An Internet Book on Fluid Dynamics

Method of Separation of Variables in Polar Coordinates

Here we will establish the form of the solutions to Laplace's equation

$$
\begin{equation*}
\nabla^{2} \phi=0 \quad \text { or } \quad \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \quad \text { or } \quad \frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0 \tag{Bgda1}
\end{equation*}
$$

for planar flow that result from using the method of the separation of variables in polar coordinates, r and θ, in the $x y$ plane of the flow so that $x=r \cos \theta$ and $y=r \sin \theta$. We seek a separable solution of the form

$$
\begin{equation*}
\phi=R(r, t) \Theta(\theta, t) \tag{Bgda2}
\end{equation*}
$$

where the functions $R(r, t)$ and $\Theta(\theta, t)$ need to be determined. Substituting this into equation (Bgda1) and rearranging yields

$$
\begin{equation*}
\frac{r^{2}}{R}\left\{\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}\right\}=-\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}} \tag{Bgda3}
\end{equation*}
$$

and since the left hand side is a function only of r and t and the right hand side is a function only of θ and t both sides can only be a function of t. Here we choose to set them both equal to a positive constant, k^{2}, so that

$$
\begin{equation*}
\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}=\frac{k^{2} R}{r^{2}} \quad \text { and } \quad \frac{d^{2} \Theta}{d \theta^{2}}=-k^{2} \Theta \tag{Bgda4}
\end{equation*}
$$

and these two ordinary differential equations have the following solutions

$$
\begin{equation*}
R=C_{3 k} r^{k}+C_{4 k} r^{-k} \quad \text { and } \quad \Theta=C_{1 k} \sin k \theta+C_{2 k} \cos k \theta \tag{Bgda5}
\end{equation*}
$$

where the quantities $C_{1 k}, C_{2 k}, C_{3 k}$, and $C_{4 k}$, may be constants or functions of time. Hence the form of the solution obtained by this methodology is

$$
\begin{equation*}
\phi=\left(C_{3 k} r^{k}+C_{4 k} r^{-k}\right)\left(C_{1 k} \sin k \theta+C_{2 k} \cos k \theta\right) \tag{Bgda6}
\end{equation*}
$$

and the velocities in the r and θ directions, u_{r} and u_{θ}, are

$$
\begin{align*}
& u_{r}=\frac{\partial \phi}{\partial r}=k\left(C_{3 k} r^{k-1}-C_{4 k} r^{-(k+1)}\right)\left(C_{1 k} \sin k \theta+C_{2 k} \cos k \theta\right) \tag{Bgda7}\\
& u_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=k\left(C_{3 k} r^{k-1}+C_{4 k} r^{-(k+1)}\right)\left(C_{1 k} \cos k \theta-C_{2 k} \sin k \theta\right) \tag{Bgda8}
\end{align*}
$$

In addition there is a particular solution in the special case in which $k=0$ where the differential equations (Bgda4) become

$$
\begin{equation*}
\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}=0 \quad \text { and } \quad \frac{d^{2} \Theta}{d \theta^{2}}=0 \tag{Bgda9}
\end{equation*}
$$

and these have the solutions

$$
\begin{equation*}
R=C_{30}+C_{40} \ln r \quad \text { and } \quad \Theta=C_{10}+C_{20} \theta \tag{Bgda10}
\end{equation*}
$$

so that

$$
\begin{equation*}
\phi=\left(C_{30}+C_{40} \ln r\right)\left(C_{10}+C_{20} \theta\right) \tag{Bgda11}
\end{equation*}
$$

with velocities

$$
\begin{gather*}
u_{r}=\frac{\partial \phi}{\partial r}=\frac{C_{40}}{r}\left(C_{10}+C_{20} \theta\right) \tag{Bgda12}\\
u_{\theta}=\frac{1}{r} \frac{\partial \phi}{\partial \theta}=\left(C_{30}+C_{40} \ln r\right) \frac{C_{20}}{r} \tag{Bgda13}
\end{gather*}
$$

