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Method of Separation of Variables in Polar Coordinates

Here we will establish the form of the solutions to Laplace’s equation
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for planar flow that result from using the method of the separation of variables in polar coordinates, r and
θ, in the xy plane of the flow so that x = r cos θ and y = r sin θ. We seek a separable solution of the form

φ = R(r, t) Θ(θ, t) (Bgda2)

where the functions R(r, t) and Θ(θ, t) need to be determined. Substituting this into equation (Bgda1)
and rearranging yields
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and since the left hand side is a function only of r and t and the right hand side is a function only of θ and
t both sides can only be a function of t. Here we choose to set them both equal to a positive constant, k2,
so that
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and these two ordinary differential equations have the following solutions

R = C3kr
k + C4kr

−k and Θ = C1k sin kθ + C2k cos kθ (Bgda5)

where the quantities C1k, C2k, C3k, and C4k, may be constants or functions of time. Hence the form of the
solution obtained by this methodology is
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and the velocities in the r and θ directions, ur and uθ, are
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In addition there is a particular solution in the special case in which k = 0 where the differential equations
(Bgda4) become
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and these have the solutions

R = C30 + C40 ln r and Θ = C10 + C20θ (Bgda10)

so that
φ = (C30 + C40 ln r)(C10 + C20θ) (Bgda11)

with velocities
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