\phi_{j}\right]_{j=1}=\left(\frac{\phi^{* * *}}{U}\right)_{\alpha=0} \quad \text { and } \quad\left[\phi_{j}\right]_{j=2}=\left(\frac{\phi^{* * *}}{U}\right)_{\alpha=\pi / 2} \tag{Bmbe6}
\end{equation*}
$$

where the $j=1$ and $j=2$ directions correspond to the directions of the ξ and η axes.
In order to perform the surface integral in equation (Bmbe3) we note that the relation between a surface element, $d s$, in the ζ plane and a surface element, $d \theta$, in the z plane is

$$
\begin{equation*}
(d s)^{2}=(d \xi)^{2}+(d \eta)^{2} \quad \text { so that } \quad \frac{d s}{d \theta}=R\left|1-\frac{a^{2}}{z^{2}}\right| \tag{Bmbe7}
\end{equation*}
$$

Moreover, since the components of the unit normal to the surface, n_{k}, are given by

$$
\begin{equation*}
n_{k}=\left[\frac{\left(1-a^{2} / z^{2}\right) e^{i \theta}}{\left|1-a^{2} / z^{2}\right|}\right]_{k} \tag{Bmbe8}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
n_{k} \frac{d s}{d \theta}=\left[R\left(1-\frac{a^{2}}{z^{2}}\right) e^{i \theta}\right]_{k} \tag{Bmbe9}
\end{equation*}
$$

Thus, finally, the integrand in equation (Bmbe3) is completely defined and integrations can be performed numerically to determine the added masses, $M_{j k}$.

We define non-dimensional added mass coefficents, $M_{j k}^{* *}$, as

$$
\begin{equation*}
M_{j k}^{* *}=\frac{M_{j k}}{\rho s c^{2}} \tag{Bmbe1}
\end{equation*}
$$

where c and s are the chord and span of the foil. Then the diagonal added mass coeffient, $M_{11}^{* *}$, in the direction of the chord line is shown in Figure 1, and the diagonal added mass coefficient, $M_{22}^{* *}$, in the direction normal to the chord line is plotted in Figure 2. These coefficients are plotted for various foil

Figure 1: The added mass, $M_{11}^{* *}$, for a range of different Joukowski airfoils.
thickness parameters, R / a, and for three different angles β (see section (Bged) for the corresponding foil geometries and lift coefficients in steady flow).

Notice that when $R / a \rightarrow 1$ and $\beta=0$ the foil becomes a flat plate for which $M_{11}^{* *} \rightarrow 0$ and $M_{22}^{* *} \rightarrow \pi / 4=$ 0.785 in accord with the results listed in section (Bmbd).

Figure 2: The added mass, $M_{22}^{* *}$, for a range of different Joukowski airfoils.

